
Design and Analysis of Purely
Functional Programs

Christian Rinderknecht









Contents

Foreword xi

1 Introduction 1
1.1 Rewrite systems . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Trees for depicting terms . . . . . . . . . . . . . . . . . . . 4
1.3 Purely functional languages . . . . . . . . . . . . . . . . . 5
1.4 Analysis of algorithms . . . . . . . . . . . . . . . . . . . . 7

Exact cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Extremal costs . . . . . . . . . . . . . . . . . . . . . . . . 8
Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Amortised cost . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Inductive proofs . . . . . . . . . . . . . . . . . . . . . . . . 11
Well-founded induction . . . . . . . . . . . . . . . . . . . . 12
Termination . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 14
Translation to Erlang . . . . . . . . . . . . . . . . . . . . . 14
Translation to Java . . . . . . . . . . . . . . . . . . . . . . 15

I Linear Structures 19

2 Fundamentals 21
2.1 Catenating . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Tail form . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Termination . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5 Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Amortised cost . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



vi CONTENTS

2.7 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.8 Optimal sorting . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Insertion Sort 91
3.1 Straight insertion . . . . . . . . . . . . . . . . . . . . . . . 91

Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Termination . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 2-way insertion . . . . . . . . . . . . . . . . . . . . . . . . 101
Extremal costs . . . . . . . . . . . . . . . . . . . . . . . . 102
Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 Balanced 2-way insertion . . . . . . . . . . . . . . . . . . . 109
Minimum cost . . . . . . . . . . . . . . . . . . . . . . . . . 110
Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Merge Sort 115
4.1 Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2 Sorting 2n keys . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3 Top-down merge sort . . . . . . . . . . . . . . . . . . . . . 126

Minimum cost . . . . . . . . . . . . . . . . . . . . . . . . . 127
Maximum cost . . . . . . . . . . . . . . . . . . . . . . . . 132
Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4 Bottom-up merge sort . . . . . . . . . . . . . . . . . . . . 137
Minimum cost . . . . . . . . . . . . . . . . . . . . . . . . . 138
Maximum cost . . . . . . . . . . . . . . . . . . . . . . . . 139
Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Minimum cost . . . . . . . . . . . . . . . . . . . . . . . . . 151
Maximum cost . . . . . . . . . . . . . . . . . . . . . . . . 151
Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Merging vs. inserting . . . . . . . . . . . . . . . . . . . . . 160

4.6 On-line merge sort . . . . . . . . . . . . . . . . . . . . . . 161

5 Word Factoring 167
5.1 Naïve factoring . . . . . . . . . . . . . . . . . . . . . . . . 168

Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.2 Morris-Pratt algorithm . . . . . . . . . . . . . . . . . . . . 173

Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 177
Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Metaprogramming . . . . . . . . . . . . . . . . . . . . . . 181



CONTENTS vii

Knuth’s variant . . . . . . . . . . . . . . . . . . . . . . . . 183

II Arborescent Structures 185

6 Catalan Trees 187

6.1 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.2 Average path length . . . . . . . . . . . . . . . . . . . . . 190

6.3 Average number of leaves . . . . . . . . . . . . . . . . . . 196

6.4 Average height . . . . . . . . . . . . . . . . . . . . . . . . 197

7 Binary Trees 201

7.1 Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Preorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Inorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Postorder . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Level order . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.2 Classic shapes . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.3 Tree encodings . . . . . . . . . . . . . . . . . . . . . . . . 234

7.4 Random traversals . . . . . . . . . . . . . . . . . . . . . . 238

7.5 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 240

Average path length . . . . . . . . . . . . . . . . . . . . . 244

Average height . . . . . . . . . . . . . . . . . . . . . . . . 246

Average width . . . . . . . . . . . . . . . . . . . . . . . . . 246

8 Binary Search Trees 247

8.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Andersson’s variant . . . . . . . . . . . . . . . . . . . . . . 252

8.2 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Leaf insertion . . . . . . . . . . . . . . . . . . . . . . . . . 254

Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Amortised cost . . . . . . . . . . . . . . . . . . . . . . . . 258

Root insertion . . . . . . . . . . . . . . . . . . . . . . . . . 260

Average cost . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Amortised cost . . . . . . . . . . . . . . . . . . . . . . . . 269

8.3 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.4 Average parameters . . . . . . . . . . . . . . . . . . . . . . 272



viii CONTENTS

III Implementation 273

9 Translation to Erlang 275
9.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Control stack and heap . . . . . . . . . . . . . . . . . . . . 292
Tail call optimisation . . . . . . . . . . . . . . . . . . . . . 295
Transformation to tail form . . . . . . . . . . . . . . . . . 299

9.2 Higher-order functions . . . . . . . . . . . . . . . . . . . . 325
Polymorphic sorting . . . . . . . . . . . . . . . . . . . . . 325
Sorted association lists . . . . . . . . . . . . . . . . . . . . 330
Map and folds . . . . . . . . . . . . . . . . . . . . . . . . . 333
Functional encodings . . . . . . . . . . . . . . . . . . . . . 342
Fixed-point combinators . . . . . . . . . . . . . . . . . . . 347
Continuations . . . . . . . . . . . . . . . . . . . . . . . . . 353

10 Translation to Java 363
10.1 Single dispatch . . . . . . . . . . . . . . . . . . . . . . . . 365
10.2 Binary dispatch . . . . . . . . . . . . . . . . . . . . . . . . 372

11 Introduction to XSLT 379
11.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 380

XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
XHTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 403
11.3 Transforming sequences . . . . . . . . . . . . . . . . . . . 409

Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Summing . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Comma-separated values . . . . . . . . . . . . . . . . . . . 437
Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Reducing . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

11.4 Transforming trees . . . . . . . . . . . . . . . . . . . . . . 457
Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Summing . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475



CONTENTS ix

Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Sorting leaves . . . . . . . . . . . . . . . . . . . . . . . . . 489

12 OCaml 493
12.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
12.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
12.3 Pattern matching . . . . . . . . . . . . . . . . . . . . . . . 506
12.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
12.5 Operational semantics . . . . . . . . . . . . . . . . . . . . 511

Local bindings . . . . . . . . . . . . . . . . . . . . . . . . 514
Formalising errors . . . . . . . . . . . . . . . . . . . . . . 518
Abstraction and application . . . . . . . . . . . . . . . . . 523
Recursive functions . . . . . . . . . . . . . . . . . . . . . . 527
Imperative programming . . . . . . . . . . . . . . . . . . . 531

12.6 Lexing with ocamllex . . . . . . . . . . . . . . . . . . . . . 535
12.7 Type inference . . . . . . . . . . . . . . . . . . . . . . . . 541
12.8 Scannerless parsing of streams . . . . . . . . . . . . . . . . 549

IV Annex 565

13 Overview of compilation 567

14 Automata theory for lexing 579
14.1 Specification of tokens . . . . . . . . . . . . . . . . . . . . 579
14.2 Regular expressions . . . . . . . . . . . . . . . . . . . . . . 582
14.3 Specifying lexers with Lex . . . . . . . . . . . . . . . . . . 590
14.4 Token recognition . . . . . . . . . . . . . . . . . . . . . . . 595

Transition diagrams . . . . . . . . . . . . . . . . . . . . . 598
Identifiers and longest prefix match . . . . . . . . . . . . . 600
Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
White spaces . . . . . . . . . . . . . . . . . . . . . . . . . 603

14.5 Deterministic finite automata . . . . . . . . . . . . . . . . 608
14.6 Non-deterministic finite automata . . . . . . . . . . . . . . 611
14.7 Equivalence of DFAs and NFAs . . . . . . . . . . . . . . . 613
14.8 NFA with ϵ-transitions . . . . . . . . . . . . . . . . . . . . 620
14.9 From regular expressions to ϵ-NFAs . . . . . . . . . . . . . 628

Bibliography 633

Index 648





Foreword

This book addresses a priori different audiences whose common interest
is functional programming.

For undergraduate students, we offer a very progressive introduction
to functional programming, with long developments about algorithms on
stacks and some kinds of binary trees. We also study memory allocation
through aliasing (dynamic data-sharing), the role of the control stack
and the heap, automatic garbage collection (GC), the optimisation of tail
calls and the total allocated memory. Program transformation into tail
form, higher-order functions and continuation-passing style are advanced
subjects presented in the context of the programming language Erlang.
We give a technique for translating short functional programs to Java.

For postgraduate students, each functional program is associated with
the mathematical analysis of its minimum and maximum cost (efficiency),
but also its average and amortised cost. The peculiarity of our approach
is that we use elementary concepts (elementary calculus, induction, dis-
crete mathematics) and we systematically seek explicit bounds in order
to draw asymptotic equivalences. Indeed, too often textbooks only intro-
duce Bachmann notation O(·) for the dominant term of the cost, which
provides little information and may confuse beginners. Furthermore, we
cover in detail proofs of properties like correctness, termination and equi-
valence. An introduction to operational semantics is given in the context
of the programming language OCaml, with a hint of type inference.

For the professionals who do not know functional languages and who
must learn how to program with the language XSLT, we propose an
introduction which dovetails the part dedicated to undergraduate stu-
dents. The reason of this unusual didactic choice lies on the observation
that XSLT is rarely taught in college, therefore programmers who have
not been exposed to functional programming face the two challenges of
learning a new paradigm and use XML for programming: whereas the
former puts forth recursion, the latter obscures it because of the inher-
ent verbosity of XML. By learning first an abstract functional language,
and then XML, we hope for a transfer of skills towards the design and
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implementation in XSLT without mediation.
This book has also been written with the hope of enticing the reader

into theoretical computing, like programming language semantics, formal
logic, lattice path counting and analytic combinatorics.

I thank Nachum Dershowitz, François Pottier, Sri Gopal Mohanty,
Walter Böhm, Philippe Flajolet, Francisco Javier Barón López, Ham Jun-
Wu and Kim Sung Ho for their technical help. Most of this book has been
written while I was working at Konkuk University (Seoul, Republic of
Korea), and some parts added while I was at Eötvös Loránd University
(Budapest, Hungary).

Please inform me at rinderknecht@free.fr of any error.

Montpellier, France,
14th January 2015.
Ch. Rinderknecht
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Chapter 1

Introduction

This is an overview of the topics developed in the rest of the book.

1.1 Rewrite systems

String-rewriting Let us assume that we own a string of white and
black beads, like ◦ • • • ◦ ◦ •, and the game (Dershowitz and Jouannaud,
1990, Dershowitz, 1993) consists in removing two adjacent beads and
replace them with only one according to some rules, for example

• ◦ α−→ • ◦ • β−→ • • • γ−→ ◦

The rules α, β and γ make up a simple string-rewriting system . Rules
α and β can be conceived as ‘A black bead absorbs the white bead next
to it.’ The goal of this game is to end up with as few beads as possible,
so our example may lead to the rewrites

◦•• • ◦ ◦• α−→ ◦•• • ◦ • α−→ ◦ • •• • β−→ •• • • γ−→ • • ◦ α−→ • • γ−→ ◦

where the part of the string to be rewritten next is framed.
Other compositions of the rules lead to the same result ◦ as well.

Some others bring all-white strings, the simplest being ◦ ◦. Some others
lead to •. Strings that can not be further rewritten, or reduced, are called
normal forms. These observations induce us to wonder whether all strings
have a normal form; if so, if it is unique and, furthermore, if it is either
all-white or black-only.

First, let us note that the system is terminating , that is, there is no
infinite chain of rewrites, because the number of beads strictly decreases
in all the rules, although this is not a necessary condition in general, for
instance, ◦ • β−→ • ◦ ◦ would preserve termination because the composi-
tion βαα would be equivalent to the original rule β. In particular, this

1



2 CHAPTER 1. INTRODUCTION

means that any string has a normal form. Furthermore, notice how the
parity of the number of black beads is invariant through each rule and
how there is no rewrite rule for two adjacent white beads. Therefore, if
there are 2p initial black beads, then composing rules α and β lead to
an all-black string, like • • • • above, which can be reduced by apply-
ing rule γ to contiguous pairs of beads into an all-white string made of
p beads. Otherwise, the same all-black string can be reduced by apply-
ing alternatively γ and β on the left end or γ and α on the right end,
yielding ◦. Similarly, if there is an initial odd number of black beads, we
always end up with one black bead. It suffices to consider the rewrites
◦◦ γ←− • • ◦ α−→ •• γ−→ ◦ to see that normal forms are not unique. Systems
where normal forms are unique are said confluent .

If we add the rule ◦ ◦ δ−→ ◦, the result of the game is always one bead,
whose colour depends on the original parity of the black beads as before,
and any strategy is successful. To see why, let us consider first that two
non-overlapping parts of a string can be rewritten in parallel, so they
are not of concern. The interesting cases occur when two applications
of rules (maybe of the same rule) lead to different strings because they
overlap. For instance, ◦ ◦ γ←− • • ◦ α−→ • •. The important point is that ◦ ◦
and • • can be rewritten into ◦ at the next step by δ and γ, respectively.
In general, what matters is that all pairs of strings resulting from the
application of overlapping rules, called critical pairs, can be rewritten
to the same string, to wit, they are joinable. In our example, all interac-
tions occur on substrings made of three beads, so we must examine in
figure 1.1 eight cases, which we can order as if counting in binary from
0 to 7, (◦) being interpreted as 0 and (•) as 1. In all the cases, the diver-
gences are joinable in one step at most. In general, it is not necessary for
critical pairs to be joinable in one rewrite just after the divergence, but,
more generally, to be joinable. This property is called local confluence.
Together with termination it implies that every string has exactly one

◦ ◦ δ←− ◦ ◦ ◦ δ−→ ◦◦
◦ • δ←− ◦ ◦ • β−→ ◦ •

• α←− • ◦ β←− ◦ • ◦ α−→ ◦ • β−→ •
◦ γ←− • • β←− ◦ • • γ−→ ◦◦ δ−→ ◦

• ◦ α←− • ◦ ◦ δ−→ • ◦
• • α←− • ◦ • β−→ • •

◦ δ←− ◦◦ γ←− • • ◦ α−→ • • γ−→ ◦
• β←− ◦ • γ←− • • • γ−→ • ◦ α−→ •

Figure 1.1: The critical pairs are all joinable
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normal form (a strong property entailing confluence).
The system we defined is ground , that is, it involves no variables.

These allow a finite system to denote an infinite number of ground rules
or, simply, to reduce the size of rewrite systems, for instance, the previous
example is equivalent to

• ◦ α−→ • ◦ x
β+δ−−→ x • • γ−→ ◦

If we accept multiple occurrences of a variable on the left-hand side of a
rule, a so-called non left-linear rule, we can further decrease the size of
the system:

x x
γ+δ−−→ ◦ x y

α+β−−−→ •

Notice that there is now an implicit order over the rules: the rule γ + δ
must be examined first for a match with a part of the current string,
because it is included in the second (set x = y in α+ β). In general, the
order in which the rules are written on the page is their logical order.
Moreover, let us remark that the system does not specify that x must
either be ◦ or •. Generally speaking, this means that the type of the
variables has to be defined elsewhere or inferred from the variable uses.

Term-rewriting Up to now, only string-rewriting systems have been
played with. More general are the term-rewriting systems (Baader and
Nipkow, 1998), where a term is a mathematical object possibly featur-
ing tuples, integers and variables. Let us consider the following totally
ordered system

(0,m)→ m; (n,m)→ (n−1, n ·m); n→ (n, 1). (1.1)

where rules are separated by a semi-colon and the last one is ended by a
period. Arithmetic operators (−) and (·) are defined out of the system
and m and n are variables denoting natural numbers. Would the rules
not be ordered as they are actually laid out, the second rule would match
any pair. Instead, it can be assumed that n ̸= 0 when matching with it.
We can easily see that all the compositions of rewrites starting with a
natural number n end with the factorial of n:

n→ (n, 1)→ · · ·→ (0, n!)→ n!, for n ∈ N.

Let us note (
n−→) the composition of (→) repeated n− 1 times:

(
1−→) := (→); (

n+1−−→) := (→) ◦ ( n−→), with n > 0.

The transitive closure of (→) is defined as (!) :=
⋃

i>0 (
i−→). In the

present case, the factorial coincides with the transitive closure of (→),
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namely, n! n!. Let (
∗−→) be the reflexive-transitive closure of (→), that

is, (
∗−→) := (=) ∪ (!).

A confluent system defines a function and it is then convenient to
name it; for example, c(1, d(n)) is a term constructed with function
names c and d, as well as variable n. A tuple tagged with a function
name, like f(x, y), is called a function call. The components of the tuples
are then called arguments, for example d(n) is the second argument of
the call c(1, d(n)). It is possible for a function call to hold no arguments,
like d(). We restrict the left-hand sides of rules to be function calls.

1.2 Trees for depicting terms

Figure 1.2: Shape of a
tree

The topological understanding of a function
call or a tuple is the finite tree. A tree is a
hierarchical layout of information and fig-

ure 1.2 shows the shape of one. The disks
are called nodes and the segments which con-
nect two nodes are called edges. The top-
most node (with a diameter) is called the
root and the bottommost ones (•) are called
the leaves. All nodes except the leaves are
seen to downwardly connect to some other nodes, called children. Up-
wardly, each node but the root is connected to another node, called its
parent . Depending on the context, a node can also denote the whole
tree of which it is the root. Any node except the root is the root of a
proper subtree. A tree is its own subtree. The children of a node x are
the roots of immediate subtrees with respect to the tree rooted at x. Any
two different immediate subtrees are disjoint, that is, no node from one
connects to a node in the other. A group of trees is a forest .

f

.

g

0

.

x 1

() g

y

Figure 1.3

Trees can be used to depict terms as follows. A function
call is a tree whose root is the function name and the chil-
dren are the trees denoting the arguments. A tuple can be
considered as having an invisible function name represented
by a node with a period (.) in the tree, in which case the
components of the tuple are its children. For example, the
tree in figure 1.3 has root f and leaves 0, x, 1 and y. Note
how variables x and y are set in italics to differentiate them
from function names x and y, set in sans-serif. For example d((), e([1]))
can be interpreted as a tree of root d and whose first immediate subtree
is the representation of the empty tuple () and second immediate subtree
corresponds to e([1]). Figure 1.3 represents the tree corresponding to
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f((g(0), (x, 1)), (), g(y)). Note that tuples, except the empty tuple, are not
represented in the tree, since they encode the structure, which is already
visible. The number of arguments of a function is called arity . Functions
with the same name but different arities are permitted; for instance, we
could have both c(a()) and c(a(x), 0). This is called overloading . To dis-
tinguish the different uses, the arity of the function should be indicated
after a slash, for example c/1 and c/2.

1.3 Purely functional languages

We only want to consider confluent systems because they define functions.
This property can be trivially enforced by setting an order on the rules, as
we did in previous examples. Another restriction we impose is for normal
forms to be values, to wit, they do not contain any function call which
can be further reduced. These two constraints define a purely functional
language (Hughes, 1989, Hinsen, 2009). Notice that we do not require
by construction that a system terminates, although that is a desirable
property. Not doing so enables more expressivity, at the expense of some
more caution, as we shall soon realise.

We would like to further constrain the computation of function calls
by imposing that arguments are rewritten before the call is. This strategy
is named call-by-value. Unfortunately, it enables otherwise terminating
programs to not terminate. For instance, let us consider

f(x)
α−→ 0. g()

β−→ g().

We have f(g())
α−→ 0 but f(g())

β−→ f(g())
β−→ . . . Despite this inconvenience,

we shall retain call-by-value because it facilitates some analyses. (As an
illustration of a more powerful strategy, the purely functional language
Haskell (Doets and van Eijck, 2004) features lazy evaluation.) Also it
allows us to restrict the shape of the left-hand sides, called patterns, to
one, outermost function call. For instance, we can then disallow for being
useless a rule like

plus(x, plus(y, z))→ plus(plus(x, y), z).

If the system is also terminating, we say that (!) defines an evaluation,
or interpretation, of the terms. For example, the factorial fact/1 can be
defined by the ordered system

fact(0)→ 1; fact(n)→ n · fact(n− 1). (1.2)

Thus fact(n) ! n! and the system details how to reduce step by step
fact(n) into its value.
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Most functional languages allow higher-order function definitions,
whereas standard term-rewriting systems do not. Such an example would
be the following higher-order functional program, where n ∈ N:

f(g, 0)→ 1; f(g, n)→ n · g(g, n − 1). fact1(n)→ f(f, n).

Note that these two definitions are not recursive, yet fact1/1 computes
the factorial. An adequate theoretical framework to understand higher-or-
der functions is λ-calculus (Hindley and Seldin, 2008, Barendregt, 1990).
In fact, λ-calculus features prominently in the semantics of program-
ming languages, even not functional ones (Winskel, 1993, Reynolds, 1998,
Pierce, 2002, Friedman and Wand, 2008, Turbak and Gifford, 2008). We
prefer to work with rewrite systems because they offer native pattern
matching, whilst in λ-calculus we would have to encode it as a cascade
of conditionals, which have themselves to be encoded.

In the following, we show how to express linear data structures in a
purely functional language and how to run our programs on a computer.

Stacks Let us consider the abstract program

cat(nil(), t)
α−→ t; cat(cons(x, s), t)

β−→ cons(x, cat(s, t)).

It defines the function cat/2 that catenates two stacks. Functions nil/0
and cons/2 are data constructors, that is, functions that are not defined
by the system: their irreducible calls model data, so they are values and
are allowed in patterns. The function call nil() denotes the empty stack
and cons(x, s) is the stack obtained by putting the item x on top of the
stack s, an action commonly referred as pushing x on s. A non-empty
stack can be thought of as a finite series of items that can only be accessed
sequentially from the top, as suggested by the analogy with a stack of
material objects. Let T be the set of all possible terms and S ⊆ T be the
set of all stacks. Formally, S can by defined by induction as the smallest
set S such that

• nil() ∈ S;

• if x ∈ T and s ∈ S, then cons(x, s) ∈ S.

Note that, in rule β, if s is not a stack, the recursion implies that the
function cat/2 is partial, not because the rewrites never end, but because
the normal form is not a value. In operational terms, the interpreter fails
to rewrite the call for some arguments.

Let us set the abbreviations [ ] := nil() and [x | s] := cons(x, s), after
the convention of the programming language Prolog (Sterling and Sha-
piro, 1994, Bratko, 2000). For instance, we may write [1|[2|[3|[ ]]]] in stead
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of cons(1, cons(2, cons(3, nil()))). We can further abbreviate the notation
[x1 | [x2 | . . . [xn |s]]] into [x1, x2, . . . , xn |s] and [x | [ ]] into [x]. For example,
[1|[2|[3|[ ]]]] is more compactly written as [1, 2, 3]. Our system for cat/2
now becomes a bit more legible:

cat([ ], t)
α−→ t; cat([x |s], t) β−→ [x |cat(s, t)]. (1.3)

Finally, let us illustrate it with the following evaluation:

cat([1, 2], [3, 4])
β−→ [1 |cat([2], [3, 4])] β−→ [1 | [2 |cat([ ], [3, 4])]] α−→ [1, 2, 3, 4].

