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Abstract

We survey the literature about the teaching and learning of recurs-
ive programming. After a short history of the advent of recursion in
programming languages and its adoption by programmers, we present
curricular approaches to recursion, including a review of textbooks and
some programming methodology, as well as the functional and imper-
ative paradigms and the distinction between control flow vs. data flow.
We follow the researchers in stating the problem with base cases, noting
the similarity with induction in mathematics, making concrete analo-
gies for recursion, using games, visualizations, animations, multimedia
environments, intelligent tutoring systems and visual programming.
We cover the usage in schools of the Logo programming language and
the associated theoretical didactics, including a brief overview of the
constructivist and constructionist theories of learning; we also sketch
the learners’ mental models which have been identified so far, and non-
classical remedial strategies, such as kinesthesis and syntonicity. We
append an extensive and carefully collated bibliography, which we hope
will facilitate new research.

Keywords: computer science education, didactics of programming, recur-
sion, tail recursion, embedded recursion, iteration, loop, mental models.

Foreword

In this article, we survey how practitioners and educators have been teaching
recursion, both as a concept and a programming technique, and how pupils
have been learning it. After a brief historical account, we opt for a thematic
presentation with cross-references, and we append an extensive bibliography
which was very carefully collated. The bibliography is the foundation of our
contribution in the sense that we started from it, instead of gathering it in
support of our own ideas, as is usual in research papers.
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In writing this survey, we committed ourself to several guidelines which
the reader is advised to keep in mind while reading.

1. We restricted ourself exclusively to the published literature on teach-
ing and learning recursive programming, not computer programming
in general. While it may be argued that, for example, articles and
books about functional programming almost constantly make use of
recursion, we preferred to focus on the papers presenting didactical
issues explicitly and exclusively related to recursion.

2. We did not review the emergence of the concept of recursion from its
mathematical roots, and we paint a historical account with our fingers,
just enough to address the main issues of this survey with a minimal
background information.

3. We did not want to mix our personal opinion and assessment of the
literature with its description, because we wanted this article to be in
effect a thematic index to the literature, even though it is not possible
to cite all references in the text, for room’s sake. The only places where
we explicitly express our own ideas are in our own publications, in the
definitions found in the introduction (in the absence of bibliographic
reference) and in the conclusion.

4. We did not cover topics like the teaching of recursion and co-recursion
in the context of lazy evaluation, or programming languages based on
process algebras or dataflow, because they have not been addressed spe-
cifically in didactics publications, perhaps because they are advanced
topics usually best suited for postgraduate students, who are expected
to master recursion, and most publications deal with undergraduates
or younger learners.

5. Despite our best efforts in structuring the ideas found in the literature,
the following presentation contains some measure of repetition because
papers often cover mutually related topics, so a printed survey cannot
capture exactly what is actually a semantic graph, and such a graph
would better support a meta-analysis of the literature (where cross-
referencing, publication timelines, experimental protocols and statistics
would be in scope) rather than a survey.

Introduction

In abstract terms, a definition is recursive if it is self-referential. For in-
stance, in programming languages, function definitions may be recursive,
and type definitions as well. Give’on (1990) provided an insightful discus-
sion of the didactical issues involved in the different meanings ascribed to
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the word, which appeared first in print by Robert Boyle in 1660 (New Exper-
iments Physico-Mechanicall, chap. XXVI, p. 203) to qualify the movement
of a moving pendulum, which returns or “runs back”. (Beware the incorrect
and ominous “to recurse”.)

A short history Formal definitions based on recursion played an import-
ant role in the foundation of arithmetic (Peano, 1976) and constructive math-
ematics (Skolem, 1976; Robinson, 1947; Robinson, 1948), as well as in the
nascent theories of computability (Soare, 1996; Oudheusden, 2009; Day-
light, 2010; Lobina Bona, 2012), with the caveat that recursion theory is
only named so for historical reasons. The first computers were programmed
in assembly languages and machine codes (Knuth, 1996), but the first step
towards recursion is the advent of labelled subroutines and hardware stacks,
by the end of the 1950s. BASIC epitomises an early attempt at lifting these
features into a language more abstract than assembly: recursion is simu-
lated by explicitly pushing (GOSUB) program pointers (line numbers) on the
(implicit) control stack, and by popping (RETURN) them. According to the
definition above, this is not recursion, which is to be understood as being
purely syntactic (a function definition), not semantic (the evaluation of an
expression). Moreover, the lack of local scoping precludes passing paramet-
ers recursively. Nevertheless, “recursion” has been taught with BASIC by
Daykin (1974).

With even more abstract programming languages, fully-fledged recursion
became a design option, first advocated in print by Dijkstra (1960) and Mc-
Carthy (1960), and implemented in LISP, ALGOL, PL/I and Logo (Martin,
1985; Lavallade, 1985), with the notable exceptions of Fortran and COBOL.
Formal logic was then used to ascribe meanings to programs, some semantics
relying on recursion, like rewrite systems, some others not, like set theory
or λ-calculus (where recursion is simulated with fixed-point combinators).
Even though the opinion of Dijkstra (1974) (1975) varied, recursion proved a
powerful means for expressing algorithms (Dijkstra, 1999) (Reingold, 2012),
especially on recursive data structures like lists, i.e., stacks, and trees. With
the legacy of LISP and ALGOL, together with the rise and spread of personal
computers, recursion became a common feature of modern programming lan-
guages, and arguably an essential one (Papert, 1980; Ford, 1982; Astrachan,
1994).

1 Recursion, iteration and loops

Recursion is often not clearly understood, as demonstrated by the frequent
heated or misguided discussions on internet forums, in particular about the
optimisation of tail calls. Moreover, some researchers implicitly equate loop
and iteration, use the expression “iterative loop”, or call recursion a process
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implemented by means of a control stack, whilst others use a syntactic cri-
terion. We must define recursion in order to relate it to other concepts, like
loops, iteration, tail recursion, embedded recursion, structural recursion etc.

Definitions Give’on (1990) remarked: “the concept of recursion is be-
ing vaguely and inconsistently constructed from some syntactical properties
of the program, from its associated semantics and from features borrowed
from models of execution of programs.” Indeed, broadly speaking, there
are two angles to approach the question: the static (syntactic) approach
and the dynamic approach to recursion. Sometimes the dichotomy is put in
terms of programs (structured texts or abstract syntax trees) versus processes
(autonomous agents or stateful actors). In fact, to address the vast literature
about the teaching and learning of recursion, it is essential to understand
both views and their relationship.

In the static comprehension, recursion is restricted to the general defini-
tion we gave at the start of this introduction: the occurrence of the symbol
being defined inside its definition (what is called impredicativity in logic).
Implicitly, this means of course that it must be clear what the denotation of
the occurring symbol is, in order to determine whether it is an instance of
the definition. For example, in the language OCaml, the function definition

let rec f x = (fun _ -> x) f

is recursive because the name f in the right-hand side refers to the f in the
left-hand side. Note that there is no call to f in the definition of f, so the
concept of recursive call is actually irrelevant: recursion in this context is
a property of definitions based on lexical scoping rules, not of the objects
potentially computed (values), nor the way they are computed (semantics).
In particular, the recursive definition of a function does not necessarily entails
that it is total, hence terminates for all inputs. (A type system may enforce
that property, as in Coq or Agda.)