Abstract syntax trees Depending on the context, we may use the
arborescent depiction of terms to bring to the fore certain aspects of a
computation. For example, it may be interesting to show how parts of
the output (the right-hand side) are actually shared with the input (the
left-hand side), in other words, how much of the data remains invariant
through a given rule. This concept supposes that terms reside in some
sort of space and that they can be referred to from different other terms.
This abstract space serves as a model of a computer memory . Consider
for instance in figure 1.4 the same definition of cat/2 as given in (1.3).
The arrows on certain edges denote some data sharing. When trees are
used to visualise terms, they are called abstract syntax trees. When some
trees share subtrees, the whole forest is called a directed acyclic graph.

cat

[] t

α−→ ◦ cat

|

x s

t

β−→ |

cat

Figure 1.4: Definition of cat/2 with directed acyclic graphs

1.4 Analysis of algorithms

The branch of theoretical computer science devoted to the mathemat-
ical study of the efficiency of programs has been pioneered by Donald
Knuth, who named it analysis of algorithms (Sedgewick and Flajolet,
1996, Knuth, 1997). Given a function definition, this approach consists
basically in three steps: defining a measure on the arguments, which
represents their size; defining a measure on time, which abstracts the
wall-clock time; expressing the abstract time needed to compute calls to
that function in terms of the size of its arguments. This function models
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the efficiency and is called the cost (the lower the cost, the higher the
efficiency). For example, when sorting objects, also called keys in this
context, by comparing them, the input size is the number of keys and
the abstract unit of time is often one comparison, so the cost is the math-
ematical function which associates the number of keys and the number
of comparisons to sort them.

Exact cost Rewrite systems enable a rather natural notion of cost for
functional programs: it is the number of rewrites to reach the value of
a function call, assuming that the arguments are values. In other words,
it is the number of calls needed to compute the value. To gain some
generality, we need to relate the cost to a measure of the size of the
input. In the case of stacks, this is the number of items it contains. For
instance, let us recall the catenation of two stacks in definition (1.3):

cat([ ], t)
α−→ t; cat([x |s], t) β−→ [x |cat(s, t)].

We observe that t is invariant, so the cost depends only on the size of the
first argument. Let Ccat

n be the cost of the call cat(s, t), where n is the size
of s. Rule α leads to the equation Ccat

0
α
= 1 and rule β to Ccat

n+1
β
= 1+ Ccat

n ,
yielding together Ccat

n = n+ 1.

Extremal costs When considering sorting programs based on com-
parisons, the cost varies depending on the algorithm and it also often
depends on the original partial ordering of the keys, thus size does not
capture all aspects needed to assess efficiency. This quite naturally leads
to consider bounds on the cost: for a given input size, we seek the config-
urations of the input that minimise and maximise the cost, respectively
called best case and worst case. For example, some sorting algorithms
have their worst case when the keys are already sorted, others when they
are sorted in reverse order, etc.

Average cost Once we obtain bounds on a cost, the question about the
average or mean cost (Vitter and Flajolet, 1990) (Knuth, 1997, §1.2.10)
arises as well. It is computed by taking the arithmetic mean of the costs
for all possible inputs of a given size. Some care is necessary, as there
must be a finite number of such inputs. For instance, to assess the mean
cost of sorting algorithms based on comparisons, it is usual to assume
that the input is a series of n distinct keys and that the sum of the
costs is taken over all its permutations, thus divided by n!, the number
of permutations of size n. The uniqueness constraints actually allows
the analysis to equivalently, and more simply, consider the permutations
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of (1, 2, . . . , n). Some sorting algorithms, like merge sort (Knuth, 1998a,
§5.2.4) (Cormen et al., 2009, §2.3) or insertion sort (Knuth, 1998a, §5.2.1)
(Cormen et al., 2009, §2.1), have their average cost asymptotically equi-
valent to their maximum cost, that is, for increasingly large numbers
of keys, the ratio of the two costs become arbitrarily close to 1. Some
others, like Hoare’s sort, also known as quicksort (Knuth, 1998a, §5.2.2)
(Cormen et al., 2009, §7), have the growth rate of their average cost being
of a lower magnitude than the maximum cost, on an asymptotic scale
(Graham et al., 1994, §9).

On-line vs. off-line Sorting algorithms can be distinguished depend-
ing on whether they operate on the whole series of keys, or key by key.
The former are said off-line, as keys are not sorted while they are coming
in, and the latter are called on-line, as the sorting process can be tempor-
ally interleaved with the input process. For example, insertion sort is an
on-line algorithm, whereas Hoare’s sort is not because it is an instance
of the divide-and-conquer strategy that splits the data. This distinction
is pertinent in other contexts as well, like with algorithms that are in-
trinsically sequential, instead of enabling some degree of parallelism, e.g.,
a database is updated by a series of atomic requests, but requests on
non-overlapping parts of the data might be performed in parallel.

Amortised cost Sometimes an update is costly because it is delayed
by an imbalance in the data structure that calls for an immediate remedi-
ation, but this remediation itself may lead to a state such that subsequent
operations are faster than if the costly update had not happen. There-
fore, when considering a series of updates, it may be overly pessimistic to
cumulate the maximum costs of all the operations considered in isolation.
Instead, amortised analysis (Okasaki, 1998a) (Cormen et al., 2009, §17)
takes into account the interactions between updates, so a lower maximum
bound on the cost is derived. Note that this kind of analysis is inherently
different from the average case analysis, as its object is the composition
of different functions instead of independent calls to the same function on
different inputs. Amortised analysis is a worst case analysis of a sequence
of updates, not of a single one.

Aggregate analysis Let us consider a counter enumerating the in-
tegers from 0 to n in binary by updating an array containing bits (Cor-
men et al., 2009, §17.1). In the worst case, an increment leads to invert-
ing all the bits. The number m of bits of n can be found by setting
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n Bits of n Flips

0 0 0 0 0 0 0
1 0 0 0 0 1 1
2 0 0 0 1 0 3
3 0 0 0 1 1 4
4 0 0 1 0 0 7
5 0 0 1 0 1 8
6 0 0 1 1 0 10
7 0 0 1 1 1 11
8 0 1 0 0 0 15
9 0 1 0 0 1 16
10 0 1 0 1 0 18
11 0 1 0 1 1 19
12 0 1 1 0 0 22
13 0 1 1 0 1 23
14 0 1 1 1 0 25
15 0 1 1 1 1 26
16 1 0 0 0 0 31

(a) Bit flips

k ⌊n/2k⌋ Bits
∑k

i=0⌊n/2i⌋

0 22 1 0 1 1 0 22
1 11 0 1 0 1 1 33
2 5 0 0 1 0 1 38
3 2 0 0 0 1 0 40
4 1 0 0 0 0 1 41

(b) F (n) =
∑

i!0⌊n/2
i⌋, with n = 22

Figure 1.5: Counting bits vertically and diagonally

n :=
∑m−1

i=0 bi2i, where the bi are the bits and bm−1 = 1. Then

2m−1 " n < 2m ⇒ m− 1 " lg n < m⇒ m = ⌊lg n⌋+ 1, (1.4)

where ⌊x⌋ (floor of x) is the greatest integer less than or equal to x and
lg n is the binary logarithm of n. The cost of the n increments is thus
bounded from above by n lg n+ n ∼ n lgn, as n→∞.

A little observation reveals that this upper bound is overly pessim-
istic, as carry propagation clears a series of rightmost bits to 0, so the
next addition will flip only one bit, the following two etc. as shown in
figure 1.5a, where bits about to be flipped at the next increment are
set in boldface type. Counting the flips vertically reveals that the bit cor-
responding to 20, that is, the rightmost bit, flips every time. The bit of 21

flips once every two increments, so, from 0 to n, it flips ⌊n/21⌋ times. In
general, the bit of 2k flips ⌊n/2k⌋ times. Therefore, the total number of
flips F (n) in a sequence of n increments is

F (n) :=
∑

k#0

⌊ n

2k

⌋

. (1.5)
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The sum is actually always finite, as illustrated by the example in fig-

ure 1.5b on the preceding page. There, we can see diagonally that 1-bits
at position j appear in positions j−1 down to 0, so account for 2j+2j−1+
· · · + 20 = 2j+1 − 1. In all generality, let n := 2er + · · · + 2e1 + 2e0 > 0,
with er > · · · > e1 > e0 # 0 and r # 0. The naturals ei are the positions
of the 1-bits in the binary notation of n. The power 2er corresponds to
the leftmost bit in the binary expansion of n, so er + 1 is equal to the
number of bits of n, which is known from equation (1.4):

er = ⌊lg n⌋. (1.6)

We can now give a closed form for F (n) as follows:

F (n) =
r
∑

i=0

(2ei+1 − 1) = 2n − νn, (1.7)

where νn := r+1 is the sum of the bits of n, or, equivalently, the number
of 1-bits. It is called many names, like population count, sideways sum,
bit sum or Hamming weight ; for example, in figure 1.5b on the facing
page, we can read F (22) = 41 = 2 · 22 − 3. Furthermore, we have the
following intuitive tight bounds for any n > 0:

1 " νn " ⌊lg n⌋+ 1,

because equality (1.6) establishes that ⌊lg n⌋ + 1 is the number of bits
of n. Therefore, 2n − ⌊lg n⌋ − 1 " F (n) " 2n. By l’Hospital rule,
limn→+∞ (lg n/n) = limn→+∞(1/n ln 2) = 0, where lnn is the natural
logarithm. Therefore,

F (n) ∼ 2n, as n→∞.

Two enumerations (counting vertically and diagonally) have shown that
the exact total number of flips is of a lower magnitude than expected.

This example resorts to a particular kind of amortised analysis called
aggregate analysis, because it relies on enumerative combinatorics (Stan-
ley, 1999a,b, Martin, 2001) to reach its result (it aggregates positive
partial amounts, often in different manners, to obtain the total cost). A
visually appealing variation on the previous example consists in determ-
ining the average number of 1-bits in the binary notation of the integers
from 0 to n (Bush, 1940).

1.5 Inductive proofs

Let us notice that cat([1], [2, 3, 4]) ! [1, 2, 3, 4] $ cat([1, 2], [3, 4]). It
is enlightening to create equivalence classes of terms that are joinable,
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based on (≡) defined as: a ≡ b if there exists a value v such that a
∗−→ v

and b
∗−→ v. For instance, cat([1, 2], [3, 4]) ≡ cat([1], [2, 3, 4]). The relation

(≡) is indeed an equivalence because it is

• reflexive: a ≡ a;
• symmetric: if a ≡ b, then b ≡ a;
• transitive: if a ≡ b and b ≡ c, then a ≡ c.

Of some interest are the following facts. If f(x) and f(y) have a value,
then x ≡ y implies f(x) ≡ f(y). If x1 ← x2 ! x3 ≡ x4 → x5 $ x6, then
x1 ≡ x2 ≡ x3 ≡ x4 ≡ x5 ≡ x6. In the case x ! z

α−→ t $ y, we use the
special notation x%α y to underline the role played by rule α in the equi-
valence, instead of simply x ≡ y. If we want to prove equivalences with
variables ranging over infinite sets, like cat(s, cat(t, u)) ≡ cat(cat(s, t), u),
we need some induction principle.

Well-founded induction We define a well-founded order (Winskel,
1993) on a set A as being a binary relation (≻) which does not have any
infinite descending chains, to wit, no a0 ≻ a1 ≻ . . . The well-founded
induction principle then states that, for any predicate ℵ, ∀a ∈ A.ℵ(a) is
implied by ∀a.(∀b.a ≻ b ⇒ ℵ(b)) ⇒ ℵ(a). Because there are no infinite
descending chains, any subset B ⊆ A contains minimal elements M ⊆ B,
that is, there is no b ∈ B such that a ≻ b, if a ∈M . In this case, proving
by well-founded induction degenerates into proving ℵ(a) for all a ∈ M .
When A = N, this principle is called mathematical (complete) induction
(Buck, 1963). Structural induction is another particular case where t ≻ s
holds if, and only if, s is a proper subterm of t, namely, the abstract
syntax tree of s is included in the tree of t and s ̸= t. Sometimes, a
restricted form is enough. For instance, we can define [x |s] ≻ s, for any
term x and any stack s ∈ S. (Both x and s are immediate subterms
of [x | s].) There is no infinite descending chain since [ ] is the unique
minimal element of S: no s satisfies [ ] ≻ s; so the basis is t = [ ] and
∀t.(∀s.t ≻ s⇒ ℵ(s))⇒ ℵ(t) degenerates into ℵ([ ]).

Associativity Let us prove the associativity of cat/2, which we express
formally by CatAssoc(s, t, u) : cat(s, cat(t, u)) ≡ cat(cat(s, t), u), where s,
t and u are stack values. We apply the well-founded induction principle
to the structure of s, so we must establish

• the basis ∀t, u ∈ S.CatAssoc([ ], t, u);
• step ∀s, t, u ∈ S.CatAssoc(s, t, u)⇒ ∀x ∈ T.CatAssoc([x |s], t, u).
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The base case is direct: cat([ ], cat(s, t))
α−→ cat(s, t)

α←− cat(cat([ ], t), u).
Let us assume now CatAssoc(s, t, u), called the induction hypothesis, and
let us prove CatAssoc([x |s], t, u), for any term x. We have

cat([x |s], cat(t, u))%β [x |cat(s, cat(t, u))]
≡ [x |cat(cat(s, t), u)] (CatAssoc(s, t, u))
&β cat([x |cat(s, t)], u)
&β cat(cat([x |s], t), u).

Thus CatAssoc([x |s], t, u) holds and ∀s, t, u ∈ S.CatAssoc(s, t, u). ✷

Writing cat([x | s], cat(t, u)) β−→ [x | cat(s, cat(t, u))] is incorrect be-
cause the semantics of our functional language requires that arguments
are evaluated before the call is. Nevertheless, if s, t and u are not
values, it is sufficient that they have one for CatAssoc(s, t, u) to hold
as well; for example, if f(s) has a value v, then CatAssoc(f(s), t, u) is
true because cat(f(s), cat(t, u)) ! cat(v, cat(t, u)) ≡ cat(cat(v, t), u) $
cat(cat(f(s), t), u). Therefore, termination is an important property we
need to check.

Termination When defining our purely functional language, we al-
lowed programs to not terminate. We could actually have imposed some
syntactic restrictions on recursive definitions in order to guarantee the
termination of all functions. A well-known class of such terminating func-
tions makes exclusively use of a bridled form of recursion called primitive
recursion (Robinson, 1947, 1948). Unfortunately, many useful functions
do not fit easily in this framework and, as a consequence, most functional
languages leave to the programmers the responsibility to check the ter-
mination of their programs. For theoretical reasons, it is not possible
to provide a general criterion for termination, but many standard rules
exists that cover many usages. Consider the following example where
m,n ∈ N:

ack(0, n)
θ−→ n+ 1;

ack(m+ 1, 0)
ι−→ ack(m, 1);

ack(m+ 1, n + 1)
κ−→ ack(m, ack(m+ 1, n)).

This is a simplified form of Ackermann’s function, an early example of
a total computable function which is not primitive recursive. It makes
use of double recursion and two parameters to grow values as towers of
exponents, for example, ack(4, 3) ! 22

65536 − 3. It is not obviously ter-
minating, because if the first argument does decrease, the second largely
increases. Let us define a well-founded ordering on pairs, called lexico-
graphic order . Let (≻A) and (≻B) be well-founded orders on the sets A
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and B. Then (≻A×B) defined as follows on A×B is well-founded:

(a0, b0) ≻A×B (a1, b1) :⇔ a0 ≻A a1 or (a0 = a1 and b0 ≻B b1). (1.8)

If A = B = N then (≻A) = (≻B) = (>). To prove that ack(m,n)
terminates for all m,n ∈ N, first, we must find a well-founded order on
the calls ack(m,n), that is, the calls must be totally ordered without any
infinite descending chain. In this case, a lexicographic order on (m,n) ∈
N2 extended to ack(m,n) works:

ack(a0, b0) ≻ ack(a1, b1) :⇔ a0 > a1 or (a0 = a1 and b0 > b1).

Clearly, ack(0, 0) is the minimum element. Second, we must prove that
ack/2 rewrites to smaller calls. We are only concerned with rules ι and κ.
With the former, we have ack(m+1, 0) ≻ ack(m, 1). With the latter, we
have ack(m+1, n+1) ≻ ack(m+1, n) and ack(m+1, n+1) ≻ ack(m, p),
for all values p, in particular when ack(m+ 1, n)! p. ✷

A series of examples of termination proofs for term-rewriting systems
has been published by Dershowitz (1995), Arts and Giesl (2001). An ac-
cessible survey is provided by Dershowitz (1987). Knuth (2000) analysed
some famously involved recursive functions.

1.6 Implementation

Translation to Erlang It is always enjoyable to have computers actu-
ally evaluate our function calls. We briefly introduce here Erlang, a func-
tional language that contains a pure core (Armstrong, 2007). A module
is a collection of function definitions. The syntax of Erlang is very close
to our formalism and our previous rewrite systems become

-module(mix).

-export([cat/2,fact/1]).

cat( [],T) -> T;

cat([X|S],T) -> [X|cat(S,T)].

fact(N) -> f(fun f/2,N).

f(_,0) -> 1;

f(G,N) -> N * G(G,N-1).

The differences are the headers and the lexical conventions of setting
variables in big capitals and to mute unused variables in patterns with
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an underscore (_). Moreover, the expression fun f/2 denotes f/2 when
used in stead of a value. From the Erlang shell, we can compile and run
some examples:

1> c(mix).

{ok,mix}

2> mix:cat([1,2,3],[4,5]).

[1,2,3,4,5]

3> mix:fact(30).

265252859812191058636308480000000

Note that Erlang features exact integer arithmetic and that the order of
the definitions is irrelevant.

Translation to Java Functional programs on stacks can be systemat-
ically translated into Java, following designs similar to those initially pub-
lished by Felleisen and Friedman (1997), Bloch (2003) and Sher (2004).
This operation should transfer some interesting properties proved on the
source to the target language: the whole point hinges on how the math-
ematical approach presented earlier, both with structural induction and
functional programming, leads to trusted Java programs and, therefore,
constitutes a solid bridge between mathematics and computer science.

Of course, the programs discussed in this book are extremely short
and the topic at hand thus resorts to ‘programming in the small,’ but,
from the vantage point of software engineering, these functional programs
can then be considered as formal specifications of the Java programs, and
inductive proofs may be thought as instances of formal methods, like the
ones used to certify telecommunication protocols and critical embedded
systems. Therefore, this book may be used as a prerequisite to a software
engineering course, but also to an advanced programming course.

Design Pattern The design pattern in Java which models a stack
relies on polymorphic methods, recursive classes and generics. A generic
and abstract class Stack captures the essence of a stack as follows:

// Stack.java

public abstract class Stack<Item> {

public final NStack<Item> push(final Item item) {

return new NStack<Item>(item,this); }

}

A stack is empty or not and the class Stack is abstract because it asserts
that both are stacks and that they share common functionalities, like the
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method push, which is a wrapper around the constructor of non-empty
stacks, NStack, so both empty and non-empty stacks are augmented by
the same method. The argument item of push is declared final because
we want it to be constant in the body of the method, following the func-
tional paradigm. The empty stack [ ] is mapped to an extension EStack of
Stack, capturing the relationship ‘An empty stack is a stack.’ The class
EStack contains no data.

// EStack.java

public final class EStack<Item> extends Stack<Item> {}

The non-empty stack is logically encoded by NStack, another subclass of
Stack:

// NStack.java

public final class NStack<Item> extends Stack<Item> {

private final Item head;

private final Stack<Item> tail;

public NStack(final Item item, final Stack<Item> stack) {

head = item; tail = stack; }

}

The field head models the first item of a stack and tail corresponds to
the rest of the stack (so NStack is a recursive class). The constructor
just initialises these. Importantly, both are declared final to express
that we do not expect reassignments after the first instantiation. Just
as in the functional language, every time a new stack is needed, instead
of modifying another with a side-effect, a new one is created, perhaps
reusing others as constant components.

Catenation of stacks As an illustration, let us recall definition (1.3)
on page 7 for catenating two stacks:

cat([ ], t)
α−→ t; cat([x |s], t) β−→ [x |cat(s, t)].

The translation into our Java class hierarchy is as follows. The first ar-
gument of cat/2 is a stack, corresponding to this inside our classes
EStack and NStack. Therefore, the translation of cat/2 is an abstract
Java method in class Stack, with one parameter (the second of cat/2):

public abstract Stack<Item> cat(final Stack<Item> t);

Rule α applies only if the current object represents [ ], so the correspond-
ing translation is a method of EStack. Dually, rule β leads to a method
of NStack. The former returns its argument, so the translation is
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public Stack<Item> cat(final Stack<Item> t) { return t; }

The latter returns an object of NStack corresponding to [x | cat(s, t)]. It
is built by translating this stack from the bottom up: translate cat(s, t)
and then push x. Let us recall that s is the tail of [x |s] on the left-hand
side of rule β, hence [x | s] is this and s corresponds to this.tail, or,
simply, tail. Similarly, x is head. Finally,

public NStack<Item> cat(final Stack<Item> t) {

return tail.cat(t).push(head);

}
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Chapter 2

Fundamentals

2.1 Catenating

[This slow restart may be skipped by impatient readers.]

In the introduction, we did not explain the design of cat/2, the function
which catenates its two stack arguments. Let us start from scratch and
proceed slowly.

Consider writing a function join/2 doing the same thing as cat/2.
First, the requirement should be expressed in English as a function which
takes two stacks and computes a stack containing all the items of the
first stack followed by all the items of the second one, while retaining
the relative order of the items. In other words, all function calls join(s, t)
are rewritten into a stack containing all the items of s followed by all the
items of t. A requirement would be incomplete without some examples.
For instance,

join([3, 5], [2]) ! [3, 5, 2].

Nevertheless, if this is still seem a bit vague, we should try some ex-
treme cases, that is, special configurations of the arguments, in order
to understand more precisely what is expected from this function. Both
arguments being stacks, a hint comes naturally to mind because it is
well known that stacks must either be empty or non-empty. This simple
observation leads to consider four distinct cases: both stacks are empty;
the first is empty and the second is not; the first is not empty and the
second is; both are not empty:

join([ ], [ ])
join([ ], [y |t])
join([x |s], [ ])

join([x |s], [y |t])

21
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It is important not to rush to write the right-hand sides. Are some cases
left out? No, because there are exactly two arguments which can each
be either empty or not, leading to exactly 2 · 2 = 4 cases. Then, we write
the corresponding canvas:

join([ ], [ ]) → ;
join([ ], [y |t]) → ;
join([x |s], [ ])→ ;

join([x |s], [y |t])→ .

Let us ponder which rule looks easier, because there is no reason to
complete them in order if we do not want to. When reading the patterns,
a clear mental representation of the situation should arise. Here, it seems
that the first rule is the easiest because it contains no variable at all: what
is the stack made of all the items of the (first) empty stack followed by
all the items of the (second) empty stack? Since the empty stack, by
definition, contains no item, the answer is the empty stack:

join([ ], [ ]) → [ ];
join([ ], [y |t]) → ;
join([x |s], [ ])→ ;

join([x |s], [y |t])→ .

Perhaps we might wonder whether this case should be dropped. In other
words, is it a meaningful case? Yes, because the English description of
the behaviour of join/2 mandates the result be always a stack made of
items of other stacks (the arguments), so, in the absence of any items to
‘put’ in the result, the final stack ‘remains’ empty.

It should be evident enough that the second and third rules are sym-
metric, because when appending a non-empty stack to the right of an
empty stack is the same as appending it to the left: the result is always
the non-empty stack in question.

join([ ], [ ]) → [ ];
join([ ], [y |t]) → [y |t];
join([x |s], [ ])→ [x |s];

join([x |s], [y |t])→ .

The last rule is the trickiest. What does the pattern in the left-hand side
of the rule reveal about the situation? That both stacks are not empty,
more precisely, the top of the first stack is denoted by the variable x, the
corresponding rest (which can either be empty or not) is s, and similarly
for the second stack and y and t. Are these bricks enough for building the
right-hand side, that is, the next step towards the result? We understand



2.1. CATENATING 23

that appending two stacks p and q preserves in the result the total order
of the items present in both, but also the relative order of the items of p
with respect to the items of q. In other words, the items of p = [x | s]
must be present in the result before the items of q = [y |t] and the items
from p must be in the same order as in p (same for q). With this ordering
in mind, it is perhaps natural sketching the following:

join([x |s], [y |t])→ x s y t .

In one rewrite step, can the item x be placed in its final place, that is, in
a position from where it does not need to be moved again? The answer
is yes: it must be the top of the result.

join([x |s], [y |t]) → [x | s y t ].

What about the other top, variable y? It should remain on top of t:

join([x |s], [y |t]) → [x | s [y |t]].

What is the relationship between s and [y |t]? We may be tempted by

join([x |s], [y |t])→ [x | [s | [y |t]]].

which is flawed. The reason is that, while we may allow stacks to be
used as items for other stacks (in other words, stacks can be arbitrarily
embedded in other stacks), s should not be used as an item here, as it is
when it is used as a top in [s | [y |t]]. Let us consider the running example
join([3, 5], [2]): here, the left-hand side of the rule in question bounds
x to 3, s to [5], y to 2 and t to [ ], therefore the corresponding putative
right-hand side [x | [s | [y |t]]] is actually [3|[[5]|[2|[]]]], differing from
the result [3|[5|[2|[]]]] in that [5] is not 5.

How can s and [y | t] be catenated? Of course, this is exactly the
purpose of the function join/2 currently being defined. Therefore, what
we need here is a recursive call:

join([ ], [ ])→ [ ];
join([ ], [y |t])→ [y |t];
join([x |s], [ ])→ [x |s];

join([x |s], [y |t])→ [x | join(s, [y |t])].

Correctness and completeness It is extremely common that, in the
course of designing a function, we focus on some aspect, some rule, and
then on some other part of the code, and we may miss the forest for the
trees. When we settle for a function definition, the next step is to check
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whether it is correct and complete with respect to the conception we had
of its expected behaviour.

We say that a definition is correct if all function calls that can be
rewritten in one step can be further rewritten in the expected result, and
if every failing call was expected to fail. By failure, we mean that a stuck
expression is reached, that is, an expression containing a function call
which can not be further rewritten.

We say that a definition is complete if all function calls that we
expect a priori to be computable are indeed computable. In other words,
we must also check that the definition enables rewriting into a value any
input we deem acceptable.

How do we check that the last definition of join/2 is correct and
complete? If the concept of ‘expected result’ is not formally defined,
typically by means of mathematics, we resort to code review and testing.
One important aspect of the reviewing process consists in verifying again
the left-hand sides of the definition and see if all possible inputs are
accepted or not. In case some inputs are not matched by the patterns,
we must justify that fact and record the reason in a comment. The left-
hand sides of join/2 match all the combinations of two stacks, whether
they are empty or not, and this is exactly what was expected: no more, no
less. The next step is to inspect the right-hand sides and wonder twofold:
(1) Are the right-hand sides rewritten into the expected type of value, for
all function calls? (2) Are the function calls being provided the expected
type of arguments? These checks stem from the fact that some functional
languages, like Erlang, do not include type inference at compile-time.
Other functional languages, like OCaml and Haskell, would have their
compilers automatically establish these properties. The examination of
the right-hand sides in the definition of join/2 confirms that

• the right-hand sides of the first three rules are stacks containing
the same kind of items as the arguments;

• the arguments of the unique recursive call in the last rule are stacks
made of items from the parameters;

• assuming that the recursive call has the expected type, we deduce
that the right-hand side of the last rule is a stack made of items
from the arguments.

As a conclusion, the two questions above have been positively answered.
Notice how we had to assume that the recursive call already had the type
we were trying to establish for the current definition. There is nothing
wrong with this reasoning, called inductive, and it is rife in mathematics.
We shall revisit it in different contexts.
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The following stage consists in testing the definition. This means to
define a set of inputs which lead to a set of outputs and failures that
are all expected. For example, it is expected that join([ ], [ ]) ! [ ], so we
could assess the validity of this statement by running the code, and the
function call indeed passes the test. How should we choose the inputs
meaningfully? There are no general rules, but some guidelines are useful.
One is to consider the empty case or the smaller case, whatever that
means in the context of the function. For example, if some argument is a
stack, then let us try the empty stack. If some argument is a nonnegative
integer, then let us try zero. Another advice is to have at least test cases,
that is, some function calls whose values are known, which exert each
rule. In the case of join/2, there are four rules to be covered by the test
cases.

Improvement Once we are convinced that the function we just defined
is correct and complete, it is often worth considering again the code for
improvement. There are several directions in which improvements, often
called optimisations although the result may not be optimal, can be
achieved:

• Can we rewrite the definition so that in all or some cases it is
faster?

• Is there an equivalent definition which uses less memory in all or
some cases?

• Can we shorten the definition by using fewer rules (perhaps some
are useless or redundant) or shorter right-hand sides?

• Can we use less parameters in the definition? (This is related to
memory usage.)

Let us reconsider join/2:

join([ ], [ ])→ [ ];
join([ ], [y |t])→ [y |t];
join([x |s], [ ])→ [x |s];

join([x |s], [y |t])→ [x | join(s, [y |t])].

and focus our attention on the two first rules, whose common point is
to have the first stack being empty. It is clear now that the right-hand
sides are, in both rules, the second stack, whether it is empty (first rule)
or not (second rule). Therefore, there is no need to discriminate on the
structure of the second stack when the first one is empty and we can
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equivalently write

join([ ], t)→ t, where t is a stack;
join([x |s], [ ]) → [x |s];

join([x |s], [y |t]) → [x | join(s, [y |t])].

Note how the new definition does not formally ascertain that t is a stack
– hence the comment – so it is not strictly equivalent to the original defini-
tion: now join([ ], 5) → 5. Let us compromise by favouring the conciseness
of the latter definition or assume type inference.

Let us consider next the two last rules and look for common patterns.
It turns out that, in the penultimate rule, the first stack is matched as
[x | s] but nothing is done with x and s except rebuilding [x | s] in the
right-hand side. This suggests that we could simplify the rule as follows:

join([ ], t)→ t;
join(s, [ ])→ s, where s is a non-empty stack;

join([x |s], [y |t]) → [x | join(s, [y |t])].

It is important to check that changing [x | s] into s does not affect the
pattern matching, that is to say, exactly the same inputs which used to
match the pattern are still matching it. Indeed, it is possible in theory
that the new s matches an empty stack. Can we prove that s is never
empty? The left-hand side of the penultimate rule matches only if the
previous rule did not match, in other words, rules are tried in the order
of the writing, that is, top-down. Therefore, we know that s can not
be bound to the empty stack, because [ ] is used in the previous rule
and the second parameter can be any stack. Nevertheless, as happened
before, s is not necessarily a stack anymore, for instance, join(5, [ ]) → 5.
Again, we will ignore this side-effect and choose the conciseness of the
latter definition.

In the last rule, we observe that the second argument, matched by
[y | t], is simply passed over to the recursive call, thus it is useless to
distinguish y and t and we can try

join([ ], t)→ t; join(s, [ ])→ s; join([x |s], t)→ [x | join(s, t)].

(Can t be empty?) Again, we must make sure that t can not match
an empty stack: it can not be empty because, otherwise, the previous
pattern would have matched the call. As it is, the penultimate pattern is
included in the last, that is, all input matched by the penultimate could
be matched by the last, which leads us to consider whether the definition
would still be correct if t could be empty after all. Let us label the rules
as follows:

join([ ], t)
α−→ t; join(s, [ ])

β−→ s; join([x |s], t) γ−→ [x | join(s, t)].
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Let s be some stack containing n items, which we write informally as
s = [x0, x1, . . . , xn−1]. The subscript i in xi is the position of the item
in the stack, the top being at position 0. Then we would rewrite in one
step

join(s, [ ])
β−→ s.

Had rule β been erased, we would have had instead the series

join(s, [ ])
γ−→ [x0|join([x1, . . . , xn−1], [ ])]
γ−→ [x0|[x1|join([x2, . . . , xn−1], [ ])]]
= [x0, x1|join([x2, . . . , xn−1], [ ])]
γ−→ [x0, x1|[x2|join([x3, . . . , xn−1], [ ])]]
= [x0, x1, x2|join([x3, . . . , xn−1], [ ])]...
γ−→ [x0, x1, . . . , xn−1|join([ ], [ ])]
α−→ [x0, x1, . . . , xn−1|[ ]]
= [x0, x1, . . . , xn−1]
= s.

In short, we found join(s, [ ])! s. This means that rule β is useless, since
its removal allows us to reach the same result s, although more slowly:
n steps by rule γ plus 1 by rule α, instead of one step by rule β. We
are hence in a situation where we discover that the original definition
was already specialised for speed when the second stack is empty. If we
remove rule β, the program is shorter but becomes slower in that special
case. This kind of dilemma is quite common in programming and there
is sometimes no clear-cut answer as to what is the best design. Perhaps
another argument can here tip the scale slightly in favour of the removal.
Indeed, whilst the removal slows down some calls, it makes the number
of rewrites easy to remember: it is the number of items of the first stack
plus 1; in particular, the length of the second argument is irrelevant. So
let us settle for a new definition with a new name:

cat([ ], t)
α−→ t; cat([x |s], t) β−→ [x |cat(s, t)].

Let us note that cat(5, [ ]) fails again, as it does in the original version.

When programming medium or large applications, it is recommended
to use evocative variables, like StackOfProc, instead of enigmatic ones,
like s. But in this presentation we are mostly concerned with short pro-
grams, not software engineering, so short variables will do. Nevertheless,
we need to opt for a naming convention so we can easily recognise the
type of the variables across function definitions.
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Tail form As the rewrite of cat(s, [ ]) shows, the right-hand side of
rule β of cat/2 features a call with the context [x |␣], the mark ␣ standing
for the location of the call cat(s, t). When all the right-hand sides of
a definition are either values, or arithmetic expressions, or expressions
made only of data constructors, or one function call whose arguments
are values or arithmetic expressions or data constructors, it is said to be
in tail form.

We may wonder whether a tail form variant is necessary or not and
we will discuss this issue later. At the moment, let us take this as a
stylistic exercise and, instead of presenting a systematic transformation,
let us envisage a pragmatic approach. In the case of cat/2, as stated
above, the only context is [x | ␣] and the operator (|) is not associative,
that is, [x | [y |z]] ̸≡ [[x |y] | z]. The idea is to add another parameter in
which we will store the values from the context, and when the input is
exhausted, we will rebuild the context from that parameter, called an
accumulator. Here, we want a new function cat/3 whose definition has
the shape

cat([ ], t, u)→ ;
cat([x |s], t, u)→ .

The new parameter u is the accumulator in question. Since we want to
store many x in it, it must be a stack. Furthermore, its initial value
should be the empty stack, otherwise extraneous items would be found
in the result. Therefore, the definition in tail form, equivalent to cat/2
and named cat0/2, calls cat/3 with the extra argument [ ]:

cat0(s, t)→ cat(s, t, [ ]).

Let us go back to cat/3 and push x on u:

cat([ ], t, u)
α−→ ;

cat([x |s], t, u) β−→ cat(s, t, [x |u]).

What is the accumulator with respect to the expected result? We already
know that it can not be a partial result, because (|) is not associative.
So some more work has to be done with u and t, but, first, we should
understand what u contains at this point and unfolding a call, with a
piece of paper and a pencil, is quite enlightening. Let s be a stack of
n items [x0, x1, . . . , xn−1]. We have the following:

cat(s, t, [ ])
β−→ cat([x1, . . . , xn−1], t, [x0])
β−→ cat([x2, . . . , xn−1], t, [x1, x0])...
β−→ cat([ ], t, [xn−1, xn−2, . . . , x0])
α−→ .
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Therefore, u in the left-hand side of rule α is bound to a stack which
contains the same items as the original first argument s, but in reverse
order. In other words, given the call cat(s, t, [ ]), the parameter u in the
first pattern of cat/3 holds s reversed. What can we do with u and t in
order to reach the result? The key is to realise that the answer depends on
the contents of u, which, therefore, needs to be matched more accurately:
is u empty or not? This leads to split rule α into α0 and α1:

cat([ ], t, [ ]) α0−→ ;
cat([ ], t, [x |u]) α1−→ ;
cat([x |s], t, u) β−→ cat(s, t, [x |u]).

Notice that rules α0 and α1 could be swapped, as they filter completely
distinct cases. The right-hand side of rule α0 is easy to guess: it must
be t, since it corresponds to the case when we want to append the empty
stack to t:

cat([ ], t, [ ]) α0−→ t;
cat([ ], t, [x |u]) α1−→ ;
cat([x |s], t, u) β−→ cat(s, t, [x |u]).

How do we relate t, x and u in rule α1 with the result we are looking for?
Given the rewrite cat(s, t, [ ])! cat([ ], t, [x |u]), we know that [x |u] is s
reversed, so item x is last in s and it should be on top of t in the result.
What should we do with u? The key is to realise that we need to start
the same process again, that is, we need another recursive call:

cat([ ], t, [ ]) α0−→ t;
cat([ ], t, [x |u]) α1−→ cat([ ], [x |t], u);
cat([x |s], t, u) β−→ cat(s, t, [x |u]).

To test the correctness of this definition, we can try a small example:

cat([1, 2, 3], [4, 5], [ ]) β−→ cat([2, 3], [4, 5], [1])
β−→ cat([3], [4, 5], [2, 1])
β−→ cat([ ], [4, 5], [3, 2, 1])
α1−→ cat([ ], [3, 4, 5], [2, 1])
α1−→ cat([ ], [2, 3, 4, 5], [1])
α1−→ cat([ ], [1, 2, 3, 4, 5], [ ])
α0−→ [1, 2, 3, 4, 5].

As a conclusion, the tail form version of cat/2, called cat0/2, requires an
auxiliary function cat/3 with an accumulator whose purpose is to reverse
the first argument:

cat0(s, t)
α−→ cat(s, t, [ ]).

cat([ ], t, [ ])
β−→ t;

cat([ ], t, [x |u]) γ−→ cat([ ], [x |t], u);
cat([x |s], t, u) δ−→ cat(s, t, [x |u]).
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We also know what to do when the context is not made of a call to
some associative operator: push the values of the variables it contains
and when the input stack is empty, pop these and use them to fill the
context, which is then evaluated. We will revisit this method.

Efficiency The number of steps to rewrite cat0(s, t) into a value is
greater than with cat(s, t), as we guessed while writing the previous
example. Indeed, assuming that s contains n items, we have

• one step to obtain cat(s, t, [ ]), by rule α;
• n steps to reverse s in the accumulator, by rule δ;
• n steps to reverse the accumulator on top of t, by rule γ;
• one step when the accumulator is finally empty, by rule β.

Thus, the total number of steps is 2n + 2, which is twice the cost of
the previous version. Why the difference between cat/2 and cat0/2? The
operation applied to the accumulator consists in pushing an item onto a
stack and has to be undone later: the accumulator is not a partial result
but a temporary stack used to hold the items of the first stack in reverse
order. We shall find many occurrences of this situation. Meanwhile, it is
important to remember that a tail form variant of a function operating
on stacks may lead to a slower program. Also, the derived definition in
tail form may be longer, as illustrated by cat0/2: four rules instead of
two.

The rewrites cat0([1, 2, 3], [4, 5]) ! [1, 2, 3, 4, 5] seen above can be
abstractly conceived as a product (composition) of rules: α · δn · γn · β,
or, simply, αδnγnβ. This expression is called the execution trace and its
length is the number of rules Ccat0

n of cat0(s, t), given that the length
of a rule is 1, hence |α| = |β| = |γ| = |δ| = 1 and the length of the
composition of two rules is the sum of their lengths: |α · δ| = |α| + |δ|.
Therefore,

Ccat0
n = |αδnγnβ| = |α|+ |δn|+ |γn|+ |β| = 1 + |δ| · n+ |γ| · n+ 1

= 2n+ 2.

Digression Let us reconsider the definition (1.2) of fact/1 on page 5:

fact(0)
α−→ 1; fact(n)

β−→ n · fact(n− 1).

For instance, we have

fact(3)
β−→ 3 · fact(3− 1) = 3 · fact(2)
β−→ 3 · (2 · fact(2− 1)) = 3 · (2 · fact(1))
α−→ 3 · (2 · (1)) = 6 = 3!
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It is often clearer to implicitly compose intermediary arithmetic opera-
tions (=) with the current rewrite and write in short

fact(3)
β−→ 3 · fact(2) β−→ 3 · (2 · fact(1)) α−→ 3 · (2 · (1)) = 6.

Note how the last rewrite (
α−→) must be followed by a series of multiplic-

ations 3 · (2 · 1) because each individual multiplication had to be delayed
until fact(1) be computed. This could have been anticipated because the
call to fact/1 in the right-hand side of the rewrite rule (

β−→), that is, the
underlined text in

fact(n)
β−→ n · fact(n− 1)

has the non-empty context ‘n * ’. To understand why this is important,
let us consider a slightly longer series of rewrites:

fact(5)
β−→ 5 · fact(4)
β−→ 5 · (4 · fact(3))
β−→ 5 · (4 · (3 · fact(2)))
β−→ 5 · (4 · (3 · (2 · fact(1))))
α−→ 5 · (4 · (3 · (2 · (1)))).

It is clear that each rewrite by (
β−→) yields a longer expression. Let us

focus now only on the shapes of these expressions:

fact(5)
β−→
β−→
β−→
β−→
α−→ .

This phenomenon suggests that a great deal of space, that is, computer
memory, is needed to keep the expressions before the final, long arith-
metic computations. The example leads to induce that the larger term
occurring in the computing of fact(n) is the one just before (

α−→) and its
size is likely to be proportional to n, since all the integers from n to 1
had to be kept until the end.

A tail form version fact0/1 would be

fact0(n)→ fact0(n, 1), if n # 1. fact0(1, a)→ a;
fact0(n, a)→ fact0(n− 1, a · n).

Here, in contrast with cat/3, the operation applied to the accumulator
is associative (a multiplication) and the accumulator is, at all times, a
partial result. Instead of delaying the multiplications, exactly one mul-
tiplication is going to be computed at each rewrite, thus, in the end,
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nothing remains to be done: there is no instance of the context to re-
sume. This kind of definition is thus in tail form.

Notice that the cost of fact0/1 is n+1, whilst the cost of fact/1 is n,
so, contrary to cat0/2 and cat/2, the tail form here does not significantly
increases the cost. This is due to the nature of the operations on the
accumulator, which do not require to be reversed or undone.

The previously considered function call fact0(5) is evaluated thusly:

fact0(5)
α−→ fact0(5, 1), since 5 > 1,
γ−→ fact0(5− 1, 1 · 5) = fact0(4, 5)
γ−→ fact0(4− 1, 5 · 4) = fact0(3, 20)
γ−→ fact0(3− 1, 20 · 3) = fact0(2, 60)
γ−→ fact0(2− 1, 60 · 2) = fact0(1, 120)
β−→ 120.

The reason why fact0(5) ≡ fact(5) is that

(((1 · 5) · 4) · 3) · 2 = 5 · (4 · (3 · (2 · 1))). (2.1)

This equality holds because, in general, for all numbers x, y and z,

1. the multiplication is associative: x · (y · z) = (x · y) · z;
2. the number 1 is neutral with respect to (·): x · 1 = 1 · x = x.

To show exactly why, let us write (
1
=) and (

2
=) to denote, respectively, the

use of associativity and neutrality, then lay out the following equalities
leading from the left-hand side to the right-hand side of the purported
equality (2.1):

(((1 · 5) · 4) · 3) · 2 2
= ((((1 · 5) · 4) · 3) · 2) · 1
1
= (((1 · 5) · 4) · 3) · (2 · 1)
1
= ((1 · 5) · 4) · (3 · (2 · 1))
1
= (1 · 5) · (4 · (3 · (2 · 1))
1
= 1 · (5 · (4 · (3 · (2 · 1))))
2
= 5 · (4 · (3 · (2 · 1))). ✷

Furthermore, if we do not want to rely upon the neutrality of 1, we could
define another equivalent function fact1/1 which sets the initial call to
fact1(n − 1, n), instead of fact0(n, 1), and stops when the number is 0,
instead of 1:

fact1(n)
α−→ fact1(n− 1, n), if n > 0. fact1(0, a)

β−→ a;
fact1(n, a)

γ−→ fact1(n− 1, a · n).
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The same example now runs as

fact1(5)
α−→ fact1(5− 1, 5) = fact1(4, 5)
γ−→ fact1(4− 1, 5 · 4) = fact1(3, 20)
γ−→ fact1(3− 1, 20 · 3) = fact1(2, 60)
γ−→ fact1(2− 1, 60 · 2) = fact1(1, 120)
γ−→ fact1(1− 1, 120 · 1) = fact1(0, 120)
β−→ 120.

This new version relies on the following equality which can be proved
only by means of associativity: (((5 · 4) · 3) · 2) · 1 = 5 · (4 · (3 · (2 · 1))).

The number of rewrites of fact0/1 is almost the same as with fact/1,
precisely one more step due to the rule α. But the former presents an
advantage in terms of memory usage, as long as it is assumed that all
integers within a certain range occupy the same space. This means that,
for instance, that the memory needed to store the number 120 is the
same as for the number 5. Then the shape of the previous rewrites:

fact0(5)
α−→
γ−→
γ−→
γ−→
γ−→
β−→ .

It seems probable that this version uses a constant chunk of memory,
while fact/1 uses an increasing amount of memory, more precisely a space
proportional to n when computing n!. (In the following sections, we
shall see that a more precise model of memory allocation is provided by
abstract syntax trees.) This phenomenon has been anticipated by the
keen reader who noticed that there is no context for the calls in the rules
defining fact0/2, so there are no delayed computations that accumulate
until the last step. As a conclusion, fact0/1 is always preferable to fact/1.