Sometimes, an examination of the program cannot determine whether
the occurrence of a symbol refers to the definition at hand. For instance, let
us consider the following fragment of Java:

public class T { public void g(T t) { ... t.g(t); ... } }

The occurrence of g in the expression t.g(t) does not necessarily refers to the
current definition of the method g, because that method may be overridden in
subclasses. Therefore, here, we cannot conclude that g is recursive according
to the static criterion. (It can be argued, though, that the class T is recursive
because its definition includes the declaration (type) of its method g, where
T occurs—Interfaces perhaps illustrate this better.)

The dynamic comprehension of recursive functions can be expressed ab-
stractly as a property about dynamic call graphs: recursion is a reachable
cycle, which means, in operational terms, that the control flow of calls re-
turns to a vertex (a function) which was previously called. Here, the notion
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of recursive definition is not central, and it makes sense to speak of recurs-
ive call (a back edge closing a path). Another, less general, approach to a
dynamic definition of recursion relies on a particular execution model, often
based on stack frames allocated to function calls and their lexical context.
Anyway, as a property about the control flow, recursion in that sense be-
comes undecidable in general for Turing-complete languages.

It should be noted that the static and dynamic definitions of recursion
may overlap, but are different in general, that is, if a function is recursive
according to the syntactic criterion, it may not be recursive according to the
dynamic criterion (as the above OCaml function f illustrates), and vice versa.
Consider the following OCaml program implementing the factorial function:

# let pre self n = if n = 0 then 1 else n * self(n-1);;
val pre : (int -> int) -> int -> int = <fun>
# let rec fact n = pre fact n;;
val fact : int -> int = <fun>
# fact 5;;
- : int = 120

The syntactic criterion decides that pre is not recursive and fact is; the
dynamic criterion sees these two functions as mutually recursive, that is,
the control flow goes from one to the other, and vice versa. Furthermore,
there are different techniques to achieve dynamic recursion without static
recursion at all. For example, using fixed-point combinators in OCaml with
the command-line option -rectypes:

# let pre self n = if n = 0 then 1 else n * self(n-1);;
val pre : (int -> int) -> int -> int = <fun>
# let y f = (fun x a -> f (x x) a) (fun x a -> f (x x) a);;
val y : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>
# let fact = y pre;;
val fact : int -> int = <fun>
# fact 5;;
- : int = 120

Here, neither the higher-order function y (called the call-by-value Y combin-
ator), nor the function pre are statically recursive (as the absence of the
keyword rec shows well), but they are mutually recursive in the dynamic
sense. (The rationale behind the definition of y is obscure, but relies on the
fact that (y f) x yields the computation of (f(y f)) x, showing that y f
is the fixed point of f.) It is even possible to define the factorial function
without recursion, loops or jumps (goto) in C, but the program is cryptic:

#include<stdio.h>
#include<stdlib.h>

typedef int (*fp)();

int fact(fp f, int n) {
return n? n * ((int (*)(fp,int))f)(f,n-1) : 1; }
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int read(int dec, char arg[]) {
return (’0’ <= *arg && *arg <= ’9’)?

read(10*dec+(*arg - ’0’),arg+1) : dec; }

int main(int argc, char** argv) {
if (argc == 2) printf("%u\n",fact(&fact,read(0,argv[1])));
else printf("Only one integer allowed.\n");
return 0; }

(See Goldberg and Wiener (2009) for a practical use of such a simulated
recursion in Erlang.) References can also be used to define the factorial
function without static recursion, with a technique called Landin’s knot :

# let g = ref (fun n -> 42);;
val g : (’_a -> int) ref = {contents = <fun>}
# let f n = if n = 0 then 1 else n * !g(n-1);;
val f : int -> int = <fun>
# let fact = g := f; fun n -> !g(n);;
val fact : int -> int = <fun>
# fact 5;;
- : int = 120

Here, none of the definitions are statically recursive, although f is dynamic-
ally recursive.

Finally, it is perhaps worth insisting on the case where there are more
than one definition, like f(x) := g(x − 1) and g(x) := h(x + 1, f(x − 1)).
Neither definition is statically recursive, although they are mutually recurs-
ive according to the dynamic interpretation. Furthermore, it is clear that
these definitions are equivalent to f(x) := h(x, f(x− 2)), which is statically
recursive. This shows that the concept of mutual recursion is dynamic, but
the static criterion could be extended to apply transitively to the static call
graph, which is an over-approximation of the dynamic call graph, so we can
speak of mutual recursion in a static sense as well, but keeping in mind that
there can be mutual recursion statically when there is none dynamically.

Tail recursion, iteration and loops The concept of tail recursion is
difficult to apprehend because it is built upon both the dynamic call graph
and the data flow. We have already seen that recursion can be defined as
a cycle in the dynamic call graph. Here, we define the dataflow graph as
the dynamic call graph with an additional kind of edges oriented according
to the direction where the data flows (it is a multigraph): if a caller passes
arguments to the callee, there is a data edge doubling the control edge; if
the value of a function call is needed to further compute an expression or
complete an instruction, there is a data edge from the callee to the caller,
that is, a backward data edge with respect to the control edge. Since, in
the absence of run-time errors, the result of a call is needed, at the very
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least, to stand for the result of the caller itself, there is always a back edge.
Therefore, we could make those edges implicit and only retain them when
the value of the call is needed in a strictly embedding expression, not just to
be returned in turn. Tail recursion is then a cycle along the control edges,
which is not a retrograde cycle following the data edges. In other words, the
data flows solely in the same direction as the control flows. (Note that, in
general, there may be no data flow between two calls.)

For instance, the value of the recursive call in f(x, y) := f(x, g(y)) is the
value of f(x, y) being defined, so the call is tail recursive. On the other hand,
the value of the call f(x− 1) in f(x) := x× f(x− 1) is not the value of the
call f(x) being defined because a multiplication by x is pending, so it is not
tail recursive. The same holds for f(x) := g(x, f(x− 1)). Note that, within
the dynamic interpretation of recursion, the concept of tail recursion applies
to function calls, not to function definitions as a whole, so it is technically
incorrect to say that a function definition is tail recursive.

Within the static understanding of recursion, it is not possible to define
tail recursion in general because only definitions may be recursive and only
calls may be in tail position. The latter refers to a syntactic criterion which
implies that the value of a call is only used to become the value of the
current function being called. In practice, however, it is possible to speak
of a tail recursive call when the static and dynamic interpretations agree,
that is, when a definition includes non-ambiguously a call to the function
defined (a special case of static recursion) and that call is in tail position.
Nevertheless, since the very reason to distinguish tail recursive calls is that
they can often be compiled as efficiently as loops are (a technique known as
tail call optimisation), the interaction between the control flow and the data
flow must be made explicit anyway, even within a static framework, and this
proves challenging to students and professors alike. Even more puzzling is
the fact that the optimisation applies to non-recursive calls as well, as long
as they are in tail position.

When a recursive call is not tail recursive, it is sometimes called an in-
stance of embedded recursion. In theory, it is always possible to rewrite any
embedded recursion into tail recursion, but the result can be rather hard
to understand, hence difficult to design directly. Moreover, in programming
languages featuring conditional loops (while), recursion can be avoided in
theory, but, in practice, many algorithms are expressed more compactly or
more legibly if recursive. A loop is a segment of code syntactically distin-
guished and whose evaluation is repeated until a condition on the state of the
memory is met. The syntactic condition, e.g., a keyword and markers for a
block, is meant to differentiate loops from source code whose control flow re-
lies on jumps (goto) and could actually be an unstructured implementation
of loops (using backward jumps), but are not loops. Iteration is none other
than the concept of repetition applied to a piece of source code, therefore,
from a theoretical standpoint, it should include recursion and loops, but, in
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practice, iteration is often used as a synonym for the execution of a loop in
an imperative language (looping); in a purely functional language, iteration
is tail recursion. Conditional loops (while) and recursion have the same ex-
pressive power, so using one form or the other is a matter of style as long as
side-effects are allowed, because loops require a model of computation where
data is mutable.