The previous discussions on obtaining equivalent definitions which
are in tail form suppose to consider programs as some kind of data. At
this point, it is a methodological standpoint only and we do not mean
that functions can be processed as stacks (we shall come back on this later
when discussing higher-order functions and continuation-passing style),
but, more informally, we mean that definitions can be transformed into
other definitions and that this is often an excellent method, as opposed to
trying to figure out from scratch the final definition. It would have been
probably more difficult to write the tail form variant of cat/2 without
having first designed the version not in tail form.
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It is in general not a good idea to start head-on by defining a function
in tail form because it may either be unnecessary or lead to a mistake
since these kinds of definitions are usually more involved. In the following
sections and chapters, we will explain when tail form definitions are useful
and how to obtain them using a systematic method.

Let us consider a simple case by defining a function last/1 such that
last(s) computes the last item of the non-empty stack s. The correct
approach is to forget about tail forms and aim straight at the heart of
the problem. We know that s can not be empty, so let us start with the
following left-hand side:

last([x |s])→ .

Can we reach the result in one step? No, because we do not know whether
x is the sought item: we need to know more about s. This additional
information about the structure of s is given by more precise patterns:
s can be empty or not, that is: s = [ ] or s = [y |t]. We then have:

last([x | [ ]])→ ; last([x | [y |t]])→ .

The first pattern can be simplified as follows:

last([x])→ ; last([x | [y |t]])→ .

The first right-hand side is easy to guess:

last([x])→ x; last([x | [y |t]])→ .

In the last rule, how do x, y and t relate to the result? Can we reach
it in one step? No, despite we know that x is not the result, we still
don’t know whether y is, so we have to start over again, which means a
recursive call is required:

last([x])→ x; last([x | [y |t]])→ last( ).

Note how knowing that some specific part of the input is not useful to
build the output is useful knowledge. We can not call recursively last(t)
because t may be empty and the call would then fail, meaning that the
answer was actually y. Therefore, we must call with [y | t] to give y the
chance to be the last:

last([x])→ x; last([x | [y |t]])→ last([y |t]).

As we advocated previously, the next phase consists in testing this defin-
ition for correctness and completeness, using meaningful examples (cov-
ering extreme cases and all the rules at least once). For the sake of the
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argument, let us assume that last/1 is correct and complete. The next
step is then to try and improve upon it. Let us look for patterns occurring
in both sides of the same rule and ponder whether they can be avoided.
For instance, we observe that [y | t] is used as a whole, in other words,
y and t are not used separately in the second right-hand side. Therefore,
it is worth trying to fold back and replace the pattern by a more general
one, in this case: s = [y |t].

last([x])→ x; last([x |s])→ last(s).

This transformation is correct because the case where s is empty has
already been matched by the first pattern. Notice also that we indeed
considered a definition as some data. (We should write more accurately
metadata since definitions are not data processed by the program, but
by the programmer.) In passing, last/1 is in tail form.

What if we had tried to find directly a definition in tail form? We
might have recalled that such definitions often need an accumulator and
we would have tried perhaps something along these lines:

last0(s)→ last1(s, 0). last1([ ], y)→ y; last1([x |s], y)→ last1(s, x).

The first observation may be about the function name last1. Why not
write the following, in accordance with the style up to now?

last0(s)→ last0(s, 0). last0([ ], y)→ y; last0([x |s], y)→ last0(s, x).

There would be no confusion between last0/1 and last0/2 because, each
taking a different number of arguments, they are logically considered
different. The reason why we recommend to distinguish the names and,
in general, to use one name for only one function, is that this discip-
line enables the compiler to catch the error consisting in forgetting one
argument. For instance, the program

last0(s)→ last0(s, 0). last0([ ], y)→ y; last0([x |s], y)→ last0(s).

contains an error that goes unreported, while

last0(s)→ last1(s, 0). last1([ ], y)→ y; last1([x |s], y)→ last1(s).

raises an error. However, for didactic purposes in this book, we will not al-
ways follow this recommendation of having unique function names. The
possibility to use the same name for different functions which can be
otherwise distinguished by the number of their arguments is called over-
loading. Overloading of functions in the programming language C++ is
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permitted, but the rules used to distinguish amongst the different func-
tions sharing the same name is different than in Erlang, as it makes use
of the number of parameters but also their static types.

Computing the call last0([1, 2, 3]) with the original definition, we find
that the three rules are covered until the correct result is found, that is 3.
Because we recommended previously to make some litmus test and the
argument is a stack, we try the empty stack and obtain the evaluation
last0([ ])→ last1([ ], 0) → 0, which is unexpected, since this test ought to
fail (see how last/1 is not defined for the empty stack). Can we fix this?

Let us simply change the left-hand side of last0/1 so that only non-
empty stacks are matched. We find here a case where more information
on the structure of the input is needed and a variable is too general a
pattern. We need instead

last0([x |s])→ last0([x |s], 0). last0([ ], y)→ y;
last0([x |s], y)→ last0(s, x).

This emendation seems to go against an improvement we made earlier,
when we replaced [y | t] by s, but it does not: here we want to exclude
some input, that is, we do not seek an equivalent function, whilst before
the purpose was to simplify and obtain an equivalent function.

The definition of last0/1 is correct and complete but a careful review
should raise some doubts about its actual simplicity. For example, the
initial value of the accumulator, given in the unique right-hand side of
last0/1 is 0, but this value is never used, because it is discarded imme-
diately after in the second right-hand side of last0/2. Indeed, we could
write the equivalent definition:

last1([x |s])→ last1([x |s], 7). last1([ ], y)→ y;
last1([x |s], y)→ last1(s, x).

The initial value of the accumulator here does not even need to be an
integer, it could be of any type, like [4, [ ]]. This is the sign that we should
better give up this overly complicated definition, which is the product
of a method that does not consider programs as data and is founded
on the wrong assumption that definitions in tail form often require an
accumulator: in general, they do not.

Take for example the polymorphic identity: id(x) → x. It is trivially
in tail form. In passing, being in tail form has nothing to do, in general,
with recursion, despite the widespread and unfortunate locution ‘tail-
recursive function’. A recursive definition may be in tail form, but a
definition in tail form may not be recursive, like id/1.
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2.2 Reversal

Involution Sometimes a proof requires some lemma to be devised. Let
us consider the definition of a function rev0/1 reversing a stack:

cat([ ], t)
α−→ t; rev0([ ])

γ−→ [ ];
cat([x |s], t) β−→ [x |cat(s, t)]. rev0([x |s])

δ−→ cat(rev0(s), [x]).

An evaluation is shown with abstract syntax trees in figure 2.1. Let
Inv(s) be the property rev0(rev0(s)) ≡ s, that is, the function rev0/1 is
an involution. In order to prove ∀s ∈ S.Inv(s), the induction principle on

rev0
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Figure 2.1: rev0([3, 2, 1]) ! [1, 2, 3]
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the structure of s requires that we establish

• the basis Inv([ ]);
• the inductive step ∀s ∈ S.Inv(s)⇒ ∀x ∈ T.Inv([x |s]).

The basis is quickly found: rev0(rev0([ ]))
γ−→ rev0([ ])

γ−→ [ ]. The induction
hypothesis is Inv(s) and we want to establish Inv([x |s]), for any x. If
we commence head-on with rev0(rev0([x | s])) δ−→ rev0(cat(rev0(s), [x])),
we are stuck. But the term to rewrite involves both rev0/1 and cat/2,
hence spurring us to conceive a lemma where the stumbling pattern
cat(rev0(. . . ), . . . ) occurs and is equivalent to a simpler term.

Let CatRev(s, t) denote cat(rev0(t), rev0(s)) ≡ rev0(cat(s, t)). In order
to prove it by induction on the structure of s, we need, for all t,

• the basis CatRev([ ], t);
• the inductive step ∀s, t ∈ S.CatRev(s, t)⇒ ∀x ∈ T.CatRev([x |s], t).

The former is almost within reach:

rev0(cat([ ], t))
α−→ rev0(t)' cat(rev0(t), [ ])

γ←− cat(rev0(t), rev0([ ])).

The missing part is filled by showing that (') is actually (≡).

Let CatNil(s) be the property cat(s, [ ]) ≡ s. In order to prove it by
induction on the structure of s, we have to prove

• the basis CatNil([ ]);
• the inductive step ∀s ∈ S.CatNil(s)⇒ ∀x ∈ T.CatNil([x |s]).

The former is easy: cat([ ], [ ])
α−→ [ ]. The latter is not complicated either:

cat([x | s], [ ]) β−→ [x | cat(s, [ ])] ≡ [x | s], where the equivalence is none
other than the induction hypothesis CatNil(s). ✷

Note that we could have proved instead cat(s, [ ])! s, for all values s.
The difference is that CatNil(s) holds even if s is not a value, as all we
have to do is to replace cat([x |s], [ ]) β−→ [x |cat(s, [ ])] by the equivalence
cat([x | s], [ ]) %β [x | cat(s, [ ])]. This principle will hold in all our proofs:
we assume that variables denote values and, if not, we simply change (

β−→)
into (%β), for all rules β in the proof. Our assumption perhaps improves
legibility.

Assuming CatRev(s, t), we must establish ∀x ∈ T.CatRev([x |s], t):
cat(rev0(t), rev0([x |s]))

δ−→ cat(rev0(t), cat(rev0(s), [x]))
≡ cat(cat(rev0(t), rev0(s)), [x]) (CatAssoc)
≡ cat(rev0(cat(s, t)), [x]) (CatRev(s, t))
δ←− rev0([x |cat(s, t)])
β←− rev0(cat([x |s], t)). ✷
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rev([3, 2, 1])
ϵ−→ rcat([3, 2, 1], [ ])
η−→ rcat([2, 1], [3])
η−→ rcat([1], [2, 3])
η−→ rcat([ ], [1, 2, 3])
ζ−→ [1, 2, 3].

Figure 2.2: rev([3, 2, 1]) ! [1, 2, 3]

Let us resume the proof of Inv([x |s]):

rev0(rev0([x |s]))
δ−→ rev0(cat(rev0(s), [x]))
≡ cat(rev0([x]), rev0(rev0(s))) (CatRev(rev0(s), [x]))
≡ cat(rev0([x]), s) (Inv(s))
δ−→ cat(cat(rev0([ ]), [x]), s)
γ−→ cat(cat([ ], [x]), s)
α−→ cat([x], s)
β−→ [x |cat([ ], s)]
α−→ [x |s]. ✷

Equivalence We may have two definitions meant to describe the same
function, which differ in complexity and/or efficiency. For instance, rev0/1
was given an intuitive definition, as we can clearly see in rule δ that the
item x, which is the top of the input, is intended to be located at the
bottom of the output. Unfortunately, this definition is computationally
inefficient, that is, it leads to a great deal of rewrites relatively to the
size of the input.

Let us assume that we also have an efficient definition for the stack
reversal, named rev/1, which depends upon an auxiliary function rcat/2
(reverse and catenate):

rev(s)
ϵ−→ rcat(s, [ ]). rcat([ ], t)

ζ−→ t; rcat([x |s], t) η−→ rcat(s, [x |t]). (2.2)

An additional parameter introduced by rcat/2 accumulates partial res-
ults, thus called an accumulator . We can see it at work in figure 2.2.

Let us prove EqRev(s) : rev0(s) ≡ rev(s) by structural induction on s,
namely,

• the basis EqRev([ ]);

• the inductive step ∀s ∈ S.EqRev(s)⇒ ∀x ∈ T.EqRev([x |s]).
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The former is easy: rev0([ ])
γ−→ [ ]

ζ←− rcat([ ], [ ])
ϵ←− rev([ ]). For the latter,

let us rewrite rev0([x |s]) and rev([x |s]) so they converge:

rev0([x |s])
δ−→ cat(rev0(s), [x])
≡ cat(rev(s), [x]) (EqRev(s))
' rcat(s, [x]) (to be determined)
η←− rcat([x |s], [ ])
ϵ←− rev([x |s]).

The missing part is filled by showing (') to be (≡) as follows.
Let RevCat(s, t) be the property rcat(s, t) ≡ cat(rev(s), t). Induction

on the structure of s requires the proofs of

• the basis ∀t ∈ S.RevCat([ ], t);

• the general case ∀s, t ∈ S.RevCat(s, t)⇒ ∀x ∈ T.RevCat([x |s], t).

First, rcat([ ], t)
ζ−→ t

α←− cat([ ], t)
ζ←− cat(rcat([ ], [ ]), t)

ϵ←− cat(rev([ ]), t).
Next, let us assume RevCat(s, t) and prove ∀x ∈ T.RevCat([x |s], t):

rcat([x |s], t) η−→ rcat(s, [x |t])
≡ cat(rev(s), [x |t]) (RevCat(s, [x |t]))
α←− cat(rev(s), [x |cat([ ], t)])
β←− cat(rev(s), cat([x], t))
≡ cat(cat(rev(s), [x]), t) (CatAssoc(rev(s), [x], t))
≡ cat(rcat(s, [x]), t) (RevCat(s, [x]))
η←− cat(rcat([x |s], [ ]), t)
ϵ←− cat(rev([x |s]), t). ✷

Finally, we proved ∀s.EqRev(s), that is, rev/1 = rev0/1. ✷

Cost The definition of rev0/1 directly leads to the recurrences

Crev0
0 = 1, Crev0

k+1 = 1 + Crev0
k + Ccat

k = Crev0
k + k + 2,

because the length of rev0(s) is k if the length of s is k, and we already
know Ccat

k = k + 1 (page 8). We have

n−1
∑

k=0

(Crev0
k+1 − Crev0

k ) = Crev0
n − Crev0

0 =
n−1
∑

k=0

(k + 2) = 2n+
n−1
∑

k=0

k.

The remaining sum is a classic of algebra:

2 ·
n−1
∑

k=0

k =
n−1
∑

k=0

k +
n−1
∑

k=0

k =
n−1
∑

k=0

k +
n−1
∑

k=0

(n− k − 1) = n(n− 1).
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Consequently,
n−1
∑

k=0

k =
n(n− 1)

2
, (2.3)

and we can finally conclude

Crev0
n =

1

2
n2 +

3

2
n+ 1 ∼ 1

2
n2.

Another way to reach the result is to induce an evaluation trace. A trace is
a composition of rewrite rules, noted using the mathematical convention
for multiplication. From figure 2.1 on page 37, we draw the trace T rev0

n

of the evaluation of rev0(s), where n is the length of s:

T rev0
n := δnγα(βα) . . . (βn−1α) = δnγ

n−1
∏

k=0

βkα.

If we note |T rev0
n | the length of T rev0

n , that is, the number of rule applic-
ations it contains, we expect to have the equations |x| = 1, for a rule x,
and |x · y| = |x|+ |y|, for rules x and y. By definition of the cost:

Crev0
n := |T rev0

n | =

∣
∣
∣
∣
∣
δnγ

n−1
∏

k=0

βkα

∣
∣
∣
∣
∣
= |δnγ|+

n−1
∑

k=0

|βkα|

= (n+ 1) +
n−1
∑

k=0

(k + 1) = (n+ 1) +
n+1
∑

k=1

k =
1

2
n2 +

3

2
n+ 1.

The reason for this inefficiency can be seen in the fact that rule δ
produces a series of calls to cat/2 following the pattern

rev0(s)! cat(cat(. . . cat([ ], [xn]), . . . , [x2]), [x1]), (2.4)

where s = [x1, x2, . . . , xn]. The cost of all these calls to cat/2 is thus

1 + 2 + · · ·+ (n− 1) = 1
2n(n− 1) ∼ 1

2n
2,

because the cost of cat(s, t) is 1 + len(s), where

len([ ])
a−→ 0; len([x |s]) b−→ 1 + len(s). (2.5)

The problem is not calling cat/2, but the fact that the calls are embedded
in the most unfavourable configuration. Indeed, we proved the associativ-
ity of cat/2 on page 12, to wit, cat(cat(s, t), u) ≡ cat(s, cat(t, u)).

Let C!f(x)" be the cost of the call f(x). Then C!cat(cat(s, t), u)" =
(len(s) + 1) + (len(cat(s, t)) + 1) = (len(s) + 1) + (len(s) + len(t) + 1) =
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2 · len(s) + len(t) + 2, using LenCat(s, t) : len(cat(s, t)) = len(s) + len(t);
whilst C!cat(s, cat(t, u))" = (len(t)+1)+(len(s)+1) = len(s)+ len(t)+2.

C!cat(cat(s, t), u)" = len(s) + C!cat(s, cat(t, u))". (2.6)

The items of s are being traversed twice, although one visit suffices.
Yet another way to determine the cost of rev0/1 consists in first

guessing that it is quadratic, that is, Crev0
n = an2+ bn+ c, with a, b and c

are unkowns. Since there are three coefficients, we only need three values
of Crev0

n to determine them, for instance n = 0, 1, 2. Making some traces,
we find Crev0

0 = 1, Crev0
1 = 3 and Crev0

2 = 6, so we solve

Crev0
0 = c = 1, Crev0

1 = a+ b+ c = 3, Crev0
2 = a · 22 + b · 2 + c = 6.

We draw a = 1/2, b = 3/2 and c = 1, that is Crev0
n = (n2+3n+2)/2. Since

the assumption about the quadratic behaviour could have been wrong,
it is then important to try other values with the newly found formula,
for instance Crev0

4 = (4+1)(4+2)/2 = 15, then compare with the cost of
rev0([1, 2, 3, 4]), for example. Here, the contents of the stack is irrelevant,
only its length matters. After finding a formula for the cost using the
empirical method above, it is necessary to prove it for all values of n.
Since the initial equations are recurrent, the proof method of choice is
induction.

Let Quad(n) be the property Crev0
n = (n2 + 3n + 2)/2. We already

checked its validity for some small values, here, n = 0, 1, 2. Let us sup-
pose it valid for some value of n (induction hypothesis) and let us prove
Quad(n+ 1). We already know Crev0

n+1 = Crev0
n + n + 2. The induction

hypothesis implies

Crev0
n+1 = (n2 + 3n+ 2)/2 + n+ 2 = ((n + 1)2 + 3(n + 1) + 2)/2,

which is Quad(n+ 1). Therefore, the induction principle says that the
cost we found experimentally is always correct.

To draw the cost of rev/1, it is sufficient to notice that the first
argument of rcat/2 strictly decreases at each rewrite, so an evaluation
trace has the shape ϵηnζ, so Crev

n = n + 2. The cost is linear , so rev/1
must be used instead of rev0/1 in all contexts.

Exercises

1. Prove LenRev(s) : len(rev0(s)) ≡ len(s).
2. Prove LenCat(s, t) : len(cat(s, t)) ≡ len(s) + len(t).
3. What is wrong with the proof of involution of rev/1 in section 3.4.9

of the book of Cousineau and Mauny (1998)?
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2.3 Skipping

Here we envisage how to copy a stack while ignoring a given item. [The
progression is very slow on purpose.]

First occurrence Let us suppose that sfst(s, x) (skip the first occur-
rence) evaluates in a stack identical to s but without the first occurrence
of x, starting from the top. In particular, if x is absent in s, then the
value of the call is identical to s. This is our specification. For instance,
we expect the following evaluations:

sfst([ ], 3)! [ ];
sfst([ ], [ ])! [ ];

sfst([3, [ ]], [5, 2]) ! [3, [ ]];
sfst([[ ], [1, 2], 4, [ ], 4], 4) ! [[ ], [1, 2], [ ], 4];
sfst([4, [1, 2], [ ], [ ], 4], [ ]) ! [4, [1, 2], [ ], 4].

First attempt Let us try a direct approach. In particular, at this
point, it is important not to seek a definition in tail form. Tail form
must be considered as an optimisation and early optimisation is opening
Pandora’s jar. The first idea that may come to mind is to define an
auxiliary function mem/2 such that the call mem(s, x) checks whether a
given item x is in a given stack s, because that notion of membership is
implicit in the wording of the specification. But two problems then arise.
Firstly, what would be the result of such a function? Secondly, what
would be the additional cost for using it? For the sake of the argument,
let us follow this track and find out how where it leads. A stack can
either be empty or not, so let us make two rules:

mem([ ], x)→ ; mem([y |s], x)→ .

Note that we introduced a variable y, distinct from variable x. Two
different variables may or may not denote the same value, but two oc-
currences of the same variable always denote the same value. Had we
written instead

mem([ ], x)→ ; mem([x |s], x)→ .

one case would be missing, namely when the top of the stack is not
the item sought for, for instance, mem(3, [4]) would fail due to a match
failure. Now, what is the first right-hand side? The first pattern matches
only if the stack is empty. In particular, this means that the item is not
in the stack, since, by definition, an empty stack is a stack containing
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no item. How do we express that? Since the original problem is silent on
the matter, it is said to be underspecified. We may think that zero would
be a token of choice to denote the absence of the item in the stack:

mem([ ], x)→ 0; mem([y |s], x)→ .

But this would be a mistake because there is no natural and necessary
relationship between the concept of emptiness and the number zero. Zero
is best understood algebraically as the number noted 0 such that 0+n =
n+ 0 = n, for any number n. Then, let us try the empty stack:

mem([ ], x)→ [ ]; mem([y |s], x)→ .

The next step is to find a way to actually compare the value of x to the
value of y. We can use the rule above about variables: two occurrences
of the same variable mean that they hold the same value. Therefore

mem([ ], x)→ [ ]; mem([x |s], x)→ .

was not so bad, after all? Indeed, but we know now that a case is missing,
so let us add it at the end, where x ̸= y:

mem([ ], x)→ [ ]; mem([x |s], x)→ ; mem([y |s], x)→ .

Now, what is the second right-hand side? It is evaluated if the item we
were looking for is present at the top of the stack. How do we express
that? We may think of ending with the item itself, the rationale being
that if the result is the empty stack, then the item is not in the input
stack, otherwise the result is the item itself:

mem([ ], x)→ [ ]; mem([x |s], x)→ x; mem([y |s], x)→ .

The last right-hand side is easier to guess since it deals with the case
where the top of the stack (y) is not the item we seek (x), so a recursive
call which ignores y should come to mind:

mem([ ], x)→ [ ]; mem([x |s], x)→ x; mem([y |s], x)→ mem(s, x).

Some tests would increase the confidence that this definition is correct
and complete with respect to the specification. Let us label the rules first:

mem([ ], x)
ζ−→ [ ]; mem([x |s], x) η−→ x; mem([y |s], x) θ−→ mem(s, x).

Then we could try the following cases:

mem([ ], 3)
ζ−→ [ ],

mem([1], 3)
θ−→ mem([ ], 3)

ζ−→ [ ],
mem([1, 3, 2], 3)

θ−→ mem([3, 2], 3)
η−→ 3.
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The code seems to work: item x is in stack s if the result is x, otherwise
it is [ ]. However, this function is not correct. The hidden and flawed
assumption is ‘items can not be stacks,’ in spite of the counter-examples
given at the beginning for illustrating the expected behaviour of sfst/2.
In particular, an item can be the empty stack and this situation leads to
an ambiguity with our definition of mem/2:

mem([ ], [ ])
ζ−→ [ ]

η←− mem([[ ]], [ ]).

It is impossible to discriminate the two cases, the first one meaning
absence of the item and the second presence, because they both end
with the empty stack. In fact, we should have distinguished two data
constructors to denote the outcomes ‘the item was found’ and ‘the item
was not found’. For example,

mem([ ], x)
ζ−→ false();

mem([x |s], x) η−→ true();
mem([y |s], x) θ−→ mem(s, x).

But, for now, let us backtrack and ask ourselves again whether using
mem/2 is really a good idea.

Better approach Let us suppose that the input stack contains the
item at the bottom. Using mem/2 to find it leads to a complete traversal
of the input stack. Then another traversal from the beginning (the top of
the stack) is needed to copy the stack without its last item, so, in total,
two complete traversals are performed.

A better idea consists in interleaving these two passes into one be-
cause the problem stems from the fact that mem/2 forgets about the
items which are not the item of interest, thus, when it is found or known
to be absent, there is no way to build a copy to make the result. By
interleaving, we mean that during the traversal, the concepts of mem-
bership and of copying are combined, instead of being used sequentially
as two function calls. A similar situation was encountered in the design
of a function reversing a stack: rev0/1, which calls cat/2, is much slower
than rev/1, which uses an auxiliary stack.

Here, our algorithm consists in memorising all visited items and, if
the item is not found, the resulting stack is rebuilt from them; if found,
the result is built from them and the remaining, unvisited, items. There
are usually two ways to keep visited items: either in an accumulative
parameter, called accumulator, or in the context of recursive calls. At
this point, it is important to recall a cardinal guideline: Do not try first
to design a definition in tail form, but opt instead for a direct approach.
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In some simple cases, a direct approach may actually be in tail form, but
the point is methodological: a priori ignore all concerns about tail forms.
Accordingly, let us use the context of a recursive call to record the visited
items. A stack being either empty or not, it is natural to start with

sfst([ ], x)→ ;
sfst([y |s], x)→ .

Then, just as we tried with mem/2, we must distinguish the case when
x is the same as y:

sfst([ ], x)→ ;
sfst([x |s], x)→ ;
sfst([y |s], x)→ .

This method is a linear search: the items in the stack are compared one
by one to x, starting from the top, until the bottom or an item equal to x
is reached. Since we know that the last rule deals with the case when
x ̸= y, we must memorise y and go on comparing x with the other items
in s (if any). This is where the recursive call with a context, discussed
above, is set as [y |␣]:

sfst([ ], x)→ ;
sfst([x |s], x)→ ;
sfst([y |s], x)→ [y |sfst(s, x)].

Very importantly, let us remark that the position of y in the result is
the same as in the input (the top). The second rule corresponds to the
case where the item we are looking for, namely x, is found to be the top
of the current stack, which is a substack of the original input. A stack
made of successive items from the beginning of a given stack is called
a prefix of the latter. When a stack is a substack of another, that is, it
is made of successive items including the last, it is called a suffix. We
know that the x in [x |s] is the first occurrence of x in the original stack
(the one in the first call), because we wouldn’t be dealing with this case
again: the specification states that this first occurrence must be absent
from the resulting stack; since it is now at the top of a suffix, we just
need to end with s, which we do not visit :

sfst([ ], x)→ ;
sfst([x |s], x)→ s ;
sfst([y |s], x)→ [y |sfst(s, x)] .

The first rule handles the case where we traversed the whole original
stack (up to [ ]) without finding x. Thus the result is simply the empty
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stack because the empty stack without x is the empty stack:

sfst([ ], x)→ [ ]; sfst([x |s], x)→ s; sfst([y |s], x)→ [y |sfst(s, x)].

Let us run some tests now and, in order avoid mistakes, it is handy
to label the rules with some Greek letters:

sfst([ ], x)
θ−→ [ ]; sfst([x |s], x) ι−→ s; sfst([y |s], x) κ−→ [y |sfst(s, x)].

The item is absent in θ, the item is found in ι and the search continues
with κ. Note that equality is implicitly meant in non-linear rules like ι; in
other words, the cost of such equality test is 0 in our model. Also remark
how important is for rule ι to be written before κ, otherwise ι would be
useless (so-called dead code). Here is an example of a successful search:

sfst([3, 0, 1, 2], 1)
κ−→ [3 |sfst([0, 1, 2], 1)] κ−→ [3, 0 |sfst([1, 2], 1)] ι−→ [3, 0, 2].

Now an example of an unsuccessful search:

sfst([3, 0], 4)
κ−→ [3 |sfst([0], 4)] κ−→ [3, 0 |sfst([ ], 4)] θ−→ [3, 0].

More complicated examples, given on page 43, yield

sfst([4, [1, 2], [ ], [ ], 4], [ ])
κ−→ [4|sfst([[1, 2], [ ], [ ], 4], [ ])]
κ−→ [4|[[1, 2]|sfst([[ ], [ ], 4], [ ])]]
= [4, [1, 2]|sfst([[ ], [ ], 4], [ ])]
ι−→ [4, [1, 2]|[[ ], 4]]
= [4, [1, 2], [ ], 4].

sfst([3, [ ]], [5, 2])
κ−→ [3|sfst([[ ]], [5, 2])]
κ−→ [3|[[ ]|sfst([ ], [5, 2])]]
= [3, [ ]|sfst([ ], [5, 2])]
θ−→ [3, [ ]|[ ]]
= [3, [ ]].

Once we are convinced that our definition is correct and complete with
respect to the specification, there is a little extra worth testing: we can
check what happens for inputs which are not expected by the specification.
Our specification says at one point that the second argument of sfst/2
is a stack. What happens if we supply an integer instead? For example,
we have sfst(3, [ ]) !. We have a match failure, that is, the rewrites are
stuck, so that our definition is not robust, in other words, it fails abruptly
on unspecified inputs.

When programming in the small, as we do here, robustness is usually
not a concern because we want to focus on learning a language by ex-
pressing simple algorithms, but when developing large applications, we
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must take care of making the code robust by catching and signalling
errors. Notice that a program can be complete but not robust, because
completeness is relative to what is specified behaviour (all valid inputs
must be accepted and not lead to an error), whereas robustness is relative
to what is left unspecified.

These considerations are germane to discussing the merits and weak-
nesses of scripting languages, whose semantics try hard to ignore errors
by defaulting on special values (like the empty string) to keep running.
In the setting of our abstract functional language, we can use a data con-
structor, that is, a function without evaluation rules, like error(), to signal
an error or notify some piece of information about the arguments. For
instance, here is the definition of a function which distinguishes between
stacks and non-stack arguments:

is_a_stack([ ])→ yes();
is_a_stack([x |s])→ yes();

is_a_stack(s)→ no().

Data constructors come handy in signalling errors because they are like
unique identifiers, therefore they cannot be confused with any other kind
of data the function computes and so can be detected easily by the caller.
Consider this robust version of sfst/2 which discriminates errors:

sfst([ ], x)→ [ ];
sfst([x |s], x)→ s;
sfst([y |s], x)→ [y |sfst(s, x)];

sfst(s, x)→ error().

Then a function calling sfst/2 can make the difference between a normal
rewrite and an error by using a data constructor in a pattern:

caller(s, x)→ check(sfst(s, x)).
check(error())→ ;

check(r)→ .

Cost In general, the cost Csfst
n of sfst(s, x), where n is the length of s,

depends on x being present in s or not. In the latter case, the trace is κnθ,
so Csfst

n = |κnθ| = n+ 1. If the former, the cost depends on the position
of x in s. Let us set that the top of s is at position 0 and x occurs at
position j. We then have Csfst

n,j = |κjι| = j+1. If we decide that position n
(or greater) means absence, we can actually retain the last formula for
both cases.

The minimum cost Bsfst
n is then the minimum value of Csfst

n,j , for j ran-

ging from 0 to n, therefore Bsfst
n = Csfst

n,0 = 1, that is, when the item occurs
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sfst

[] x

θ−→ [] sfst

|

x s

x

ι−→ ◦ sfst

|
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x

κ−→ |
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Figure 2.3: Directed acyclic graphs for sfst/2

at the top, and, dually, the maximum cost is Wsfst
n = Csfst

n,n = n+ 1, that

is, when the item is absent. The average cost Asfst
n of a successful search

assumes that j can take all the positions in the stack:

Asfst
n =

1

n

n−1
∑

j=0

Csfst
n,j =

1

n

n−1
∑

j=0

(j + 1) =
1

n

n
∑

j=0

j =
n+ 1

2
∼ n

2
,

by equation (2.3) on page 41.
Notice that rule κ implies the creation of a (|)-node, which we call

cons-node, as shown in figure 2.3. Hence, whilst the contents of the new
stack is shared with the original stack, j nodes are newly allocated if x
occurs at position j in s. The worst case happens when x is absent so the
memory needed amounts to n nodes, all of which being useless because
in this case sfst(s, x) ≡ s. If we want to avoid this situation, another
definition of sfst/2 has to be devised, one that discards all constructed
nodes and allows us to reference the input when x is missing.

The crux of the matter is embodied in the construct [y | ] of rule κ,
called the context of the call sfst(s, x), which we want if x is present,
but not otherwise. To resolve this conflicting requirement, we opt for
removing the context and store the information it contains (y) into an
accumulator, in a new rule ξ derived from κ. We use the accumulator in a
new rule ν derived from ι. The new sfst/2 is called sfst0/2 and is shown in
figure 2.4. Of course, whilst in ι we just referenced s, the construction
corresponding to the now missing context of κ must be performed by ν.
Also, we must add another argument which refers to the original stack,
so we can use it in a new rule µ, the pendant of θ. Note the shapes

rcat([ ], t)
ζ−→ t; sfst([ ], x, t, u)

µ−→ u;
rcat([x |s], t) η−→ rcat(s, [x |t]). sfst([x |s], x, t, u) ν−→ rcat(t, s);

sfst0(s, x)
λ−→ sfst(s, x, [ ], s). sfst([y |s], x, t, u) ξ−→ sfst(s, x, [y |t], u).

Figure 2.4: Skipping the first occurrence with maximum sharing
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of the right-hand sides: they are either a value (ζ and µ) or a function
call whose arguments contain values. In other words, no function call
has a context. This syntactic property of a definition is named tail form.
Intuitively, the practical consequence of such a form is that terminating
calls unfold until a value is reached and nothing else is left to be done: the
value of the last call is the value of the first call. This kind of definition
enables the sharing in rule µ, where u (the reference to the original stack)
becomes the value, instead of rev(t).

Implementations of functional language often use this property to
optimise the evaluation, as we shall see in the last part of this book.
The downside of sfst0/2 with respect to sfst/2 is the additional cost
incurred by having to reverse t in rule ν, that is, the call rcat(t, s). More
precisely, there are two complementary cases: either x is missing in s or
x occurs in s. Let us assume that s contains n items and x is absent in s.
The evaluation trace of the call sfst0(s, x) is λξnµ, so Csfst0

n = |λξnµ| =
|λ| + n|ξ|+ |µ| = n + 2. Let us now assume that x occurs at position k
in s, with the first item having position 0. The evaluation trace is then
λξkνηkζ, hence Csfst0

n,k = |λξkνηkζ| = 2k + 3. Clearly now,

Bsfst0
0 = 2, Bsfst0

n = min
0"k<n

{Csfst0
n , Csfst0

n,k } = min
0"k<n

{n+ 2, 2k + 3} = 3,

Wsfst0
n = max

0"k<n
{n+ 2, 2k + 3} = 2n+ 1,

where the minimum cost occurs when the item is the top of the stack;
the maximum cost happens when the sought item is last in the stack (at
the bottom).

Since calling rcat/2 to reverse the visited items is the source of the ex-
tra cost, we might try to maintain the order of these items in figure 2.5
but using stack catenation instead of pushing. The problem is that the
last rule of sfst2/4 yields cat(. . . cat(cat([ ], [x1]), [x2]) . . . ), whose cost we
know to be quadratic as in the rewrite (2.4) on page 41, from which we
can quickly conclude that Wsfst1

n ∼ 1
2n

2.

sfst1(s, x)→ sfst2(s, x, [ ], s).
sfst2([ ], x, t, u)→ u;

sfst2([x |s], x, t, u)→ cat(t, s);
sfst2([y |s], x, t, u)→ sfst2(s, x, cat(t, [y]), u).

Figure 2.5: Skipping the first occurrence (bad design)
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Last occurrence Let us suppose that slst(s, x) (skip the last occur-
rence) evaluates in a stack identical to s but without the last occurrence
of x. In particular, if x is absent in s, then the value of the call is identical
to s. The first design that may come to mind is to see this problem as
the dual problem of ignoring the first occurrence:

slst0(s, x)
π−→ rev(sfst(rev(s), x)). (2.7)

If x is missing in s, we have Cslst0
n = 1+ Crev

n +Wsfst
n + Crev

n = 3n+6. If x
occurs in s at position k, Cslst0

n,k = 1+Crev
n +Csfst

n,n−k−1+Crev
n−1 = 3n−k+4.

Therefore, we can derive the minimum and maximum costs:
Bslst0
n = min

k<n
{3n + 6, 3n − k + 4} = 2n+ 5,

when x is last in s, and
Wslst0

n = max
k<n

{3n + 6, 3n − k + 4} = 3n + 6,

when x is missing in s. The mean cost when x is present is

Aslst0
n =

1

n

n−1
∑

k=0

Cslst0
n,k =

1

n

n−1
∑

k=0

(3n − k + 4) =
5n+ 9

2
∼ 5

2
n.

When x is present, the worst case is when it is the top of the stack:
Wslst0

n = maxk<n{3n − k + 4} = 3n+ 4 " 3n+ 6.
In any case, the maximum cost is asymptotically equivalent to 3n,

that is, three complete traversals of s are performed, whilst the absence
of x could be detected with one. Dually, the minimum cost is asymptot-
ically equivalent to 2n, accounting for two full traversals, whilst x being
the last item could be assessed with one. All this suggests that a better
design is worth thinking about.

Consider figure 2.6, where, with a linear search (rules ρ and τ), we
find the first occurrence of x (rule σ), but, in order to check whether it
is also the last, another linear search has to be run (χ). If it is successful
(φ), we retain the occurrence find earlier (x) and resume another search;
if it is unsuccessful (υ), the x found earlier was indeed the last occurrence.
Notice how we have two mutually recursive functions, slst/2 and slst/3.
The definition of the latter features a third parameter, t, which is a copy
of the stack s when an occurrence of x was found by slst/2 (σ). This copy
is used to resume (φ) the search from where the previous occurrence was

slst([ ], x)
ρ−→ [ ]; slst([ ], x, t)

υ−→ t;
slst([x |s], x) σ−→ slst(s, x, s); slst([x |s], x, t) φ−→ [x |slst(t, x)];
slst([y |s], x) τ−→ [y |slst(s, x)]. slst([y |s], x, t) χ−→ slst(s, x, t).

Figure 2.6: Skipping the last occurrence with slst/2
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slst([2, 7, 0, 7, 1], 7)
τ−→ [2 |slst([7, 0, 7, 1], 7)]
σ−→ [2 |slst([0, 7, 1], 7, [0, 7, 1])]
χ−→ [2 |slst([7, 1], 7, [0, 7, 1])]
φ−→ [2, 7 |slst([0, 7, 1], 7)]
τ−→ [2, 7, 0 |slst([7, 1], 7)]
σ−→ [2, 7, 0 |slst([1], 7, [1])]
χ−→ [2, 7, 0 |slst([ ], 7, [1])]
υ−→ [2, 7, 0 | [1]] = [2, 7, 0, 1].

Figure 2.7: slst([2, 7, 0, 7, 1], 7) ! [2, 7, 0, 1]

found. This is necessary as y in rule χ must be discarded because we do
not know at that point whether the previous x was the last. Consider
figure 2.7. If the item is missing, the linear search fails as usual with a
cost of |τnρ| = n+1. Otherwise, let us name 0 " x1 < x2 < · · · < xp < n
the positions of the p occurrences of x in s. The evaluation trace is

τx1 ·
p
∏

k=2

(σχxk−xk−1−1)(φτxk−xk−1−1) · (σχn−xp−1υ),

whose length is x1+2
∑p

k=2(xk −xk−1)+ (n−xp+1) = n+xp−x1+1.
In other words, if the position of the first occurrence is noted f and the
position of the last is l, we find that

Cslst
n,f,l = n+ l − f + 1.

We deduce that the minimum cost happens when l − f + 1 = p, that is,
when all the occurrences are consecutive, so Bslst

n,p = n+p. The maximum
cost occurs when f = 0 and l = n− 1, that is, when there is at least
two occurrences of x, one at the top and one at the bottom: Wslst

n = 2n.
We can check that when the stack is entirely made of x, minimum and
maximum costs concur in 2n. The average cost when x is present requires
determining the cost for every possible pair (f, l), with 0 " f " l < n:

Aslst
n =

2

n(n+ 1)

n−1
∑

f=0

n−1
∑

l=f

Cslst
n,f,l =

2

n(n+ 1)

n−1
∑

f=0

n−1
∑

l=f

(n+ l − f + 1)

=
2

n(n+ 1)

n−1
∑

f=0

(

(n− f + 1)(n − f) +
n−f−1
∑

l=0

(l + f)

)

=
1

n(n+ 1)

n−1
∑

f=0

(3n + 1− f)(n− f)
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=
n(3n+ 1)

n+ 1
− 4n+ 1

n(n+ 1)

n−1
∑

f=0

f +
1

n(n+ 1)

n−1
∑

f=0

f2 =
4

3
n+

2

3
∼ 4

3
n,

where
∑n−1

f=0 f = n(n − 1)/2 is equation (2.3), on page 41, and the sum
of the successive squares is obtained as follows. We use the telescoping
or difference method on the series (k3)k>0. We start with the equality
(k+1)3 = k3+3k2+3k+1, hence (k+1)3−k3 = 3k2+3k+1. Then we
can sum these differences, whose terms cancel out, leaving the first and
the last:

(1 + 1)3 − 13 = 3 · 12 + 3 · 1 + 1

+ (2 + 1)3 − 23 = 3 · 22 + 3 · 2 + 1

+
...

+ (n+ 1)3 − n3 = 3n2 + 3n+ 1

⇒ (n + 1)3 − 13 = 3
n
∑

k=1

k2 + 3
n
∑

k=1

k + n

n3 + 3n2 + 3n = 3
n
∑

k=1

k2 + 3 · n(n+ 1)

2
+ n

⇔
n
∑

k=1

k2 =
n(n+ 1)(2n + 1)

6
. (2.8)

Exercises

1. Prove that sfst/2 = sfst0/2.
2. Show that Bsfst0

n = 3, Wsfst0
n = 2n+1 and Asfst0

n = n+2 (successful
search).

3. Prove slst/2 = slst0/2.
4. Show that, in a worst case to be identified, slst0(s, x) creates 3n use-

less nodes if s contains n items. Compare the memory usage of
slst0/2 with that of slst/2.

2.4 Flattening

Let us design a function flat/1 such that the call flat(s), where s is a stack,
is rewritten into a stack containing only the non-stack items found in s,
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in the same order. If s contains no stack, then flat(s) ≡ s. Let us review
some examples to grasp the concept:

flat([ ])! [ ]; flat([[ ], [[ ]]]) ! [ ]; flat([[ ], [1, [2, [ ]], 3], [ ]]) ! [1, 2, 3].

First, let us focus on designing the left-hand sides of the rules, in order
to ensure that our definition is complete (all valid inputs are matched).
A stack is either empty or not and, in the latter case, the specific issue at
hand appears clearly: we need to distinguish the items which are stacks
themselves from those which are not. This is very simply achieved by
ordering the patterns so that [ ] and [x |s] as items appear first:

flat([ ])
ψ−→ ;

flat([[ ] |t]) ω−→ ;
flat([[x |s] |t]) γ−→ ;

flat([y |t]) δ−→ .

We know that y in the last line is not a stack, otherwise the penultimate
or antepenultimate pattern would have matched. Almost all the right-
hand sides are easy to guess now:

flat([ ])
ψ−→ [ ];

flat([[ ] |t]) ω−→ flat(t);
flat([[x |s] |t]) γ−→ ;

flat([y |t]) δ−→ [y |flat(t)].

The design of the remaining right-hand side can be guided by two slightly
different principles. If we look back at the definitions of rev0/1 and rev/1
in section 2.2, we see that the former was designed with the result in
mind, as if the arrows would reach a value, which is then decomposed in
terms of the variables of the corresponding left-hand side:

rev0([ ])→ [ ]; rev0([x |s])→ cat(rev0(s), [x]).

By contrast, rev/1 relies on another function, rcat/2, to accumulate par-
tial results, as if each arrow covered a short distance, only contributing
minimally to the final value:

rev(s)
ϵ−→ rcat(s, [ ]). rcat([ ], t)

ζ−→ t; rcat([x |s], t) η−→ rcat(s, [x |t]).

The first approach might be called big-step design, and the other small-
step design. Another vantage point is to see that the former uses the
context of the recursive call to build the value, whilst the latter relies
exclusively on an argument (the accumulator) and is in tail form. For
example, in section 2.3, we may find that the definition of sfst/2 follows
a big-step design, while sfst0/2 illustrates a small-step design.
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flat0([ ])
ψ−→ [ ];

flat0([[ ] |t])
ω−→ flat0(t);

flat0([[x |s] |t])
γ−→ cat(flat0([x |s]), flat0(t));

flat0([y |t])
δ−→ [y |flat0(t)].

Figure 2.8: Flattening a stack with flat0/1

flat0([[ ], [[1], 2], 3])
ω−→ flat0([[[1], 2], 3])
γ−→ cat(flat0([[1], 2]), flat0([3]))
γ−→ cat(cat(flat0([1]), flat0([2])), flat0([3]))
δ−→ cat(cat([1|flat0([ ])], flat0([2])), flat0([3]))
ψ−→ cat(cat([1], flat0([2])), flat0([3]))
δ−→ cat(cat([1], [2|flat0([ ])]), flat0([3]))
ψ−→ cat(cat([1], [2]), flat0([3]))
δ−→ cat(cat([1], [2]), [3|flat0([ ])])
ψ−→ cat(cat([1], [2]), [3])
! [1, 2, 3].

Figure 2.9: flat0([[ ], [[1], 2], 3]) ! [1, 2, 3]

Big-step design Abstractly, a big-step design means that the right-
hand sides are made up of recursive calls on substructures, for instance,
in the case of rule γ, the substructures of [[x |s] | t] are x, s, t and [x | s].
By thinking how to make up the value by means of flat([x |s]) and flat(t),
we obtain a new version, flat0/1, in figure 2.8.

Let us consider an example in figure 2.9, where the call to be rewrit-
ten next is underlined in case of ambiguity. Note that the call-by-value
strategy (section 1.3) does not specify the order of evaluation of the ar-
guments of a function call: in our example, we delayed the evaluation of
cat([1], [2]) after that of the calls to flat0/1. When deriving complicated
recurrences or traces, we may try instead counting the number of times
each rule is used in any evaluation. Calling flat0/1 results in

• using rule ω once for each empty stack originally in the input;
• using rule ψ once when the end of the input is reached and once

for each empty stack t in rule γ;
• using rule δ once for each item which is not a stack;
• using rule γ once for each non-empty embedded stack;
• calling cat/2 once for each non-empty embedded stack.
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We now know the parameters which the cost depends upon:

1. the length of flat0(s), noted n;
2. the number of non-empty stacks embedded in the input, say Γ;
3. the number of embedded empty stacks, denoted by Ω.