As we mentioned earlier, some researchers prefer to define recursion not
on programs, but on processes, that is, on the dynamic interpretation of pro-
grams. For instance, Kahney (1983) defines recursion as a process “that is
capable of triggering new instantiations of itself, with control passing forward
to successive instantiations and back from terminated ones.” Of course, one
data structure suitable for implementing this mechanism is the control stack,
which we already mentioned about “recursion in BASIC” (Daykin, 1974). It
is perhaps interesting to notice the use of the “forward” and “backward” ter-
minology about the control flow on the call graph, although that graph is
oriented from callers to callees and there are no back edges because these
would not denote calls but returns. (Our own definition of dynamic recursion
is a cycle in the dynamic call graph, where “backward” qualifies the data flow
superimposed on the call graph.) We will see in a forthcoming section that
this operational interpretation of recursion can be suitably exploited by kin-
esthetic teaching. The sections on analogies and mental models also revisit
this choice. Finally, when contrasting the static (syntactic) and dynamic
(control stack) definitions, it is worth keeping in mind that it is possible
to compile recursive definitions of functions in such a way that the size of
the control stack remains statically bounded; in other words, recursion can
always be transformed into iteration.

Teaching Clearly, recursion and loops are not mutually exclusive and may
serve the same purpose, which often bewilders the beginner. Consequently,
a simple attempt at a remedy consists in clearly separating the different
concepts at stake in the evaluation of a program (Velázquez-Iturbide, 2000),
so that side-effects, for instance, do not get in the way of learning recur-
sion declaratively. To teach the difference between iteration and embedded
recursion, some researchers have proposed to teach how to translate an em-
bedded recursive definition into an iteration, while remaining in the same
programming language (Augenstein and Tenenbaum, 1976; Rubio-Sánchez
and Velázquez-Iturbide, 2009; Rubio-Sánchez, 2010; Rinderknecht, 2012).
Foltynowicz (2007) went even further by deriving loops from embedded re-
cursion, and vice versa, which is of great theoretical and practical interest,
in particular for understanding compilers and interpreters. By exhibiting a
systematic way to move back and forth from recursion to loops, while main-
taining the meaning invariant, these didactic approaches aim at demystifying
recursion without resorting to a low-level view of evaluation with the control
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stack.
Finite iteration is unidirectional in the sense that the control flow does

not return to a previous program location where the environment, i.e., the
bindings of the variables to their values, is the same. Embedded recursion
is often called bidirectional when it is based on the strict interpretation of
the composition of functions, as opposed to a non-strict semantics, like lazy
evaluation, which is perhaps better explained by graph rewriting. Consider
for instance f(g(x)), where x is a value. First, the value of g(x) is computed
(control and data flow forward), that value is bound to an implicit variable y
(control and data flow back) and then the call f(y) is evaluated (control and
data flow forward).

Finally, let us take note of a radical and contrarian view: to avoid re-
cursion as much as possible (Anonymous, 1977; Buneman and Levy, 1980).
For instance, Harvey (1992) advocates the use of a functional style where
recursion is hidden inside higher-order functions like maps and folds. This is
indeed the approach often taken when teaching purely functional program-
ming languages, especially those with a non-strict semantics like Miranda or
Haskell.

2 Functional programming

Segal (1994) notes that, in the context of the functional programming lan-
guage Miranda, “by using the library of functions as a toolbox, recursion,
the underlying structure of many of the functions and the only repetitive
construct provided by the language, can remain largely hidden.” Er (1984)
argued that recursion is made difficult by block-structured programming
languages, which suggests that one way of encouraging the use of desirable
constructs, like recursion, would be to employ or develop domain-specific
languages (Sinha and Vessey, 1992); cf. Brooks et al. (1992). It would then
make sense to teach recursion with functional languages, because these fea-
ture prominently mathematical functions and immutable data, forcing the
programmer to think recursively (Henderson and Romero, 1989; Howland,
1998).

Because it is possible, for the purpose of teaching, to define a semantics
for functional languages based on term or graph rewriting, Velázquez-Iturbide
(1999), Pareja-Flores, Urquiza-Fuentes and Rubio-Sánchez (2007) and Rinder-
knecht (2012) can ask learners to trace by hand the evaluation of their small
programs. Segal (1994) remarks that “we would argue [...] that the abil-
ity to be able to evaluate a recursive function mentally or ‘by hand’ (that
is, independent of a machine), is an essential component of recursive know-
ledge for both learners and experts.” In the case of teaching higher-order
functions, using manual reductions is also a recommendation of Clack and
Myers (1995), who also list a long series of typical errors and their analysis.
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Furthermore, Burton (1995) observes that

perhaps students are puzzled, unnecessarily, by the the language
(I refer to natural language here) with which we talk to them
about recursion. Peter Landin is fond of pointing out the nu-
merous inconsistencies with which such language is riddled (the
phrase “calls itself ”, for instance, probably elides all kinds of dif-
ferent semantic levels). An advantage of teaching via reduction
sequences is that it enables us to take the (natural) language out—
just reduce, reduce, reduce (perhaps with the aid of a machine).

He also recommends what he calls a “separation of concerns” in teaching
at first list processing, pattern matching and recursion in isolation: this
avoids the issue for the students to assimilate recursion at the same time
as other imperfectly understood concepts. Velázquez-Iturbide (1999) also
relies on term rewriting to teach recursion before moving to recursion in an
imperative language with recursive data types.

By writing down the rewrite system in the exact order of a top-down
design, students become accustomed to laying out calls to functions yet to
be defined; by also asking them to write down all the left-hand sides of the
rules (patterns) before proceeding to the right-hand sides in random order,
not only completeness is improved, but also the conception of a program
as a text written in one pass is undermined, and the model of a form or a
blueprint is proposed instead. This twofold method seems to defuse a bit the
typical question of a recursive call (right-hand side) to the current function
“still under construction”, because at least all the configurations of the input
(left-hand side) have been already laid out and it is also normal to call yet
undefined functions, just like it is normal to have pending references in a
map being drawn to other parts yet to be filled. This view seems to be one
of the conclusions of Vitale (1989), when he writes, in abstract terms:

It is proposed that a restricted notion of “recursion” could be use-
fully defined, entailing:

1. that the attitude of the subject, with respect to the definition
of a notion, the solution of a problem, the answer to a ques-
tion, etc., should contain a measure of suspended attention,
deferring in a way the final restructuring of the definition,
solution, answer, etc., to the completion of a downward and
then upward spiralling path;

2. that the spiralling path should be describable by the dialect-
ical coexistence of permanence (the path, global because rely-
ing on the various steps) and change (the pitch of the spiral,
local because defined—and possibly changing—at every turn).
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(For some technical corrections on the article of Vitale (1989) and some
context on the relevance of recursion in the cognitive sciences and artificial
intelligence, see the follow-ups by Trautteur (1989) and Apostel (1991), as
well as Kieren (1989) in the context of Logo.) Furthermore, by using directed
acyclic graphs to represent programs and data, instead of abstract syntax
trees, aliasing (data sharing) becomes visible and the control stack and heap
can arise from this model without resorting to low-level descriptions (Rinder-
knecht, 2012).

Another approach, advocated by Felleisen et al. (2001), consists in sys-
tematically starting with the definition of recursive data types, because such
types already suggest the recursive structure of the function definition to
process their values. We will revisit this method when presenting structural
recursion. Pirolli (1986) showed that focusing the teaching of recursion on
the structure of the function definition is more effective than insisting on the
evaluation process, with traces of the control and data flows.