The dependence upon the size of the output, n, is an instance of output-
dependent cost . We can reformulate the above analysis in the following
terms: rule ψ is used 1 + Γ times, rule ω is used Ω times, rule γ is used
Γ times, rule δ is used n times. So the cost due to the rules of flat0/1
alone is 1 + n + Ω + 2Γ. For instance, in the case of flat0([[ ], [[1], 2], 3]),
we correctly find 1 + 3 + 1 + 2 · 2 = 9 = |ωγ2(δψ)3|.

As far as the costs of the calls to cat/2 are concerned, their associ-
ativity was proved on page 12 and equation (2.6) on page 42 suggests
that there are configurations of the input to flat0/1 that lead to greater
costs, when the parameters n, Ω and Γ are fixed. A similar pattern of
calls to cat/2 with a quadratic cost is generated from the definition of
rev0/1, as seen in figure 2.1 on page 37, after the first application of
rule α. The right-hand side of rule γ is cat(flat0([x | s]), flat0(t)) and it
implies that the arguments of cat/2 may be empty stacks.

Given Γ cat-nodes, n non-stack nodes (x1, . . . , xn), what are the
abstract syntax trees with minimum and maximum costs? We found that
the minimum cost for cat/2 is achieved when all the cat-nodes make up
the rightmost branch of the abstract syntax tree. (A branch is a series of
nodes such that one is the parent of the next, from the root to a leaf.)

• If Ω # Γ, the minimum configuration is shown in figure 2.10a
(at least one empty stack must be placed in any non-empty stack
whose flattening results in an empty stack).

• Otherwise, the abstract syntax tree of minimum cost is found in
figure 2.10b, where all the available empty stacks (Ω) are used

cat

[] cat

[] cat

[] [x1, . . . , xn]

(a) If Ω # Γ, the minimum is Γ.

cat

[x1] cat

[xΓ−Ω] cat

[] cat

[] [xΓ−Ω+1, . . . , xn]

(b) If Ω < Γ, the minimum is 2Γ− Ω.

Figure 2.10: Minimum costs for the catenations in flat0/1
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cat

cat

cat

[x1, . . . , xn] []

[]

[]

(a) Maximum cost (n+ 1)Γ

flat

|

|

x s

t

(b) flat([[x |s] | t])

flat

|

x |

s t
(c) flat([x, s | t])

Figure 2.11: Maximum cost and right rotations

for the bottommost cat-nodes. We draw that the minimum cost is
Bflat0
n,Ω,Γ = 1 + n+ Ω+ 3Γ+min{Ω,Γ}.

The maximum cost in figure 2.11a occurs for the symmetrical tree
of figure 2.10a. We have Wflat0

n,Ω,Γ = Ω+ (n+ 3)(Γ+ 1)− 2.

flat([ ])
ψ−→ [ ];

flat([[ ] |t]) ω−→ flat(t);
flat([[x |s] |t]) γ−→ flat([x, s |t]);

flat([y |t]) δ−→ [y |flat(t)].

Figure 2.12: Defining flat/1

Small-step design An alternative
method for flattening of a stack con-
sists in lifting x in rule γ one level up
amongst the embedded stacks, thus ap-
proaching little by little a flat stack. In
terms of the abstract syntax trees, this
operation is a right rotation of the tree
associated with the argument, as shown in figures 2.11b to 2.11c on
the current page, where the new function is called flat/1 and defined in
figure 2.12. Let us run the previous example of figure 2.9 on page 55
again in figure 2.13 on the following page with flat/1. The difference in
cost with flat0/1 resides in the number of times rule γ is used: once for
each item in all the embedded stacks. Hence the cost is 1+n+Ω+Γ+L,
where L is the sum of the lengths of all the embedded stacks.

Comparison Consider the following costs:

C!flat([[[[[1, 2]]]]])" = 12 < 23 = C!flat0([[[[[1, 2]]]]])";
C!flat([[ ], [[1], 2], 3])" = 10 < 14 = C!flat0([[ ], [[1], 2], 3])";

C!flat([[ ], [[1, [2]]], 3])" = 12 < 19 = C!flat0([[ ], [[1, [2]]], 3])";
C!flat([[[ ], [ ], [ ]]])" = 8 > 7 = C!flat0([[[ ], [ ], [ ]]])".

Simple algebra shows that

Cflat
n,Ω,Γ " Bflat0

n,Ω,Γ ⇔
{

L " 3Γ− Ω, if Ω # Γ;

L " 2Γ, otherwise.

This criterion is impractical to check and it is inconclusive if the in-
equalities on the right-hand side fail. Things worsen if we settle for
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flat([[ ], [[1], 2], 3])
ω−→ flat([[[1], 2], 3])
γ−→ flat([[1], [2], 3])
γ−→ flat([1, [ ], [2], 3])
δ−→ [1|flat([[ ], [2], 3])
ω−→ [1|flat([[2], 3])]
γ−→ [1|flat([2, [ ], 3])]
δ−→ [1, 2|flat([[ ], 3])]
ω−→ [1, 2|flat([3])]
δ−→ [1, 2, 3|flat([ ])]
ψ−→ [1, 2, 3].

Figure 2.13: flat([[ ], [[1], 2], 3]) ! [1, 2, 3]

L " 2Γ ⇒ Cflat
n,Ω,Γ " Cflat0

n,Ω,Γ, because this condition is too strong when
Ω is large. Let us examine what happens at the other extreme, when
Ω = 0. Considering an example like [0, [1, [2]], 3, [4, 5, [6, 7], 8], 9], it may
occur to us that if there are no empty stacks, the length of each stack is
lower than or equal to the number of non-stack items in it and its em-
beddings (it is equal if there is no further embedded stack). Therefore,
summing up all these inequalities, the result Ω = 0 ⇒ L " C ensues,
where C is the cost of rewriting the calls to cat/2 in flat0/1. Because
Cflat
n,Ω,Γ = (1 + n + Ω + Γ) + L and Cflat0

n,Ω,Γ = (1 + n + Ω + Γ) + (C + Γ),
the consequence is that, if there are no empty stacks, flat/1 is faster.

Termination As we have seen with the simplified Ackermann’s func-
tion (section 1.5, on page 13), termination follows from finding a well-
founded order (≻) on the recursive calls, which is entailed by the rewrite
relation (→), that is, x→ y ⇒ x ≻ y. One well-founded order for stacks
is the immediate subterm order, satisfying [x |s] ≻ s and [x |s] ≻ x. Since
big-step design uses recursive calls to subterms (section 1.5, on page 12),
it eases termination proofs based on such an ordering.

For instance, let us recall the definition of flat0/1 in figure 2.8 on
page 55. Since cat/2 is independent of flat0/1, we prove its termination
in isolation by using the proper subterm order on its first argument. As-
suming now that cat/2 terminates, let us prove the termination of flat0/1.
Because the recursive calls of flat0/1 contain only (stack) constructors,
we can try to order their arguments (Arts and Giesl, 1996). Again, the
same order works: [y |t] ≻ t (rule δ and rule ω when y = [ ]); [[x |s] |t] ≻ t
and [[x |s] |t] ≻ [x |s] (rule γ). Termination ensues. ✷

Let us further recall the definition of flat/1 in figure 2.12 and prove
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its termination. Here, the order we used for flat0/1 fails: [[x |s] |t] " [x, s |
t] = [x | [s |t]]. We could try the more general proper subterm order , that
is, the strict inclusion of a term into another, but, despite [x |s] ≻ x, we
have t " [s | t]. One way out is to define a measure on the stacks (Giesl,
1995a).

A measure M!·" is a map from terms to a well-ordered set (A,≻),
which is monotone with respect to rewriting: x → y ⇒M!x" ≻M!y".
Actually, we will only consider dependency pairs (Arts and Giesl, 2000),
that is, pairs of calls whose first component is the left-hand side of a
rule and the second components are the calls in the righ-hand side of
same rule. This is easier than working with x and y in x → y, as
only subterms of y are considered. The pairs are (flat([[ ] | t]), flat(t))ω,
(flat([[x |s] | t]), flat([x, s | t]))γ and (flat([y | t]), flat(t))δ , with y ̸∈ S. We
can actually drop the function names, as all the pairs involve flat/1. A
common class of measures are monotone embeddings into (N, >), so let
us seek a measure satisfying

M![[x |s] |t]" > M![x, s |t]"; M![y |t]" > M!t", if y ̸∈ S or y = [ ].

For instance, let us set the following polynomial measure:

M![x |s]" := 1 + 2 · M!x" +M!s"; M!y" := 0, if y ̸∈ S or y = [ ].

We have M![[x |s] |t]" = 3 + 4 · M!x" + 2 · M!s" + M!t" and, for the
other stack, M![x, s |t]" = 2 + 2 · M!x" + 2 · M!s" + M!t". Because
M!x" ∈ N, for all x, we have M![[x |s] |t]" > M![x, s |t]". The second
inequality yields faster: M![y |t]" = 1 +M!t" > M!t". This entails the
termination of flat/1. ✷

Giesl (1997) tackled the termination of mutually recursive functions.
Functional programs, as special cases of term-rewriting systems, have
been considered by Giesl (1995b) and Giesl et al. (1998).

flat1([ ])→ [ ];
flat1([[ ] |t])→ flat1(t);
flat1([[x] |t])( flat1([x |t]);

flat1([[x |s] |t])→ flat1([x, s |t]);
flat1([y |t])→ [y |flat1(t)].

Figure 2.14: Variant flattening

Exercises

1. Define gamma/1, lambda/1 and
omega/1, which compute Γ, L
and Ω, respectively.

2. Compare the costs of flat/1 and
flat1/1 defined in figure 2.14
(see (❀)).
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2.5 Queueing

Despite its didactic qualities, aggregate analysis (see page 9) is less fre-
quently applied when the data structures are not directly connected to
numeration. We propose to extend its scope by showing a compelling
case study on functional queues (Burton, 1982, Okasaki, 1995, 1998b).
A functional queue is a linear data structure that is used in functional
languages, whose semantics force the programmer to model a queue with
two stacks. Items can be pushed only on one stack and popped only on
the other:

Push, Pop (top)' a b c d e

A queue is like a stack where items are added, or enqueued, at one end,
called rear, but taken out, or dequeued, at the other end, called front :

Enqueue (rear end)( a b c d e ( Dequeue (front end).

Let us implement a queue with two stacks: one for enqueueing, called the
rear stack , and one for dequeueing, called the front stack . The previous
ideal queue is equivalent to the functional queue

Enqueue (rear)( a b c d e ( Dequeue (front).

Enqueueing is now pushing on the rear stack and dequeueing is popping
on the front stack. In the latter case, if the front stack is empty and the
rear stack is not, we swap the stacks and reverse the new front stack.
Graphically, dequeueing in the configuration

a b c

requires first to make
a b c

and then dequeue c.
Let us model a queue as we modelled the operation push by a function

cons/2 without a definition, on page 6. We shall use the name q/2 and
the call q(r, f) denotes a functional queue with rear stack r and front
stack f . Enqueueing is performed by the function enq/2:

enq(x, q(r, f))→ q([x |r], f). (2.9)

Dequeueing requires the result to be a pair made of the dequeued item
and the new queue without it. Actually, the new queue is the first com-
ponent of the pair, to fit how the operation is depicted in the figures
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as a rightwards arrow. We could denote the mathematical pair (x, y)
by pair(x, y), but a more symbolic notation is handy: ⟨x, y⟩. The angle
brackets allow us to avoid writing f((x, y)) when we mean f(⟨x, y⟩). Let
us call deq/1 the dequeueing function:

deq(q([x |r], [ ])) θ−→ deq(q([ ], rcat(r, [x])));
deq(q(r, [x |f ])) ι−→ ⟨q(r, f), x⟩. (2.10)

See page 39 for the definition (2.2) of rcat/2. We shall say that the queue
has size n if the total number of items in both stacks is n. The cost of
enqueueing is Cenq

n = 1. The minimum cost for dequeueing is Bdeq
n = 1, by

rule ι. The maximum cost is Wdeq
n = n+2, as seen with the trace θηn−1ζι.

Let Sn be the cost of a sequence of n updates on a functional queue
originally empty. A first attempt at assessing Sn consists in ignoring any
dependence on previous operations and take the maximum individual
cost. Since Cenq

k " Cdeq
k , we consider a series of n dequeueings in their

worst case, that is, with all the items located in the rear stack. Besides,
after k updates, there may be at most k items in the queue, so

Sn "

n−1
∑

k=1

Wdeq
k =

1

2
(n− 1)(n + 4) ∼ 1

2
n2.

Aggregate analysis Actually, this is overly pessimistic and even un-
realistic. First, one cannot dequeue on an empty queue, therefore, at any
time, the number of enqueueings since the beginning is always greater
or equal than the number of dequeueings and the series must start with
one enqueueing. Second, when dequeueing with the front being empty,
the rear stack is reversed onto the front stack, so its items cannot be re-
versed again during the next dequeueing, whose cost will be 1. Moreover,
as remarked above, Cenq

k " Cdeq
k , so the worst case for a series of n opera-

tions occurs when the number of dequeueings is maximum, that is, when
it is ⌊n/2⌋. If we denote by e the number of enqueueings and by d the
number of dequeueings, we have the relationship n = e+ d and the two
requisites for a worst case become e = d (n even) or e = d + 1 (n odd).
The former corresponds graphically to a Dyck path and the latter to a
Dyck meander .

Dyck path Let us depict updates as in figure 2.15 on the next page.
Textually, we represent an enqueueing as an opening parenthesis and a
dequeueing as a closing parenthesis. For example, ((()()(()))()) can be
represented in figure 2.16 as a Dyck path. For a broken line to qualify
as a Dyck path of length n, it has to start at the origin (0, 0) and end at
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(a) Enqueue (b) Dequeue

Figure 2.15: Graphical representations of operations on queues
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Figure 2.16: Dyck path modelling queue operations (cost 24)

coordinates (n, 0). In terms of a Dyck language, an enqueueing is called a
rise and a dequeueing is called a fall . A rise followed by a fall, that is, (),
is called a peak . For instance, in figure 2.16, there are four peaks. The
number near each rise or fall is the cost incurred by the corresponding
operation. The abscissa axis bears the ordinal of each operation.

When e = d, the line is a Dyck path of length n = 2e = 2d. In order
to deduce the total cost in this case, we must find a decomposition of
the path, by which we mean to identify patterns whose costs are easy
to calculate and which make up any path, or to associate any path to
another path whose cost is the same but easy to find. Figure 2.17 shows
how the previous path is mapped to an equivalent path only made of a
series of isosceles triangles whose bases belong to the abscissa axis. Let
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Figure 2.17: Dyck path equivalent to figure 2.16
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Figure 2.18: Rescheduling of figure 2.16 into figure 2.17

us call them mountains and their series a range. The mapping is simple:
after the first series of falls, if we are back to the abscissa axis, we have
a mountain and we proceed with the rest of the path. Otherwise, the
next operation is a rise and we exchange it with the first fall after it.
This brings us down by 1 and the process resumes until the abscissas
are reached. We call this méthod rescheduling because it amounts, in
operational terms, to reordering subsequences of operations a posteriori.

For instance, figure 2.18 displays the rescheduling of figure 2.16
on the preceding page. Note that two different paths can be resched-
uled into the same path. What makes figure 2.18c equivalent to fig-

ure 2.18a is the invariance of the cost because all operations have cost 1.
This always holds because enqueueings always have cost 1 and the de-
queueings involved in a rescheduling have cost 1, because they found the
front stack non-empty after a peak. We proved that all paths are equi-
valent to a range with the same cost, therefore, the maximum cost can
be found on ranges alone.

Let us note e1, e2, . . . , ek the maximal subsequences of rises; for ex-
ample, in figure 2.17, we have e1 = 3, e2 = 3 and e3 = 1. Of course,
e = e1 + e2 + · · · + ek. The fall making up the ith peak incurs the
cost Wdeq

ei = ei + 2, due to the front being empty because we started
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Figure 2.19: Worst case when e = d = 7 (cost 28)

the rises from the abscissa axis. The next ei − 1 falls have all cost 1,
because the front is not empty. For the ith mountain, the cost is thus
ei + (ei + 2) + (ei − 1) = 3ei + 1. Then Se,k =

∑k
i=1 (3ei + 1) = 3e + k.

The maximum cost is obtained by maximising Se,k for a given e:

We,e := max
1"k"e

Se,k = Se,e = 4e = 2n, with n = e+ d = 2e,

where We,e is the maximum cost when there are e enqueueings and d = e
dequeueings. In other words, the worst case when e = d = 7 is the saw-
toothed Dyck path shown in figure 2.19. Importantly, there are no
other Dyck paths whose rescheduling lead to this worst case and the
reason is that the reverse transformation from ranges to general Dyck
paths works on dequeueings of cost 1 and the solution we found is the
only one with no dequeueing equal to 1.

Dyck meander Another worst case occurs if e = d+1 and the line is
then a Dyck meander whose extremity ends at ordinate e − d = 1. An
example is given in figure 2.20, where the last operation is a dequeueing.
The dotted line delineates the result of applying the rescheduling we used
on Dyck paths. Here, the last operation becomes an enqueueing.

Another possibility is shown in figure 2.21, where the last operation
is left unchanged. The difference between the two examples lies in the fact
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Figure 2.20: Dyck meander modelling queue operations (total cost 21)



2.5. QUEUEING 65

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12

qu
eu

e
si
ze

4

( ( ( ) ( ( ) ) ) ( ( ) ) 13

7 enqueueings (() and 6 dequeueings ())

1

1

1 5 1

1

1

1

1

1

1

1 4 1

1

1

1

1

1 4

Figure 2.21: Dyck meander modelling queue operations (total cost 23)

that the original last dequeueing has, in the former case, a cost of 1 (thus
is changed) and, in the latter case, a cost greater than 1 (thus is invariant).
The third kind of Dyck meander is one ending with an enqueueing, but
because this enqueueing must start from the abscissa axis, this is the
same situation as the result of rescheduling a meander ending with a
dequeueing with cost 1 (see dotted line in figure 2.20 again). Therefore,
we are left to compare the results of rescheduling meanders ending with
a dequeueing, that is, we envisage two cases.

• If we have a range of n−1 operations followed by an enqueueing, the
maximum cost of the range is the cost of a saw-toothed Dyck path,
that is, We−1,e−1 = 4(e− 1) = 2n− 2, because n = e+ d = 2e− 1,
followed by an enqueueing, totalling 2n− 1.

• Otherwise, we have a range of n − 3 operations followed by two
rises and one fall (of cost 6). The cost is We−2,e−2+6 = 2n, which
is marginally greater than the previous case.

Amortised cost The cost Sn of a series of n queue updates, starting
on an empty queue, is tightly bounded as

n " Sn " 2n,

where the lower bound is tight if all updates are enqueueings and the
upper bound when a saw-toothed range is followed by one enqueueing or
else two enqueueings and one dequeueing. By definition, the amortised
cost of one operation is Sn/n and lies between 1 and 2, which is less than
our first analysis (∼ n/2). We published a slightly different analysis on
the same examples (Rinderknecht, 2011).



66 CHAPTER 2. FUNDAMENTALS

Side note We can gain some more abstraction by using a dedicated
constructor for the empty queue, nilq/0, and changing accordingly the
definition of enq/2 in (2.9) on page 60 so it handles this case:

enq(x, nilq())→ q([x], [ ]); enq(x, q(r, f))→ q([x |r], f).

We can improve this a little by pushing x directly into the front stack:

enq(x, nilq())→ q([ ], [x]); enq(x, q(r, f))→ q([x |r], f).

Exercises

1. Let nxt(q) be the next item to be dequeued from q:

nxt(q([x |r], [ ])) → nxt(q([ ], rcat(r, [x])));
nxt(q(r, [x |f ]))→ x.

Modify enq/2, deq/1 and nxt/1 in such a way that Cnxt
n = 1, where

n is the number of items in the queue.

2. Find Sn using the slightly different definition

deq(q([x |r], [ ]))→ deq(q([ ], rev([x |r])));
deq(q(r, [x |f ]))→ ⟨q(r, f), x⟩.

2.6 Cutting

Let us consider the problem of cutting a stack s at the kth place. Ob-
viously, the result is a pair of stacks. More precisely, let ⟨t, u⟩ be the
value of cut(s, k), such that cat(t, u) ! s and t contains k items, that
is to say, len(t) ! k. In particular, if k = 0, then t = [ ]; invalid inputs
lead to unspecified behaviours. For instance, cut([4, 2], 0) ! ⟨[ ], [4, 2]⟩
and cut([5, 3, 6, 0, 2], 3) ! ⟨[5, 3, 6], [0, 2]⟩, but, for the sake of simplicity,
nothing is said about cut([0], 7) and cut([0],−1). We derive two cases:
k = 0 or else the stack is not empty. The former is easy to guess:

cut(s, 0)→ ⟨[ ], s⟩; cut([x |s], k)→ .

A big-step design uses some substructural recursive calls to set the struc-
ture of the value in the right-hand side. Because cut/2 takes two argu-
ments, we expect a lexicographic order (definition (1.8), page 14):

cut(s0, k0) ≻ cut(s1, k1) :⇔ s0 ≻ s1 or (s0 = s1 and k0 > k1).
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Using the proper subterm order (section 1.5, page 12) on stacks for (≻),

cut([x |s], k) ≻ cut(s, j); cut([x |s], k) ≻ cut([x |s], j), if k > j.

In the latter case, we can set j = k − 1, but the value of cut(s, j) needs
to be projected into ⟨t, u⟩ so x is injected in and yields ⟨[x |t], u⟩. This
can be achieved with an auxiliary function push/2:

cut(s, 0)→ ⟨[ ], s⟩; push(x, ⟨t, u⟩)→ ⟨[x |t], u⟩.
cut([x |s], k)→ push(x, cut(s, k − 1)).

Inference systems When the value of a recursive call needs to be
destructured, it is convenient to use an extension of our language to
avoid creating auxiliary functions like push/2:

cut(s, 0)→ ⟨[ ], s⟩ Nil
cut(s, k − 1)! ⟨t, u⟩

cut([x |s], k)! ⟨[x |t], u⟩
Pref

The new construct is called an inference rule because it means: ‘For the
value of cut([x |s], k) to be ⟨[x |t], u⟩, we infer that the value of cut(s, k−1)
must be ⟨t, u⟩.’ This interpretation corresponds to an upwards reading
of the rule Pref (prefix ). Just as we compose horizontally rewrite rules,
we compose inference rules vertically, stacking them, as in

cut([0, 2], 0) → ⟨[ ], [0, 2]⟩
cut([6, 0, 2], 1) ! ⟨[6], [0, 2]⟩

cut([3, 6, 0, 2], 2) ! ⟨[3, 6], [0, 2]⟩
cut([5, 3, 6, 0, 2], 3) ! ⟨[5, 3, 6], [0, 2]⟩

When determining the cost of cut(s, k), we take into account the hidden
function push/2, so C!cut([5, 3, 6, 0, 2], 3)" = 7. In general, Ccut

k = 2k + 1.
Beyond simplifying programs, what makes this formalism interesting

is that it enables two kinds of interpretation: logical and computational.
The computational reading, called inductive in some contexts, has just
been illustrated. The logical understanding considers inference rules as
logical implications of the form P1 ∧ P2 ∧ . . . ∧ Pn ⇒ C, written

P1 P2 . . . Pn

C

The propositions Pi are called premises and C is the conclusion. In the
case of Pref, there is only one premise. When premises are lacking, as
in Nil, then C is called an axiom and no horizontal line is drawn. The
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composition of inference rules is a derivation. In the case of cut/2, all
derivations are isomorphic to a stack, whose top is the conclusion.