When loops are taught after recursion in a functional language, no trans-
fer of skills seems to be observed, undermining the idea that iteration is
inherently simpler than recursion (Mirolo, 2011). For an equivalent study
with logic programming in Prolog, see Haberman (2004). Moreover, simple
functional programs on lists can be translated systematically in Java (Rinder-
knecht, 2012), following design patterns similar to those by Felleisen and
Friedman (1997), Bloch (2003) and Sher (2004). The programs which are
derived are in static single assignment form and eschew the null from Pan-
dora’s vase (Cobbe, 2008; Hoare, 2009). However, Segal (1994), Clack and
Myers (1995) noted that inducing students to think recursively with func-
tional languages may yield some of the problems encountered with imperative
languages, and Paz and Lapidot (2004) showed how prior experience with
imperative programming influences the learning of functional programming.
This brings us to examine when is recursion taught.

3 Curricular approaches

The scheduling of the teaching of recursion in school curriculums has long
been debated (Olson, 1987; Barfurth and Retschitzki, 1987; Greer, 1989).
For example, Zmuda and Hatch (2007) compare two approaches: the schedul-
ing of consecutive units of teaching on recursion versus the intermittent
teaching of recursion, whereby two units about recursion are separated by a
different topic.

Secondary schools In many countries, programming literacy, as opposed
to vocational training on software products (e.g., ICT in the United King-
dom since the 1990s), is still absent in the secondary schools curriculums. For
instance, the French government officially introduced it only in July 2011, as
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an option for science majors, and recursion is not even mentioned in the new
regulation, whose implementation started in September 2012. (The math-
ematics curriculum contains only one paragraph about algorithms, which
must be explicitly iterative (Modeste, 2012).) Wherever programming is
featured in introductory courses, recursion is usually avoided, even though
it is present in mathematics courses, usually in the guise of numerical pro-
gressions, Euclid’s algorithm, Newton-Raphson approximation method, and
proofs by mathematical induction (Buck, 1963). Therefore, because univer-
sity students often experience significant difficulties in grasping recursive pro-
gramming (Sooriamurthi, 2001; Ginat, 2004), some educators have insisted
on a better articulation between secondary and post-secondary curriculums.
For instance, some researchers have been promoting a greater presence of dis-
crete mathematics and proof techniques in secondary schools (Abramovich
and Pieper, 1996; da Rosa, 2002; Rosenstein, Franzblau and Roberts, 1997;
Kaiser, 2004a; Kaiser, 2004b), as well as the creation of computing clubs
with activities about recursion (Gunion, Milford and Stege, 2009a). Others
have emphasised the duality between recursive programming and mathemat-
ical induction (Peelle, 1976; Ford, 1984; Leron and Zazkis, 1986; Anderson,
1992; Brandt and Richey, 2004; Polycarpou, 2006), which may be used as
means to a transfer of skills from secondary mathematics, as is, into college
informatics. Even a reverse transfer of skills, from recursive programming to
problem solving in mathematics, has been envisaged by Hausmann (1985).

The teachers gleaning recursive definitions in the fields of secondary
mathematics often come up with numerical progressions, including the ver-
satile Fibonacci numbers (Rubio-Sánchez and Pająk, 2006; Rubio-Sánchez
and Hernán-Losada, 2007; Rubio-Sánchez, 2008), combinatorial identities
from Pascal’s triangle, the pervasive factorial or the game known as “The
Tower(s) of Hanoi (or Brahma).” (Buneman and Levy, 1980; Anderson,
1992; Benander and Benander, 2008) Unfortunately, the pertinence of such
examples is undermined by the fact that they frequently enjoy closed forms
(like 1 + 2 + · · · + n = n(n + 1)/2) or they are computationally inefficient
(Er, 1984; Knight, 1988; Costello, 1990; Robertson, 1999; Stojmenovic, 2000;
Manolopoulos, 2005), which may not be an issue for a mathematician. Fur-
thermore, to university students interested in programming or professional
training, these contrived exercises may appear useless and fail to match their
expectations, tainting recursion by association. The same reaction is likely
when outbidding with functions defined by more complex recurrent equa-
tions, like McCarthy’s “91 function,” Takeuchi’s function (Knuth, 2000) or
the simplified form of Ackermann’s function (Robinson, 1947; Robinson,
1948).

Fortunately, most textbooks avoid these pitfalls.
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Textbooks Since the aim of a textbook is to cover a given curriculum, it
should not come as a surprise that there are no textbook exclusively devoted
to recursive programming, but there have been some companion books, at
least up to the 1990s, when computer programming entered mainstream
education with the spread of personal computers. (As mentioned before,
during the same period, hardware architectures and programming languages
widely enabled recursion.)

In university education, from about 1965 to 1975, computer science
emerged as a discipline independent from mathematics, which explains the
rigorous approach of the books and the interest in theoretical explanations,
as well as low-level implementations of recursion. This didactic choice was
enabled by the mathematical savvy of the students and the few abstraction
layers between programming languages and the hardware of the time. For
example, Barron (1968) is concerned with the pragmatics of recursion, its
implementation in run-time environments, the comparison with iteration,
the natural application to sorting, the mechanisms for recursion in com-
pilers and numerical algorithms—all this with ALGOL. Burge (1975) starts
with λ-calculus and combinatory logic, and proceeds with the evaluation
of mathematical expressions, the definition and traversal of recursive data
structures (lists and trees), parsing, sorting algorithms—also in ALGOL.

The following period, from about 1975 to 1985, saw recursion uprooted
from theoretical grounds and presented both as a method and a programming
technique for solving problems whose data structures are recursive (struc-
tural recursion), making plain the benefit because the program structure
itself then matches that of the data it processes. For instance, Rohl (1984)
begins with linked lists and binary trees, explains the solving strategy “di-
vide and conquer” (The input is split, each non-atomic part is recursively
processed and the partial solutions are finally combined to form the complete
solution.) and widens the scope to include mutual recursion (Rubio-Sánchez,
Urquiza-Fuentes and Pareja-Flores, 2008) and recursion on graphs—all with
Pascal. Roberts (1986) (2006) wrote the most enduring book, first using Pas-
cal and now Java, where the main difference with previous volumes lies in
recursion being illustrated by drawing fractals and backtracking when stuck
in a labyrinth, whereas implementation issues make up the last chapter only.

Methodology To tackle the understanding of the control flow, it is use-
ful to work on design methodology (Kessler and Anderson, 1986). Indeed,
embedded recursion is wrongly conceived as an expression of the familiar
counting or accumulation technique within loops, not the consequence of the
analysis of the original problem. As a remedy, students could be taught to
think declaratively when programming recursively in imperative languages
(Give’on, 1989; Ginat and Shifroni, 1999), that is, to distinguish specification
(what) from evaluation (how) (Ford, 1984). Equivalently, this means that

13



recursion could be taught first as a method for solving problems (analysis
and synthesis, familiar to mathematicians since Antiquity), before showing
it to be also a programming technique (McKavanagh, 1992; McKavanagh,
2004). In the same vein, Ginat (2005), Ginat and Armoni (2006) follow
a principle of Pólya distinguishing working forwards, which is a heuristics
consisting in approaching the solution by stepwise deductions, and work-
ing backwards, which supposes the goal attained and concentrating on the
inductive chain, back to the problem. In the context of functional program-
ming, Rinderknecht (2012) calls the first method small-step design because
the programmer focuses on the least that can be done in one evaluation step
towards the solution, and the second big-step design because they assume
that the final value is obtained in one step and it has to be (recursively) de-
composed in terms of the input. In general, the first way leads to iteration,
whereas the second yields embedded recursion. These two methods should
be taught as complementary heuristics, because, for the same problem, they
may not bear definitions of commensurable efficiency.