The logical reading of rule Pref is: ‘If cut(s, k − 1) ! ⟨t, u⟩, then
we have cut([x | s], k) ! ⟨[x |t], u⟩.’ This top-down reading qualifies as
deductive. The previous derivation then can be regarded as the proof of
the theorem cut([5, 3, 6, 0, 2], 3) ! ⟨[5, 3, 6], [0, 2]⟩.

Induction on proofs A single formalism with such a dual interpreta-
tion is powerful because a definition by means of inference rules enables
the proof of theorems about a function by induction on the structure of
the proof. As we have done previously, structural induction can be ap-
plied to stacks considered as a data type (objects). Since, in the case of
cut/2, derivations are stacks in themselves, so can induction be applied
to their structure (as meta-objects).

Let us illustrate this elegant inductive technique with a proof of the
soundness of cut/2.

Soundness The concept of soundness or correctness (McCarthy, 1962,
Floyd, 1967, Hoare, 1971, Dijkstra, 1976) is a binary relationship, so we
always ought to speak of the soundness of a program with respect to
its specification. A specification is a logical description of the expected
properties of the output of a program, given some assumptions on its
input. In the case of cut(s, k), we already mentioned what to expect: the
value must be a pair ⟨t, u⟩ such that the catenation of t and u is s and
the length of t is k.

Formally, let CorCut(s, k) be the proposition

If cut(s, k)! ⟨t, u⟩, then cat(t, u)! s and len(t)! k,

where the function len/1 is defined in equation (2.5) on page 41.
Let us suppose the antecedent of the implication to be true, other-

wise the theorem is vacuously true, so there exists a derivation ∆ whose
conclusion is cut(s, k) ! ⟨t, u⟩. This derivation is a (meta) stack whose
top is the conclusion in question, which makes it possible to reckon by
induction on its structure, that is, we assume that CorCut holds for the
immediate subderivation of ∆ (the induction hypothesis) and then pro-
ceed to prove that CorCut holds for the entire derivation. This is the
immediate subterm induction we use when reasoning on a stack as an
object: we assume the theorem to hold for s and then move to prove it
for [x |s].

A case by case analysis on the kind of rule that can end ∆ guides
the proof. To avoid clashes between variables in the theorem and in the
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inference system, we will overline the latter ones, like s, t etc. which may
differ from s and t in CorCut.

• Case where ∆ ends with Nil. There are no premises, as Nil is an
axiom. In this case, we have to establish CorCut without induction.
The matching of cut(s, k)! ⟨t, u⟩ against cut(s, 0)→ ⟨[ ], s⟩ yields
s = s, 0 = k, [ ] = t and s = u. Therefore, cat(t, u) = cat([ ], s)

α−→ s,
which proves half of the conjunction. Moreover len(t) = len([ ])

a−→ 0.
This is consistent with k = 0, so CorCut(s, 0) is true.

• Case where ∆ ends with Pref. The shape of ∆ is thus as follows:

···
cut(s, k − 1)! ⟨t, u⟩

cut([x |s], k)! ⟨[x |t], u⟩
Pref

The matching of cut(s, k) ! ⟨t, u⟩ against the conclusion yields
[x |s] = s, k = k, [x |t] = t and u = u. The induction hypothesis in
this case is that the theorem holds for the subderivation, therefore
cat(t, u) ! s and len(t) ! k − 1. The induction principle requires
that we establish now cat([x | t], u) ! [x | s] and len([x | t]) ! k.
From the definition of cat/2 and part of the hypothesis, we easily
deduce cat([x | t], u) β−→ [x | cat(t, u)] ! [x | s]. Now the other part:
len([x |t]) b−→ 1 + len(t)! 1 + (k − 1) = k. ✷

Exercise Write an equivalent definition of cut/2 in tail form.

2.7 Persistence

Persistence is a distinctive feature of purely functional languages, mean-
ing that values are constants. Functions update a data structure by cre-
ating a new version of it, instead of modifying it in place and thereby
erasing its history. We saw in section 1.3 on page 5 that subtrees common
to both sides of the same rule are shared. Such a sharing is sound because
of persistence: there is no logical way to tell apart a copied subtree from
the original.

Maximum sharing An obvious source of sharing is the occurrence
of a variable in the pattern of a rule and its right-hand side, as seen
in figure 1.4 on page 7 for instance. But this does not always lead
to maximum sharing as the definition of red/1 (reduce) in figure 2.22
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red

|

x |

x s

→ red

|

(a) Sharing variables

red

|

x |

x s

→ red

(b) Sharing subtrees

Figure 2.23: Directed acyclic graphs (DAG) of the second rule of red/1

shows. This function copies a stack without its consecutively repeated
items. For example, we might have red([4, 1, 2, 2, 2, 1, 1]) ! [4, 1, 2, 1].

red([ ])→ [ ];
red([x, x |s])→ red([x |s]);

red([x |s])→ [x | red(s)].

Figure 2.22: Reducing

A directed acyclic graph of the second rule
is depicted in figure 2.23a. In this pic-
ture, sharing is based on commonly occur-
ring variables, but we can see that [x |s] is
not completely shared. Consider the same
rule in figure 2.23b with maximum shar-
ing, where a whole subtree is shared.

When discussing memory management, we assume that sharing is
maximum for each rule, so, for instance, figure 2.23b would be the de-
fault. But this property is not enough to insure that sharing is maximum
between the arguments of a function call and its value. For example,

cp([ ])→ [ ]; cp([x |s])→ [x |cp(s)].

makes a copy of its argument, but the value of cp(s) only shares its items
with s, despite cp(s) ≡ s.

Revision control A simple idea to implement data structures enabling
backtracking consists in keeping all successive versions. A stack can be
used to keep such a record, called history , and backtracking is reduced
to linear search. For example, we may be interested in recording a series
of stacks, each one obtained from its predecessor by a push or a pop, like
the history [[4, 2, 1], [2, 1], [3, 2, 1], [2, 1], [1], [ ]], where the initial stack was
empty; next, 1 was pushed, followed by 2 and 3; then 3 was popped and
4 pushed instead. This way, the last version is the top of history, like
[4, 2, 1] in our example. Furthermore, we want two successive versions
to share as much structure as possible. (We speak of ‘version’ instead
of ‘state’, because the latter applies when values are not persistent.)
These requirements are at the heart of revision control software, used by
programmers to keep track of the evolution of their source code.
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push

x |

s h

β−→ ◦
|

|

pop

|

|

x s

h

γ−→ ◦
⟨ , ⟩

|

Figure 2.24: DAGs of push/2 and pop/1 with maximum sharing

As a simple case study, we shall continue with our example of re-
cording the different versions of a stack, while keeping in mind that the
technique described further applies to any data structure. We need to
write two functions, push/2 (different from the one defined in section 2.6)
and pop/1, which, instead of processing one stack, deal with a history of
stacks. Consider the following definitions:

push(x, [ ])→ [[x], [ ]]; pop([[x |s] |h])→ [s, [x |s] |h].
push(x, [s |h])→ [[x |s], s |h]. top([[x |s] |h])→ x.

(2.11)

The corresponding directed acyclic graphs are found in figure 2.24.
History [[4, 2, 1], [2, 1], [3, 2, 1], [2, 1], [1], [ ]] is displayed in figure 2.25 as
a directed acyclic graph as well. It is obtained as the evaluation of

push(4, pop(push(3, push(2, push(1, [ ]))))). (2.12)

Let ver(k, h) evaluate in the kth previous version in the history h,
so ver(0, h) is the last version. As expected, ver/2 is just a linear search
with a countdown:

ver(0, [s |h]) → s; ver(k, [s |h]) → ver(k − 1, h).

◦
|

|

4

|

|

|

3

|

|

2

|

|

1 []

|

[] []

Figure 2.25: History [[4, 2, 1], [2, 1], [3, 2, 1], [2, 1], [1], [ ]]
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x

(a) push(x) (b) pop()

Figure 2.26: Stack updates

Our encoding of history allows the last version to be easily modified, but
not older ones. When a data structure allows every version in its history
to be modified, it is said fully persistent ; if only the last version can be
replaced, it is said partially persistent (Mehlhorn and Tsakalidis, 1990).

Backtracking updates In order to achieve full persistence, we should
keep a history of updates, push(x) and pop(), instead of successive, max-
imally overlapping versions. In the following, the underlining avoids con-
fusion with the functions push/2 and pop/1. Instead of equation (2.12),
we have now the history

[push(4), pop(), push(3), push(2), push(1)]. (2.13)

But not all series of push(x) and pop() are valid, as [pop(), pop(), push(x)]
and [pop()]. In order to characterise valid histories, let us consider a
graphical representation of updates in figure 2.26. This is the same
model we used in section 2.5 where we studied queueing (see in partic-
ular figure 2.15 on page 62), except that we choose here a leftwards
orientation to mirror the notation for stacks, whose tops are laid out on
the left of the page. Consider for instance the history in figure 2.27. It
is clear that a valid history is a line which never crosses the absissa axis.
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Figure 2.27: [pop(), pop(), push(4), push(3), pop(), push(2), push(1)]
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Figure 2.28: Finding the top of the last version

Programming top/1 with a history of updates is more difficult be-
cause we must find the top item of the last version without constructing
it. The idea is to walk back the historical line and determine the last push
leading to a version whose length is equal to that of the last version. In
figure 2.27, the last version is (•). If we draw a horizontal line from it
rightwards, the first push ending on the line is push(1), so the top of the
last version is 1.

This thought experiment is depicted in figure 2.28. Notice that we
do not need to determine the length of the last version: the difference of
length with the current version, while walking back, is enough.

Let top0/1 and pop0/1 be the equivalent of top/1 and pop/1 operating
on updates instead of versions. Their definitions are found in figure 2.29.
An ancillary function top0/2 keeps track of the difference between the

pop0(h)→ [pop() |h]. top0(0, [push(x) |h])→ x;
top0(h)→ top0(0, h). top0(k, [push(x) |h])→ top0(k − 1, h);

top0(k, [pop() |h])→ top0(k + 1, h).

Figure 2.29: The top and the rest of an history of updates

lengths of the last and current versions. We have found the item when
the difference is 0 and the current update is a push.

As previously, we want the call ver0(k, h) to evaluate in the kth pre-
vious version in h. Here, we need to walk back k updates in the past,

ver0(0, h)→ lst0(h); ver0(k, [s |h])→ ver0(k − 1, h).
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and build the last version from the rest of the history with lst0/1:

lst0([ ])→ [ ]; lst0([push(x) |h])→ [x | lst0(h)];
lst0(h)! [x |s]

lst0([pop() |h])! s
.

Let Cver0
k,n be the cost of the call ver0(k, h) and C lst0

n the cost of lst0(h),

where n is the length of h: C lst0
i = i+1 and Cver0

k,n = (k+1)+C lst0
n−k = n+2.

What is the total amount of memory allocated? More precisely, we
want to know the number of pushes performed. The only rule of lst0/1
featuring a push in its right-hand side is the second one, so the number
of cons-nodes is the number of push updates. But this is a waste in cer-
tain cases, for example, when the version built is empty, like the history
[pop(), push(6)]. The optimal situation is to allocate only as much as the
computed version actually contains.

lst1(h)→ lst1(0, h).
lst1(0, [push(x) |h])→ [x | lst1(0, h)];
lst1(k, [push(x) |h])→ lst1(k − 1, h);
lst1(k, [pop() |h])→ lst1(k + 1, h);

lst1(k, [ ])→ [ ].

Figure 2.30: Last version

We can achieve this memory
optimality with lst1/1 in fig-

ure 2.30 by retaining features
of both top0/1 and lst0/1. We
have C lst1

n = C lst0
n = n + 1, and

the number of cons-nodes cre-
ated is now the length of the
last version itself. This is an-
other instance of an output-dependent cost, like flat0/1 in section 2.4 on
page 53. There is still room for improvement if the historical line meets
the absissa axis, as there is no need to visit the updates before a pop res-
ulting into an empty version; for instance, in figure 2.31, it is useless to
go past push(3) to find the last version to be [3]. But, in order to detect
whether the historical line meets the abscissa axis, we need to augment
the history h with the length n of the last version, that is, work with
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Figure 2.31: Last version [3] found in four steps
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ver3(k, ⟨n, h⟩) → ver3(k, n, h).
ver3(0, n, h)→ lst3(0, n, h);

ver3(k, n, [pop() |h])→ ver3(k − 1, n + 1, h);
ver3(k, n, [push(x) |h])→ ver3(k − 1, n − 1, h).

lst3(⟨n, h⟩)→ lst3(0, n, h).
lst3(k, 0, h) → [ ];

lst3(0, n, [push(x) |h])→ [x | lst3(0, n − 1, h)];
lst3(k, n, [push(x) |h])→ lst3(k − 1, n− 1, h);

lst3(k, n, [pop() |h])→ lst3(k + 1, n+ 1, h).

Figure 2.32: Querying a version without pairs

⟨n, h⟩, and modify push/2 and pop/1 accordingly:

push2(x, ⟨n, h⟩)→⟨n+1, [push(x) |h]⟩. pop2(⟨n, h⟩)→⟨n−1, [pop() |h]⟩.

We have to rewrite ver/2 so it keeps track of the length of the last version:

ver2(0, ⟨n, h⟩) → lst1(0, h);
ver2(k, ⟨n, [pop() |h]⟩)→ ver2(k − 1, ⟨n + 1, h⟩);

ver2(k, ⟨n, [push(x) |h]⟩)→ ver2(k − 1, ⟨n − 1, h⟩).

We can reduce the memory footprint by separating the length n of the
last version from the current history h, so no pairs are allocated, and we
can stop when the current version is [ ], as planned, in figure 2.32.

One may wonder why bother pairing n and h just to separate them
again, defeating the purpose of data abstraction. This example demon-
strates that abstraction is desirable for callers, but called functions may
break it due to pattern matching. We may also realise that the choice
of a stack for storing updates is not the best in terms of memory us-
age. Instead, we can directly chain updates with an additional argument
denoting the previous update, so, for instance, instead of equation (2.13):

⟨3, push(4, pop(push(3, push(2, push(1, [ ])))))⟩.

This new encoding closely mirrors the call (2.12) on page 71 and saves
n cons-nodes in a history of length n. See figure 2.33.

push4(x, ⟨n, h⟩)→ ⟨n+1, push(x, h)⟩. pop4(⟨n, h⟩)→ ⟨n−1, pop(h)⟩.

There is now a minimum and maximum cost. The worst case is when
the bottommost item of the last version is the first item pushed in the
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ver4(k, ⟨n, h⟩)→ ver4(k, n, h).
ver4(0, n, h)→ lst4(0, n, h);

ver4(k, n, pop(h))→ ver4(k − 1, n+ 1, h);
ver4(k, n, push(x, h))→ ver4(k − 1, n− 1, h).

lst4(⟨n, h⟩)→ lst4(0, n, h).
lst4(k, 0, h) → [ ];

lst4(0, n, push(x, h))→ [x | lst4(0, n − 1, h)];
lst4(k, n, push(x, h))→ lst4(k − 1, n − 1, h);

lst4(k, n, pop(h))→ lst4(k + 1, n + 1, h).

Figure 2.33: Querying a version without a stack

history, so lst4/3 has to recur until the origin of time. In other words,
the historical line never reaches the abscissa axis after the first push. We
have same cost as before: W lst4

n = n+1. The best case happens when the
last version is empty. In this case, Blst4

n = 1, and this is an occurrence of
the kind of improvement we sought.

Full persistence The update-based approach to history is fully persist-
ent by enabling the modification of the past as follows: traverse history
until the required moment, pop up the update at that point, push an-
other one and simply put back the previously traversed updates, which
must have been kept in some accumulator. But changing the past must
not create a history with a non-constructible version in it, to wit, the
historical line must not cross the absissa axis after the modification. If
the change consists in replacing a pop by a push, there is no need to
worry, as this will raise by 2 the end point of the line. It is the converse
change that requires special attention, as this will lower by 2 the end
point. The ±2 offset comes from the vertical difference between the end
points of a push and a pop update of same origin, as can be easily seen
in figure 2.26 on page 72. As a consequence, in figure 2.27, the last
version has length 1, which implies that it is impossible to replace a push
by a pop, anywhere in the past.

Let us consider the history in figure 2.34 on the facing page. Let
chg(k, u, ⟨n, h⟩) be the changed history, where k is the index of the update
we want to change, indexing the last one at 0; u is the new update we
want to set; n is the length of the last version of history h. The call

chg(3, push(5), ⟨2, pop(push(4, push(3, pop(push(2, push(1, [ ]))))))⟩)

results in ⟨4, pop(push(4, push(3, push(5, push(2, push(1, [ ]))))))⟩.This call
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Figure 2.34: pop(push(4, push(3, pop(push(2, push(1, [ ]))))))
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(b) A push becomes a pop

Figure 2.35: Changing updates

succeeds because in figure 2.35a the new historical line does not cross
the absissa axis. We can see in figure 2.35b the result of the call

chg(2, pop(), ⟨2, pop(push(4, push(3, pop(push(2, push(1, [ ]))))))⟩).

All these examples help in guessing the characteristic property for a
replacement to be valid:

• the replacements of a pop by a push, a pop by a pop, a push by a
push are always valid;

• the replacement of a push by a pop as update k > 0 is valid if
and only if the historical line between updates 0 and k−1 remains
above or reaches without crossing the horizontal line of ordinate 2.
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We can divide the algorithm in two phases. First, the update to be re-
placed must be found, but, the difference with ver4/3 is that we may
need to know if the historical line before reaching the update lies above
the horizontal line of ordinate 2. This is easy to check if we maintain
across recursive calls the lowest ordinate reached by the line. The second
phase substitute the update and checks if the resulting history is valid.

Let us implement the first phase. First, we project n and h out of
⟨n, h⟩ in order to save some memory, and the lowest ordinate is n, which
we pass as an additional argument to another function chg/5:

chg(k, u, ⟨n, h⟩) → chg(k, u, n, h, n).

Function chg/5 traverses h while decrementing k, until k = 0, which
means that the update to be changed has been found. At the same time,
the length of the current version is computed (third argument) and com-
pared to the previous lowest ordinate (the fifth argument), which is up-
dated according to the outcome. We may try the following canvas:

chg(0, u, n, h,m) → ;
chg(k, u, n, pop(h),m)→ chg(k − 1, u, n + 1, h,m);

chg(k, u, n, push(x, h),m)→ chg(k − 1, u, n − 1, h,m), if m < n;
chg(k, u, n, push(x, h),m)→ chg(k − 1, u, n − 1, h, n − 1).

The problem is that we forget the history down to the update we are
looking for. There are two methods to record it: either we use an accu-
mulator and stick with a definition in tail form (small-step design), or we
put back a visited update after returning from a recursive call (big-step
design). The latter is faster, as there is no need to reverse the accumu-
lator when we are done; the former allows us to share the history up
to the update when it leaves history structurally invariant, at the cost
of an extra parameter being the original history. This same dilemma
was encountered when we compared sfst/2 and sfst0/2 in section 2.3 on
page 43. Let us opt for a big-step design in figure 2.36. Notice how the
length n′ of the new history is simply passed down the inference rules. It
can simply be made out:

• replacing a pop by a pop or a push by a push leaves the original
length invariant;

• replacing a pop by a push increases the original length by 2;
• replacing a push by a pop, assuming this is valid, decreases the

original length by 2.

This task is up to the new function rep/3 (replace), which implements
the second phase. The design is to return a pair made of the differential
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in length d and the new history h′:

rep(pop(), pop(h),m)→ ⟨0, pop(h)⟩;
rep(push(x), push(y, h),m)→ ⟨0, push(x, h)⟩;

rep(push(x), pop(h),m)→ ⟨2, push(x, h)⟩;
rep(pop(), push(y, h),m)→ ⟨−2, pop(h)⟩.

This definition implies that we need to redefine chg/3 as follows:

chg(k, u, n, h, n)! ⟨d, h′⟩
chg(k, u, ⟨n, h⟩) ! ⟨n+ d, h′⟩

.

2.8 Optimal sorting

Sorting is the process of rearranging a series of objects, called keys, to
conform with a predefined order. According to Knuth (1998a), the first
sorting algorithms were invented and automated as tabulating machines
in the late nineteenth century, in order to support the establishment of
the census of the United States of America.

Permutations We saw on page 8 that the average cost of a comparison-
based sorting algorithm is defined as the arithmetic mean of the costs of
sorting all permutations of a given length. A permutation of (1, 2, . . . , n)
is another tuple (a1, a2, . . . , an) such that ai ∈ {1, . . . , n} and ai ̸= aj for
all i ̸= j. For example, all the permutations of (1, 2, 3) are

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1).

Given all the permutations of (1, 2, . . . , n−1), let us build inductively all
the permutations of (1, 2, . . . , n). If (a1, a2, . . . , an−1) is a permutation of

chg(0, u, n, h,m) → rep(u, h,m)
chg(k − 1, u, n + 1, h,m)! ⟨n′, h′⟩

chg(k, u, n, pop(h),m)! ⟨n′, pop(h′)⟩
chg(k − 1, u, n − 1, h,m)! ⟨n′, h′⟩ m < n

chg(k, u, n, push(x, h),m)! ⟨n′, push(x, h′)⟩
chg(k − 1, u, n − 1, h, n − 1)! ⟨n′, h′⟩

chg(k, u, n, push(x, h),m)! ⟨n′, push(x, h′)⟩

Figure 2.36: Changing a past version (big-step design)
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(1, 2, . . . , n−1), then we can construct n permutations of (1, 2, . . . , n) by
inserting n at all possible places in (a1, a2, . . . , an−1):

(n, a1, a2, . . . , an−1) (a1,n, a2, . . . , an−1) . . . (a1, a2, . . . , an−1,n).

For example, it is obvious that all the permutations of (1, 2) are (1, 2) and
(2, 1). The method leads from (1, 2) to (3, 1, 2), (1,3, 2) and (1, 2,3); and
from (2, 1) to (3, 2, 1), (2,3, 1) and (2, 1,3). If we name pn the number
of permutations on n elements, we draw from this the recurrence pn =
n · pn−1, which, with the additional obvious p1 = 1, leads to pn = n!,
for all n > 0, exactly as expected. If the n objects to permute are not
(1, 2, . . . , n) but, for example, (b, d, a, c), simply associate each of them
to their index in the tuple, for example, b is represented by 1, d by 2,
a by 3 and c by 4, so the tuple is then associated to (1, 2, 3, 4) and, for
instance, the permutation (4, 1, 2, 3) means (c, b, d, a).