Curriculum To overcome students’ reluctance to use recursion within a
course on procedural or object-oriented programming, it has been proposed
to teach singly-linked lists before arrays and loops (Turbak et al., 1999;
Bruce, Danyluk and Murtagh, 2005; Goldwasser and Letscher, 2007), which
makes recursion appear as a rather natural way to move to and fro inside a
unidirectional data structure. It is not surprising that this proposal, where
recursion in data types comes before recursion in functions, often originates
from the context of object-oriented programming languages (Felleisen and
Friedman, 1997; Levine, 2000; Bloch, 2003; Sher, 2004), but is also prominent
in statically typed functional languages—refer to the book by Felleisen et al.
(2001). Indeed, when generalised to other recursive data types, like trees,
this kind of recursion is called structural recursion and, as mentioned earlier,
it yields programs reflecting the structure of the data type, which is helpful
since the latter is designed first. For instance, a binary tree is either empty
or made of a root and two subtrees, thus the complete traversal of such a
tree is expected to require a test for the tree emptiness and two recursive
calls.

Didactics Some researchers have been tackling the issue of teaching and
learning recursion through the lenses of cognitive sciences and psychology,
inferring the mental models of recursion (Sanders, Galpin and Götschi, 2006;
Mirolo, 2009), in particular the faulty ones that novices construct by interact-
ing with experts and the problem to solve. As explained by Bhuiyan, Greer
and McCalla (1994), a mental model is twofold: “(1) a knowledge structure
in a person’s mind that incorporates descriptive knowledge and functional
knowledge about a concept or device; (2) a control mechanism that determ-
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ines how this knowledge is used in problem solving.” Many of the references
we gave in previous sections already contain significant discussions and ana-
lyses of mental models, as they are used as a rationale for guiding the design,
for example, of a tutoring system or a curriculum. In the introduction, we
also have mentioned Give’on (1990), who discusses some pedagogical issues
with the different meanings of the word recursion, and it is fitting now to
cite as well Lobina and García-Albea (2009) and Lobina (2011) and Lobina
Bona (2012), who bring forth a thoughtful analysis of the usages of the same
word in the cognitive sciences, with an emphasis on linguistics and psycho-
logy. Indeed, these disciplines are essential to the didactics of programming.
Lobina and García-Albea (2009) write: “In the 1950’s, linguists correctly
employed recursion in reference to specific rewrite rules, but ever since their
elimination from linguistic theory, most linguists have used recursion, rather
puzzlingly, to refer to those structures that recursive rewrite rules were used
to generate. This may well be the unfortunate legacy of employing rewrite
rules.” Consequently, they recommend to reserve the term recursion for pro-
cesses, not the products of these, because not all hierarchy (self-embedding)
is generated by recursive processes. With these distinctions in mind, which
will be touched upon again in the section about analogies, it is further worth
reading Kilpatrick (1985), who discusses the analogical use of the words re-
flection and recursion in the didactics of mathematics.

According to the constructivist theory of learning (Wu, Dale and Bethel,
1998; Ben-Ari, 2001) promoted by Jean Piaget, learners construct mental
models to understand the world and act proactively, instead of passively re-
producing a series of facts and being enjoined belief in a theory, as happens
with too many traditional lectures. Inhelder and Piaget (1963) write: “the
source of thinking making possible to design recursive solutions to problems
lies in elemental forms of reasoning arising from students’ comprehension of
the relations between the elements to which his/her actions are applied when
attempting to solve instances of problems.” (The emphasis is ours.) The
study of da Rosa (2005) argues that the role of the teacher is to help the stu-
dent to transform this instrumental knowledge into a conceptual knowledge,
and finally into formalisation, that is, program writing. Some researchers
speak of “misconceptions”, others do not because they consider that these
are simply transient stages, non-viable conceptions—a viable conception al-
lowing to predict the outcome of new experiments. Götschi, Sanders and
Galpin (2003) explain: “Teachers should generate perturbations in the stu-
dents’ existing conceptual structures and hence foster new combinations of
concepts. This means that lecturers should present students with problems
and examples that challenge their current understanding and reveal non-
viable constructions.”

In the same vein, a constructionist theory, developed by Papert (1980),
goes further by insisting that learning is best or truly achieved by making
tangible objects in interaction with the environment, which includes the edu-
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cator. These approaches do not diminish in any way the role of the teacher,
who is simply encouraged to engage constructively with the pupils, and not to
act as an oracle or a judge. It is assumed that the learners build their know-
ledge themselves, based upon previous idiosyncratic conceptions, which they
reassess by means of interactive experiments under the benevolent supervi-
sion of an expert. Within this framework, where reassessment entails either
reinforcement or refutation, the self-referential nature of recursive definitions
may seem a priori a cognitive challenge, which Papert (1960b) expresses as
“the property of recursion being not the repetition of the same act as such,
but the repetition of an act that is at the same time the same act and a
different one.” In fact, the interest in mental models of recursion did not
wait for the personal computers to reach homes and classrooms, as it can
be traced (in the context of the psychology of mathematics first, and then
computing) back to Papert (1960a) (1960) and Piaget (Inhelder and Piaget,
1963; Piaget and Stratz, 1974). (See Matalon (1963) and Eliot et al. (1979)
also for early research on children.) Children and adolescents were at the
centre of pedagogical investigations with the programming language Logo.
One hypothesis of Papert is that the syntonicity enabled by Logo helps the
children to learn: “Turtle geometry is learnable because it is syntonic.” Pa-
pert, 1980, p. 68 Roughly speaking, syntonicity is a psychological feeling
of identification with a putative external agent, in this case the cursor on
the screen, called the turtle. This feeling, supported by the fact that the
movements of the turtle are relative to its current position (cf. PostScript
below, in the section about Logo), entices the children to engage and enjoy
what they make, which is more than a drawing since it involves a (projected)
whole body experience.

Mental models According to Kahney (1983), Kahney and Eisenstadt
(1982), the mental model of experts, called copies model, is based on dy-
namic instances of procedures, i.e., processes, either passing (“forwards”) the
control to newly created instances, or, if terminated, returning it (“back-
wards”) to the instance who passed it—George (2000a) called the former
active flow, and the latter passive flow. The copies model is the only one
viable, that is, consistent with the operational semantics of recursive defin-
itions. Students, on the other hand, seem to often build the looping model
of recursion, whereby embedded recursion is wrongly understood as a kind
of iteration and, typically will consider the base cases as halting conditions
(Haberman and Averbuch, 2002). To reduce the risk of confusion, McDou-
gall (1985) recommended that, when teaching Logo, the “use of tail recursion
for iterative situations be deliberately avoided. [...] Avoidance of early use
in programming of tail recursion for repetition might avoid confusion with
iteration in children’s mental models of recursion.” Indeed, according to
Tempel (1985), “other flavors of recursion may not be encountered at all” by
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the learners.
Experiments with experts and novices were set up by Kahney to validate

or refute the hypothesis that students had a looping mental model. With
high probability, it appeared that most of the students held the looping model
instead of the copies model, and some of them had idiosyncratic models in
mind, like the null model (when recursion is rejected), the syntactic model
(when the structure of the program is used to predict its outcome, or, when
writing it, the necessity of base and recursive cases is understood, but not
the derivation of the actions), and the odd model (when the meaning of some
keywords, e.g., EXIT and CONTINUE, is taken from their English usage).

To explain the odd model, Paz and Lapidot (2004) suggest to consider
the interference of natural language in learning recursion, in the context of
learning DrScheme:

It may be that some students attribute to the function the ability
to change the parameter’s value, because of the association they
create between the programming language and natural language.
It is possible that students [...] interpret the expression (first L)

as, for example, ‘take the first element’. The meaning of taking
the first element, for them, is to extract it and drop the remaining
elements, so that L is left only with the first element.

In the same vein, some researchers insist on bringing to the fore and quali-
fying the linguistic aspect of the relationship between learners and teachers.
They set up experiments, record all interactions with software and video,
then analyse the transcripts to pinpoint the misunderstandings, trace them
back to plausible causes and try to capture the mental model at work (An-
derson, Pirolli and Farrell, 1984; Levy and Lapidot, 2000; Levy, Lapidot and
Paz, 2001; Levy, 2001; Murnane and Warner, 2001; Levy and Lapidot, 2002).
Furthermore, these verbal exchanges can be conducted not solely to infer a
mental model of the student and reach a diagnostic and remedy, but even
to become a maieutic process on its own right (Chang et al., 1999; Chang
et al., 2000).

Götschi and some collaborators (Götschi, 2003; Götschi, Sanders and
Galpin, 2003; Sanders, Galpin and Götschi, 2006) refined and extended
Kahney’s classification of mental models; for instance, they identified amongst
their university students an active model, when they understand the instan-
tiations of recursive calls with smaller arguments and the reaching of the
base cases, but they nevertheless fail to grasp the backward, or passive, flow
of control from the completed instances to the current, pending one. They
also proposed the step model, whereby students have not a complete concept
of recursive flow of control and execute only one recursive call yielding a base
case. There is also the return value model, which stems from misconceptions
about when the values of function calls are constructed. The two last models
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are linked to some confusion about the evaluation of function calls in general,
like parameter passing and making a function’s return value.

Bhuiyan, Greer and McCalla (1989) (1991) prefer the expression men-
tal method instead of mental model and proposed a more detailed classi-
fication where generative methods comprise the loop method, the syntactic
method, the analytic method, and the analysis/synthesis method ; moreover,
trace methods (Bhuiyan, 1992; Scholtz and Sanders, 2010) are used by stu-
dents to verify the correctness of their solutions. (Götschi, Sanders and
Galpin (2003) define a trace as “a student’s representation of the flow of con-
trol and the calculation of the solution of a recursive program.”) The loop
method is the obvious consequence of the flawed loop mental model. The
syntactic method is frequently used by novices who have little understanding
of recursion as a problem-solving method, but a good declarative knowledge
about it. They know how to lie out a recursive template with base cases and
recursive cases fitting into simple categories, and it works well for a wide
variety of simple problems, but they have difficulties for more complex ones,
for example when generative recursion (Felleisen et al., 2004) is needed, that
is, when a recursive call does not apply directly to a substructure of the
input, but to a transformed substructure. This issue is linked to a lack of
understanding of recursion as a design method, therefore, the next method,
i.e., the analytic method, applies to slightly complex problems and proceeds
from input and output requirements to an intermediary solution, before writ-
ing the code. The analysis/synthesis method goes further by dividing the
problem into subproblems whose solutions must be combined: this is the
most general method. (See earlier paragraph on methodology.) Dicheva and
Close (1996) (1997) focused on misconceptions. Wu (1993) and Wu, Dale
and Bethel (1998) explored the learning of recursion in the framework of
David Kolb’s model (experiential learning theory), which we cannot detail
here. For yet other angles, like programming competences, concrete vs. ab-
stract models, static vs. dynamic copies model, classes of recursive functions
etc. see Er (1995), Burton (1995), Chen (1998) and Mirolo (2010).

Anzai and Uesato (1982) found that children’s understanding of a recurs-
ive definition in the context of mathematics is eased by prior experience with
iteration, although they added that it may be the case that writing recursive
definitions in a programming language requires different, additional skills.
Kessler and Anderson (1986) worked in the context of programming lan-
guages and searched for transfer of skills between tail recursion and iteration
for novices and they confirmed the conclusion of Anzai and Uesato (1982):
both studies found a positive transfer from writing loops to writing recursive
definitions, but not vice versa (although tail recursion is arguably too similar
to iteration). Moreover, it seems that the incorrect looping model of recur-
sion, previously acquired on loops, is more helpful than learning recursion
directly. By contrast, Wiedenbeck (1988) found that previous knowledge of
iterative examples does not seem to facilitate subsequent learning on similar

18



recursive problems, although comprehension was slightly improved. Further-
more, Kurland and Pea (1985) studied how 12 year old subjects understood
recursive definitions and iterations in Logo. They found that previous famili-
arity with iteration helps understanding tail recursion but hampers the cor-
rect grasping of embedded recursion, in accord with later work by Murnane
(1992). Note that this is not a direct contradiction of Kessler and Anderson
(1986), because the latter used tail recursion, and, for Wiedenbeck (1988),
the transfer of skills is about comprehension, not design.

The role of examples in learning recursion has been investigated by Pirolli
and Anderson (1985), Wiedenbeck (1989), Pirolli (1991) and Tascón-Vidarte
et al. (2010). Examples should be used to develop analogical problem-solving
mechanisms, but care must be taken not to rely too much on them too early,
lest the learners get stuck in the syntactic model of Kahney, and knowledge
compilation mechanisms should also be built from past experiences.

4 Visualisation and animation

Many educators try to capitalise on the fact that vision plays an important
role in acquiring concepts and informing their composition to build new ones.
This opens different lines of inquiry: visual analogies of recursion, animat-
ing the evaluation of programs, visual programming languages, integrated
development environments, virtual worlds and games.

4.1 Analogies

Objects It is often claimed that everyday life lacks analogies for the concept
of recursion (Pirolli and Anderson, 1985), so it is no surprise that most au-
thors come up with the same objects, such as cauliflowers, including the
healthy broccoli, ringed targets, tree branches, reflections on facing mirrors,
tilings (Chu and Johnsonbaugh, 1987), ladders (Levy and Lapidot, 2002)
and Russian dolls (Bowman and Seagraves, 1985). Typical geometric fig-
ures are fractals (Riordon, 1984b; Elenbogen and O’Kennon, 1988; Wakin,
1989; Bruce, Danyluk and Murtagh, 2005; Ammari-Allahyari, 2005; Steph-
enson, 2009b; Gordon, 2006) and certain kinds of artwork, most notably by
the Dutch graphic artist M. C. Escher (Gunion, Milford and Stege, 2009b).
Their structures are characterised by self-replication with self-embedding
(also called nesting), but, unfortunately, these examples are perhaps more
likely to suggest infinity than recursion (whose evaluation must terminate to
be useful and, in the case of embedded recursion, may require backtracking),
and this involuntary association of infinity and recursion may explain the
avoidance of the latter by novices (Wiedenbeck, 1989). By contrast, and
with a more optimistic tone, Papert (1980) (p. 71) wrote the following about
an exercise with Logo aimed at demonstrating recursion:
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Thus we have a trick called “recursion” for setting up a never-
ending process whose initial steps are shown [...]. Of all ideas I
have introduced to children, recursion stands out as the one idea
that is particularly able to evoke an excited response. I think this
is partly because the idea of going on forever touches on every
child’s fantasies and partly because recursion itself has roots in
popular culture. For example, there is the recursion riddle: If you
have two wishes what is the second? (Two more wishes.) And
there is the evocative picture of a label with a picture of itself. By
opening the rich opportunities of playing with infinity the cluster
of ideas represented by the [...] procedure puts a child in touch
with something of what it is like to be a mathematician.

But it seems difficult to generalise this observation, as Turkle (1984) reports
that “Matthew, a good-natured and precocious child of five, was eagerly
learning to write computer programs to make graphic designs on the screen.
His mood changed abruptly and he left the computer in tears when he un-
derstood how to make a recursive program: a program whose action includes
setting in motion an exactly similar program whose action includes setting
in motion an exactly similar program, and so on.” McDougall (1991), also
using Logo, reported that recursion in objects (figures produced by Logo
processes) is firmly conceived by her daughter as different from recursion
in processes or programs, but claimed that this conception is nevertheless
useful because her daughter, who did not confuse iteration and embedded
recursion, used it for teaching a peer. Earlier, Thompson (1985), also ob-
serving the dichotomy, asked the students to describe verbally the recursive
structure and move towards the recursive Logo program. Murnane (1991)
discussed the demerits and merits of various models of recursion, and also
uses Logo. (Section 4.5 will be devoted to Logo.)

Processes Researchers have also looked at everyday examples of recursive
processes, instead of objects, for example, the fall of dominoes aligned in a
row, which seems to suggest recurrent reasoning to children who are 12 years
old or so, in the sense that they almost express the fall of any domino by
the fall of the previous one (a local property), but descriptions by younger
children are of the iterative type: the first domino falls and lets the second
fall, and so the third will fall etc. (Piaget and Stratz, 1974) Of course, the
recursion suggested here by the experiment is tail recursion, because it ends
with the fall of the last domino. Nevertheless, Yang (2004) (2008) went
further and claimed that such series of dominoes are an analogy for linear
recursion, which is an embedded recursion with one recursive call. More
accurate are the processes which use backtracking, a distinctive feature of
embedded recursion, to model the behaviour of an avatar or robot stuck in
a labyrinth (Liss and McMillan, 1988; Dorf, 1992; Roberts, 2006).
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Wirth (2008) provided an entertaining recursive method to randomly
park cars in a street, and Brown (1972) tried to familiarise social scientists
with recursion through examples in Logo.

Schiemenz (2002) came up with an application of recursion to business
management, with more examples of recursive objects and recursive problem-
solving. Kimura (1977) used businesses too as a framework for explaining
the notions of program, processor and process. Embedded recursion is then
expressed as the delegation of a task to a group of assistants working on
complementary sets of the input. The same analogy is found in a paper
by Edgington (2007), and, if enacted by the students as theatrical roles, it
becomes kinesthesis and a multi-sensory experience for learning recursion in
the classroom (Dorf, 1992; Levine, 2000; Begel, Garcia and Wolfman, 2004;
Kátai, 2009). In particular, Ben-Ari (1996) proposed to dramatise recursive
algorithms, that is, to associate the solution to a real-world task with an
algorithm having the same recursive structure, e.g., eating a chocolate bar
and searching an array. The students enact the solution and later write
the program. These playful activities can be considered as kinds of parlour
games, which leads us now to review computer games dedicated to recursion.

4.2 Computer games

There is an increasing interest for games, or game-like features (e.g., achieve-
ment badges), for supporting educational purposes (so-called gamification of
education), even in higher education. Although it was mentioned in section 3
that “The Tower(s) of Hanoi” has long been quite popular, very few stud-
ies have been carried out specifically about teaching recursion with video
games. Amongst them, the setting of Rossiou and Papadakis (2007) is a
virtual classroom, and Chaffin et al. (2009) designed a game to facilitate the
transfer of skills to writing recursive programs. While very limited in time
and number of participants, both studies support the use of computer games
for teaching and learning recursion as a concept. As an alternative to games,
recursive processes can also be merely illustrated by a series of snapshots or
by an animation. The simplest form of visualisation consists in augmenting
the text of a program with semantic annotations and pictures.

4.3 Augmented text

Since the 1970s, many graphical notations for inputs and activation trees,
sometimes called recursion graphs, have been proposed, allowing novices to
record and follow the evaluation of function calls (Jackson, 1976; Kruse, 1982;
Haynes, 1995; Hsin, 2008). For example, if the input is a binary tree to be
traversed, the activation tree is also a binary tree because each node is a call
to the same function but with different subtrees as arguments. The teacher
can show on the blackboard the location in the data diagram at the same
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moment that the activation tree is extended. Wei and Murray (2008) draw
activation trees within a hyperbolic geometry. Moreover, memory allocation
and variable assignments decorate the corresponding Java program. Kurtz
and Johnson (1985) animated the data diagram only.

The syntax of many imperative languages, like Pascal, is based on blocks,
which makes it hard to trace the execution of function calls, particularly in
the presence of recursion (Er, 1984). This leads some instructors to recur to a
low-level simulation of the execution, reifying the otherwise invisible control
stack (Lee and Mitchell, 1985; Dupuis and Guin, 1989), but, according to
Ginat and Shifroni (1999), this puts too much emphasis on the computing
model (see also the paragraph about methodology). See also Pirolli (1986),
whom we mentioned earlier in the section about functional programming.

Bell and Gilbert (1974) proposed to use Wirth’s syntax diagrams, de-
signed for specifying grammars of programming languages like Pascal. The
usefulness of Backus-Naur Forms (defining context-free languages) and Linden-
mayer systems (L-systems) to teach recursion has also been noted by Er
(1984), Proulx (1997) and Velázquez-Iturbide (1999) (2000). Zelenski (1999)
proposed the generation of random sentences to experiment recursion and
Levine (2000) then commented that students have no trouble at all, perhaps
because the textual expansion of a non-terminal is hardly seen as a procedure
call, let alone calling itself.

For other closely related approaches, also based on annotations and pic-
tures, see Er (1995), Hui and Iverson (1995), Jehng, Tung and Chang (1999),
George (1995) (1996) (2000) (2000) and Tung et al. (2001), some of whom
we mentioned earlier about rewrite systems and functional languages.

4.4 Multimedia environments

Animation has been more widely implemented by means of dedicated multi-
media environments (Rosenthal, 2005), either in isolation (for didactic pur-
poses only), or in connection with programming environments (Wilcocks
and Sanders, 1994). Here, we will only review briefly those systems designed
specifically to teach recursion.

Stern and Naish (2002a) (2002) proposed a classification based on an ana-
lysis of recursive algorithms for sorting arrays and updating dictionaries: the
first category groups searches, the second sorts and the last insertions. They
claim that such distinctions enable the tailoring of better animations, aimed
at reinforcing the understanding of recursion. Fernández-Muñoz et al. (2007)
proposed and implemented an automated classification based on source code
inspection from which a dedicated animation is generated. That system
was developed extensively (Velázquez-Iturbide, Pérez-Carrasco and Urquiza-
Fuentes, 2008) (2009) (2009) (Velázquez-Iturbide and Pérez-Carrasco, 2010).
The approach is practical and eclectic, with animations not only of the ac-
tivation tree, but also of the data structure, the trace and the control stack.
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Another direction is open by intelligent tutoring systems (Pirolli, 1986)
(or interactive learning environments), which are multimedia environments
that provide interactive feedback and advice to the programmer. The system
contains typical beginners’ strategies so it can comment upon the code being
written (McCalla and Greer, 1993). These strategies are based on mental
models of the learners. It seems that the system designed by Greer (1987)
became a reference for Bhuiyan, Greer and McCalla (1989) (1992) (1994),
Bhuiyan (1992) and Greer et al. (1994).

As miscellanea, see Moreno-Armella (1992), Wu, Lin and Chiou (1996)
and Wu, Lee and Lin (1998). For a structured text editor guaranteeing the
termination of recursive predicates in Prolog, see Bundy, Grosse and Brna
(1991).

Visual programming Visual programming languages enable the com-
position of program constructs by manipulating graphical representations
instead of writing text. Good and Brna (1996) were the first to investig-
ate whether these languages provided a better support for learning recursion
than textual languages, and concluded negatively. Spreadsheet languages are
sometimes considered as visual programming languages or even functional
languages, and Burnett et al. (2001) focused on testing recursive programs
with them. Kim (2003) proposed a string of classroom exercises to learn
recursion with Excel.

Virtual worlds Tascón-Vidarte et al. (2010) designed an interactive inter-
face based on a tangible block-world with augmented reality to learn iteration
on lists and aiming at the transfer of skills to directly write tail recursive
definitions in Erlang. An earlier, three-dimensional virtual world was de-
signed by Dann, Cooper and Pausch (2001). For two-dimensional geometry
considered as a virtual world, we have Logo.

4.5 The Logo years

We would be remiss not to devote a whole section to Logo. The first thing
that strikes the reader of the abundant literature about Logo is the enthu-
siasm that blows, page after page. Microcomputers were arriving in the
classrooms and everyone was excited and deeply interested in their pro-
gramming: teachers, of course, but also psychologists, didacticians, math-
ematicians, computer scientists, software companies, and even the children
themselves, whose education was the focal point of attention. The geometric
figures produced by the execution of Logo programs, the design underpin-
nings of the language, like its recursive, functional programming style and
its grounding in developmental psychology, all this put Logo at the con-
fluence of almost all the streams surveyed here: dynamic and geometric
analogies for recursion, virtual worlds (in a more abstract sense, they are
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called microworlds in the context of Logo, like the microworld of the turtle,
the microworld of words, of lists etc.), integrated environments, functional
programming, games and theory of learning. Papert (1980) was a pioneer of
this movement, taking part to the design of Logo at the end of the 1960s,
and we quoted him in section 4.1 about recursion.

McDougall (1985) (1988) (1989) (1990) (1990) (1991) has used Logo to
teach her nine-year-old daughter, who ended mastering embedded recursion
by age eleven. According to her, this result confirmed what Papert con-
jectured, namely that young children in a computer-rich environment can
learn abstract or formal thinking—In passing, Papert never attributed this
capability to Logo alone. Unfortunately, the size of the study group makes
it hard to generalise the findings. Rouchier (1986b) (1986) (1987) observed
adolescents’ difficulties in learning embedded recursion after understanding
loops and iteration, and proposed to start teaching embedded recursion first.
See also the articles by Barfurth (1987), Barfurth and Retschitzki (1987).

Following in the same footsteps, others (Gobet, Núñez and Retschitzki,
1989; Retschitzki, Gobet and Núñez, 1989; Gurtner et al., 1990; Retschitzki
et al., 1991) noted that, in the geometric microworld of Logo, it is difficult
to come up with exercises which show the superiority of embedded recursion
over iteration, whereas the microworld of lists is more pertinent. Perhaps the
reason is that drawing is inherently a side-effect, thereby it empowers loops.
In the case of PostScript, a concatenative programming language dedicated
to graphics, the implicit evaluation stack is used for all computations, in-
cluding delaying the side-effect of drawing, which is triggered by an explicit
showpage instruction, so programming remains declarative. Unfortunately,
once embedded recursion has been wrongly understood as an iteration in the
turtle microworld, the misunderstanding is carried over to the microworlds
of words and lists. Moreover, these researchers observed the same difficulties
in recognising the base cases (STOP rule) as with any other programming
language. Give’on (1991) presented a variant of Logo with multiple turtles
that can move concurrently, and advocated that this paradigm yields simpler
recursive programs than traditional (singly threaded) dialects of Logo.

Conclusion

The teaching and learning of recursion in computer programming courses
has long been a subject of inquiry, attracting a wide range of researchers
from many fields of knowledge. It is not possible to isolate a current trend of
investigation, as the hallmark of the newest papers can already be found in
the early 1990s, although there seems to be a recent decline in the number
of publications and a concentration around a few researchers. Here are a few
points that may deserve some attention.

• Perhaps the common weakness of many experimental protocols lies
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in the small number of students (usually, one class), the short span of
time (usually, one semester) and the difficulty to define a control group.
Consequently, it may help to bring on board statisticians in order to
design larger and longer experiments (at least a three-year period).

• Many studies lump all novices, whereas it seems useful to distinguish
different profiles and cater them with different learning strategies, as
some have proposed. But since the identification of the student mental
model can only be achieved by teaching, this begets the question of
adaptive teaching strategies, once the student has been classified.

• The approaches based on text rewriting (grammars, L-systems, rewrite
systems) do not seem to raise issues with learners as far as recursion is
concerned. It would be interesting to confirm this and explore whether
the purported skills can be transferred to block-structured program-
ming languages.

• Mutual recursion has been studied by Rubio-Sánchez and his colleagues
(Rubio-Sánchez and Pająk, 2006; Rubio-Sánchez, Urquiza-Fuentes and
Pareja-Flores, 2008), who deemed it sometimes easier to teach than dir-
ect recursion. If confirmed, this would open a new way to teach direct
recursion by program transformation (inlining) (Kaser, Ramakrishnan
and Pawagi, 1993). Examples of mutual recursion arise naturally in
parsers, which were a favourite example in early textbooks, and it was
noted above that the derivation of sentences from formal grammars
(that is, the reverse function of parsing) usually does not raise prob-
lems with recursion. Another use case is finite automata, as found in
telecommunication protocols, vending machines, automatic teller ma-
chines etc. (One state is implemented by one function whose argument
is any of the labels on the outgoing transitions.)

• Kinesthesis and syntonicity seem to be helpful and should be compared
with animation, as it may be that watching or imagining the execution
of a recursive function (in other words, tracing) is cognitively different
from involving one’s own body, or a psychological representation of it.
Perhaps augmented reality may help too, by creating an immersion
(Tascón-Vidarte et al., 2010).

• It should be impressed upon students that the control flow of recur-
sion, which many authors qualify as being “bidirectional”, is actually
not specific to recursion by explaining the evaluation of arithmetic ex-
pressions with function compositions (Burge, 1975). (In imperative
languages where instructions are separated by semi-colons, an instruc-
tion can be shown to be an implicit function—an assignment is indeed
an operator in the C family—and a semi-colon denotes composition.)
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• Many educators teaching recursion focus on the control flow, except
perhaps if the language is object-oriented, because, in that case, the
data flow becomes more relevant, and the design is more likely to be
bottom-up. (An algorithm ends up being scattered amongst several
methods in different classes, so recursion is obscured by the amount of
code to be read and mutual recursion is more likely.) That difference
may explain why the professors teaching structural recursion on lists
before arrays and loops are using some object-oriented language or
a functional language. Those teaching a top-down design may end
up reordering the definitions in the program to have them compiled
incrementally for testing purposes, and also because this corresponds
to the order of synthesis. (See the analysis/synthesis method.) By
strictly lying down the top-down design in the code, which requires,
for example, to use prototypes in C, or forward declarations in Pascal,
the students get used to read incomplete programs. (The same can be
said about using modules, of course.) Perhaps that skill is correlated
with a better understanding of recursion.

• Tail call optimisation should be explained without resorting to low-
level concepts (Rinderknecht, 2012).
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