Factorial We encountered the factorial function in the introduction
and here again. There is a simple derivation enabling the characterisation
of its asymptotic growth, proposed by Graham et al. (1994). We start by
squaring the factorial and regrouping the factors as follows:

n!2 = (1 · 2 · . . . · n)(n · . . . · 2 · 1) =
n
∏

k=1

k(n+ 1− k).

The parabola P (k) := k(n+1−k) = −k2+(n+1)k reaches its maximum
where its derivative is zero: P ′(kmax) = 0 ⇔ kmax = (n + 1)/2. The
corresponding ordinate is P (kmax) = ((n+1)/2)2 = k2max. When k ranges
from 1 to n, the minimal ordinate, n, is reached at absissas 1 and n, as
shown in figure 2.37 on the facing page. Hence, 1 " k " kmax implies

P (1) " P (k) " P (kmax), that is, n " k(n+ 1− k) "

(
n+ 1

2

)2

.

Multiplying the sides by varying k over the discrete interval [1..n] yields

nn =
n
∏

k=1

n " n!2 "
n
∏

k=1

(
n+ 1

2

)2

=

(
n+ 1

2

)2n

⇒nn/2 " n! "

(
n+ 1

2

)n

.

It is clear now that n! is exponential, so it asymptotically outgrows
any polynomial. Concretely, a function whose cost is proportional to
a factorial is useless even for small inputs. For the cases where an equi-
valence is preferred, Stirling’s formula states that

n! ∼ nne−n
√
2πn. (2.14)
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0 1 kmax n k
0

n

k2max

P (k)

Figure 2.37: Parabola P (k) := k(n+ 1− k)

Enumerating all permutations Let us write a program computing
all the permutations of a given stack. We define the function perm/1
such that perm(s) is the stack of all permutations of the items in stack s.
We implement the inductive method presented above, which worked by
inserting a new object into all possible places of a shorter permutation.

perm([ ])
α−→ [ ]; perm([x])

β−→ [[x]]; perm([x |s]) γ−→ dist(x, perm(s)).

The function dist/2 (distribute) is such that dist(x, s) is the stack of all
stacks obtained by inserting the item x at all different places in stack s.
Because such an insertion into a permutation of length n yields a per-
mutation of length n + 1, we must join the new permutations to the
previously found others of same length:

dist(x, [ ])
δ−→ [ ]; dist(x, [p |t]) ϵ−→ cat(ins(x, p), dist(x, t)).

The call ins(x, p) computes the stack of permutations resulting from in-
serting x at all places in the permutation p. We thus derive

ins(x, [ ])
ζ−→ [[x]]; ins(x, [j |s]) η−→ [[x, j |s] |push(j, ins(x, s))].

where the function push/2 (not to be confused with the function of same
name and arity in section 2.7) is such that any call push(x, t) pushes
item x on all the permutations of the stack of permutations t. The order
is left unchanged:

push(x, [ ])
θ−→ [ ]; push(x, [p |t]) ι−→ [[x |p] |push(x, t)].
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Now we can compute all the permutations of (4, 1, 2, 3) or (c, b, d, a) by
calling perm([4, 1, 2, 3]) or perm([c, b, d, a]). Note that, after computing
the permutations of length n + 1, the permutations of length n are not
needed anymore, which would allow an implementation to reclaim the
corresponding memory for further uses (a process called garbage collec-
tion). As far as the costs are concerned, the definition of push/2 yields

Cpush
0

θ
= 1; Cpush

n+1
ι
= 1 + Cpush

n , with n # 0.

We easily deduce Cpush
n = n + 1. We know that the result of ins(x, p) is

a stack of length n+ 1 if p is a permutation of n objects into which we
insert one more object x. Hence, the definition of ins/2 leads to

C ins
0

ζ
= 1; C ins

k+1
η
= 1 + Cpush

k+1 + C ins
k = 3 + k + C ins

k , with k # 0,

where C ins
k is the cost of ins(x, p) with p of length k. By summing for all k

from 0 to n− 1, for n > 0, on both sides we draw

n−1
∑

k=0

C ins
k+1 =

n−1
∑

k=0

3 +
n−1
∑

k=0

k +
n−1
∑

k=0

C ins
k .

By cancelling identical terms in the sums (telescoping)
∑n−1

k=0 C ins
k+1 and

∑n−1
k=0 C ins

k , we draw

C ins
n = 3n + 1

2n(n− 1) + C ins
0 = 1

2n
2 + 5

2n+ 1.

This last equation is actually valid even if n = 0. Let Cdist
n! be the cost for

distributing an item among n! permutations of length n. The definition
of dist/2 shows that it repeats calls to cat/2 and ins/2 whose arguments
are always of length n + 1 and n, respectively, because all processed
permutations here have the same length. We deduce, for k # 0, that

Cdist
0

δ
= 1; Cdist

k+1
ϵ
= 1 + Ccat

n+1 + C ins
n + Cdist

k = 1
2n

2 + 7
2n+ 4 + Cdist

k ,

since we already know that Ccat
n = n+1 and the value of C ins

n . By summing
both sides of the last equation for all k from 0 to n!−1, we can eliminate
most of the terms and find a non-recursive definition of Cdist

n! :

n!−1
∑

k=0

Cdist
k+1 =

n!−1
∑

k=0

(
1

2
n2 +

7

2
n+ 4

)

+
n!−1
∑

k=0

Cdist
k ,

Cdist
n! =

(
1

2
n2 +

7

2
n+ 4

)

n! + Cdist
0 =

1

2
(n2 + 7n+ 8)n! + 1.
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Let us finally compute the cost of perm(s), noted Cperm
k , where k is the

length of the stack s. From rules α to γ, we deduce the following equa-
tions, where k > 0:

Cperm
0

α
= 1; Cperm

1
β
= 1;

Cperm
k+1

γ
= 1 + Cperm

k + Cdist
k! = 1

2(k
2 + 7k + 8)k! + 2 + Cperm

k .

Again, summing both sides, most of the terms cancel out:

n−1
∑

k=1

Cperm
k+1 =

1

2

n−1
∑

k=1

(k2 + 7k + 8)k! +
n−1
∑

k=1

2 +
n−1
∑

k=1

Cperm
k ,

Cperm
n =

1

2

n−1
∑

k=1

(k2 + 7k + 8)k! + 2(n− 1) + Cperm
1

=
1

2

n−1
∑

k=1

((k + 2)(k + 1) + 6 + 4k)k! + 2n− 1

=
1

2

n−1
∑

k=1

(k + 2)(k + 1)k! + 3
n−1
∑

k=1

k! + 2
n−1
∑

k=1

kk! + 2n− 1

=
1

2

n−1
∑

k=1

(k + 2)! + 3
n−1
∑

k=1

k! + 2
n−1
∑

k=1

kk! + 2n− 1

=
1

2

n+1
∑

k=3

k! + 3
n−1
∑

k=1

k! + 2
n−1
∑

k=1

kk! + 2n− 1

=
1

2
(n+ 2)n! +

7

2

n−1
∑

k=1

k! + 2
n−1
∑

k=1

kk! + 2n− 5

2
.

This last equation is actually valid even if n = 1. One sum has a simple
closed form:

n−1
∑

k=1

kk! =
n−1
∑

k=1

((k + 1)!− k!) =
n
∑

k=2

k!−
n−1
∑

k=1

k! = n!− 1.

Resuming our previous derivation,

Cperm
n =

1

2
nn! + n! +

7

2

n−1
∑

k=1

k! + 2(n!− 1) + 2n− 5

2

=
1

2
nn! + 3n! + 2n− 9

2
+

7

2

n−1
∑

k=1

k!, with n > 0.
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The remaining sum is called the left factorial (Kurepa, 1971) and is
usually defined as

!n :=
n−1
∑

k=1

k!, with n > 0.

Unfortunately, no closed expression of the left factorial is known. This is
actually a common situation when determining the cost of relatively com-
plex functions. The best course of action is then to study the asymptotic
approximation of the cost. Obviously, n! "!(n+ 1). Also,

!(n+1)−n! " (n−2)·(n−2)!+(n−1)! " (n−1)·(n−2)!+(n−1)! = 2(n−1)!

Therefore,

1 "
!(n + 1)

n!
"

n! + 2(n − 1)!

n!
= 1 +

2

n
⇒ !n ∼ (n− 1)!

Also, (n+1)! = (n+1)n!, so (n+1)!/(nn!) = 1+1/n, hence nn! ∼ (n+1)!.
Consequently,

Cperm
n ∼ 1

2
(n+ 1)! + 3n! +

7

2
(n− 1)! + 2n− 9

2
∼ 1

2
(n+ 1)!

This is an unbearably slow program, as expected. We should not hope
to compute Cperm

11 easily and there is no way to improve significantly
the cost because the number of permutations it computes is inherently
exponential, so it would even suffice to spend only one function call per
permutation to obtain an exponential cost. In other words, the memory
necessary to hold the result has a size which is exponential in the size of
the input, therefore, the cost is at least exponential, because at least one
function call is necessary to allocate some memory. For a deep study on
the enumeration of all permutations, refer to the survey of Knuth (2011).

Permutations and sorting Permutations are worth studying in de-
tail because of their intimate relationship with sorting. A permutation
can be thought of as scrambling originally ordered keys and a sorting
permutation puts them back to their place. A slightly different notation
for permutations is helpful here, one which shows the indexes together
with the keys. For example, instead of writing π1 = (2, 4, 1, 5, 3), we write

π1 =

(

1 2 3 4 5
2 4 1 5 3

)

.

The first line is made of the ordered indexes and the second line contains
the keys. In general, a permutation π = (a1, a2, . . . , an) is equivalent to

π =

(

1 2 . . . n
π(1) π(2) . . . π(n)

)

,
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5
(a) Bigraph of π1 = (2, 4, 1, 5, 3)

1

1

2

2

3

3

4

4

5

5
(b) Bigraph of π−1

1 = (3, 1, 5, 2, 4)

Figure 2.38: Permutation π1 and its inverse π−1
1

where ai = π(i), for all i from 1 to n. The following permutation πs sorts
the keys of π1:

πs =

(

1 2 3 4 5
3 1 5 2 4

)

.

To see why, we define the composition of two permutations πa and πb:

πb ◦ πa :=

(

1 2 . . . n
πb(πa(1)) πb(πa(2)) . . . πb(πa(n))

)

.

Then πs ◦ π1 = I , where the identity permutation I is such that I(k) = k,
for all indexes k. In other words, πs = π−1

1 , that is, sorting a permutation
consists in building its inverse:

(

1 2 3 4 5
3 1 5 2 4

)

◦
(

1 2 3 4 5
2 4 1 5 3

)

=

(

1 2 3 4 5
1 2 3 4 5

)

.

An alternative representation of permutations and their composition
is based on considering them as bijections from an interval onto itself,
denoted by bipartite graphs, also called bigraphs. Such graphs are made
of two disjoint, ordered sets of vertices of same cardinal, the indexes
and the keys, and the edges always go from an index to a key, without
sharing the vertices with other edges. For example, permutation π1 is
shown in figure 2.38a and its inverse π−1

1 is displayed in figure 2.38b.
The composition of π−1

1 and π1 is then obtained by identifying the key
vertices of π1 with the index vertices of π−1

1 , as shown in figure 2.39a
on the next page. The identity permutation is obtained by replacing two
adjacent edges by their transitive closure and erasing the intermediate
vertices, as shown in figure 2.39b page 86. Note that a permutation
may equal its inverse, like

π3 =

(

1 2 3 4 5
3 4 1 2 5

)

.

In figure 2.40 is shown that π3 ◦ π3 = π3, so π3 is an involution.
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(a) π−1

1 ◦ π1
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(b) I = π−1

1 ◦ π1

Figure 2.39: Applying π1 to π−1
1 .
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(a) π3 ◦ π3
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(b) π3 ◦ π3

Figure 2.40: Involution π3 sorts itself

Studying permutations and their basic properties helps understand-
ing sorting algorithms, particularly their average cost. They also provide
a way to quantify disorder. Given (1, 3, 5, 2, 4), we can see that only the
pairs of keys (3, 2), (5, 2) and (5, 4) are out of order. In general, given
(a1, a2, . . . , an), the pairs (ai, aj) such that i < j and ai > aj are called
inversions. The more inversions, the greater the disorder. As expected,
the identity permutation has no inversions and the previously studied
permutation π1 = (2, 4, 1, 5, 3) has 4. When considering permutations as
represented by bigraphs, an inversion corresponds to an intersection of
two edges, more precisely, it is the pair made of the keys pointed at by
two arrows. Therefore, the number of inversions is the number of edge
crossings, so, for instance, π−1

1 has 4 inversions. In fact, the inverse of a
permutation has the same number of inversions as the permutation itself.
This can be clearly seen when comparing the bigraphs of π1 and π−1

1
in figure 2.38 on the preceding page: in order to deduce the bigraph
of π−1

1 from the one corresponding to π1, let us reverse each edge, that
is, the direction in which the arrows are pointing, then swap the indexes
and the keys, that is, exchange the two lines of vertices. Alternatively,
we can imagine that we fold down the paper along the key line, then look
through and reverse the arrows. Anyhow, the crossings are invariant. The
horizontal symmetry is obvious in figures 2.39a and 2.40a.
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Minimax After analysing the cost of a sorting algorithm based on
comparisons, we will need to know how close it is to an optimal sort-
ing algorithm. The first theoretical problem we examine is that of the
best worst case, so called the minimax . Figure 2.41 features the tree of
all possible comparisons for sorting three numbers. The external nodes
are all the permutations of (a1, a2, a3). The internal nodes are compar-
isons between two keys ai and aj, noted ai?aj . Note that leaves, in
this setting, are internal nodes with two external nodes as children.
If ai < aj , then this property holds everywhere in the left subtree,

a1?a2

a2?a3

<

a1?a3

<

(a1, a2, a3)

<

⊥

>

>

Figure 2.42: Useless a1 > a3

otherwise ai > aj holds in the right sub-
tree. This tree is one possible amongst
many: it corresponds to an algorithm
which starts by comparing a1 and a2
and there are, of course, many other
strategies. But it does not contain re-
dundant comparisons: if a path from
the root to a leaf includes ai < aj and
aj < ak, we do not expect the useless
ai < ak. Figure 2.42 shows an excerpt of a comparison tree with such a
useless comparison. The special external node ⊥ corresponds to no per-
mutation because the comparison a1 < a3 cannot fail as it is implied by
transitivity of the previous comparisons on the path from the root.

A comparison tree for n keys without redundancy has n! external nodes.

Because we are investigating minimum-comparison sorting, we shall con-
sider henceforth optimal comparison trees with n! external nodes. Fur-
thermore, amongst them, we want to determine the trees such that the
maximum number of comparisons is minimum.

An external path is a path from the root to an external node. Let the
height of a tree be the length (that is, the number of edges) of its longest
external path. In figure 2.41, the height is 3 and there are 4 external
paths of length 3, like (a1 < a2)→ (a2 > a3)→ (a1 > a3)→ (a3, a1, a2).

a1?a2

a2?a3

<

(a1, a2, a3)

<

a1?a3

>

(a1, a3, a2)

<

(a3, a1, a2)

>

a2?a3

>

a1?a3

<

(a2, a1, a3)

<

(a2, a3, a1)

>
(a3, a2, a1)

>

Figure 2.41: A comparison tree for sorting three keys
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The maximality constraint means that we must consider the height of
the comparison tree because the number of internal nodes (comparisons)
along the maximum external paths is an upper bound for the number of
comparisons needed for sorting all the permutations.

The minimality constraint in the problem statement above then sig-
nifies that we want a lower bound on the height of a comparison tree with
n! external nodes.

Figure 2.43: Perfect
binary tree of

height 3

A perfect binary tree is a binary tree whose in-
ternal nodes have children which are either two
internal nodes or two external nodes. If such a
tree has height h, then it has 2h external nodes.
For instance, figure 2.43 shows the case where
the height h is 3 and there are indeed 2h = 8 ex-
ternal nodes, figured as squares. Since, by defini-
tion, minimum-comparison trees have n! external
nodes and height S(n), they must contain fewer external nodes than a
perfect binary tree of identical height, that is, n! " 2S(n), therefore

S(n) # ⌈lg n!⌉,

where ⌈x⌉ (ceiling of x) is the least integer greater than or equal to x.
To deduce a good lower bound on S(n), we need the following theorem.

Theorem 1 (Sum and integral). Let f : [a, b] → R be an integrable,
monotonically increasing function. Then

b−1
∑

k=a

f(k) "

∫ b

a
f(x) dx "

b
∑

k=a+1

f(k). )

Let us take a := 1, b := n and f(x) := lg x. The theorem implies

n lgn− n

ln 2
+

1

ln 2
=

∫ n

1
lg x dx "

n
∑

k=2

lg k = lg n! " S(n).

A more powerful but more complex approach in real analysis, known
as Euler-Maclaurin summation, yields Stirling’s formula (Sedgewick and
Flajolet, 1996, chap. 4), which is a very precise lower bound for lg n!:

(

n+
1

2

)

lg n− n

ln 2
+ lg
√
2π < lg n! " S(n). (2.15)

Minimean We investigate here the best mean case, or minimean. Let
us call the sum of the lengths of all the external paths the external path
length of the tree. Then, the average number of comparisons is the mean
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external path length. In figure 2.41 on page 87, this is (2 + 3+ 3+ 3+
3+ 2)/3! = 8/3. Our problem here therefore consists in determining the
shape of the optimal comparison trees of minimum external path length.

These trees have their external nodes on one or two successive levels
and are thus almost perfect. Let us consider a binary tree where this is
not the case, so the topmost external nodes are located at level l and the
bottommost at level L, with L # l+2. If we exchange a leaf at level L−1
with an external node at level l, the external path length is decreased by
(l+2L)− (2(l+1)+(L−1)) = L− l−1 # 1. Repeating these exchanges
yields the expected shape.

The external paths are made up of p paths ending at the penultimate
level h− 1 and q paths ending at the bottommost level h. (The root has
level 0.) Let us find two equations whose solutions are p and q.

• From the minimax problem, we know that an optimal comparison
tree for n keys has n! external nodes: p+ q = n!.

• If we replace the external nodes at level h−1 by leaves, the level h
becomes full with 2h external nodes: 2p+ q = 2h.

We now have two linear equations satisfied by p and q, whose solutions
are p = 2h − n! and q = 2n!− 2h. Furthermore, we can now express the
minimal external path length as follows: (h− 1)p+ hq = (h+ 1)n!− 2h.
Finally, we need to determine the height h of the tree in terms of n!.
This can be done by remarking that, by contruction, the last level may
be incomplete, so 0 < q " 2h, or, equivalently, h = ⌈lg n!⌉. We conclude
that the minimum external path length is

(⌈lg n!⌉+ 1)n!− 2⌈lg n!⌉.

Let M(n) be the minimum average number of comparisons of an optimal
sorting algorithm. We have

M(n) = ⌈lg n!⌉+ 1− 1

n!
2⌈lg n!⌉.

We have ⌈lg n!⌉ = lg n! + x, with 0 " x < 1, therefore, if we set the
function θ(x) := 1 + x− 2x, we draw

M(n) = lg n! + θ(x).

We have max0"x<1 θ(x) = 1− (1 + ln ln 2)/ln 2 ≃ 0.08607, therefore,

lg n! "M(n) < lg n! + 0.09. (2.16)
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Chapter 3

Insertion Sort

If we have a stack of totally ordered, distinct keys, it is easy to insert
one more key so the stack remains ordered by comparing it with the
first on top, then, if necessary, with the second, the third etc. For ex-
ample, inserting 1 into [3, 5] requires comparing 1 with 3 and results
in [1, 3, 5], without relating 1 to 5. The algorithm called insertion sort
(Knuth, 1998a) consists in inserting thusly keys one by one in a stack
originally empty. The playful analogy is that of sorting a hand in a card
game: each card, from left to right, is moved leftwards until it reaches
its place.

3.1 Straight insertion

Let ins(s, x) (not to be confused with the function of same name and
arity in section 2.8) be the increasingly ordered stack resulting from the
straight insertion of x into the stack s. Function ins/2 can be defined
assuming a minimum and a maximum function, min/2 and max/2:

ins(x, [ ])→ [x]; ins(x, [y |s])→ [min(x, y) | ins(max(x, y), s)].

Temporarily, let us restrict ourselves to sorting natural numbers in in-
creasing order. We need to provide definitions to calculate the minimum
and maximum:

max(0, y)→ y; min(0, y)→ 0;
max(x, 0)→ x; min(x, 0)→ 0;
max(x, y)→ 1 + max(x− 1, y − 1). min(x, y)→ 1 + min(x− 1, y − 1).

While this approach fits in our functional language, it is both inefficient
and bulky, hence it is worth extending our language so rewrite rules are

91
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isrt([3, 1, 2])
ν−→ ins(isrt([1, 2]), 3)
ν−→ ins(ins(isrt([2]), 1), 3)
ν−→ ins(ins(ins(isrt([ ]), 2), 1), 3)
µ−→ ins(ins(ins([ ], 2), 1), 3)
λ−→ ins(ins([2], 1), 3)
λ−→ ins([1, 2], 3)
κ−→ [1|ins([2], 3)]
κ−→ [1, 2|ins([ ], 3)]
λ−→ [1, 2, 3].

Figure 3.1: isrt([3, 1, 2]) ! [1, 2, 3]

selected by pattern matching only if some optional associated comparison
holds. We can then define isrt/1 (insertion sort) and redefine ins/2 as

ins([y |s], x) κ−→ [y | ins(s, x)], if x ≻ y; isrt([ ])
µ−→ [ ];

ins(s, x)
λ−→ [x |s]. isrt([x |s]) ν−→ ins(isrt(s), x).

Let us consider a short example in figure 3.1.
Let C isrt

n be the cost of sorting by straight insertion n keys, and C ins
i

the cost of inserting one key in a stack of length i. We directly derive
from the functional program the following recurrences:

C isrt
0

µ
= 1; C isrt

i+1
ν
= 1 + C ins

i + C isrt
i .

The latter equation assumes that the length of isrt(s) is the same as s
and the length of ins(s, x) is the same as [x |s]. We deduce

C isrt
n = 1 + n+

n−1
∑

i=0

C ins
i . (3.1)

A look up at the definition of ins/2 reveals that C ins
i cannot be expressed

only in terms of i because it depends on the relative order of all the keys.
Instead, we resort to the minimum, maximum and average costs.

Minimum cost The best case does not exert rule κ, which is recursive,
whilst λ rewrites to a value. In other words, in rule ν, each key x to be
inserted in a non-empty, sorted stack isrt(s) would be lower than or equal
to the top of the stack. This rule also inserts the keys in reverse order:

isrt([x1, . . . , xn])! ins(ins(. . . (ins([ ], xn) . . . ), x2), x1). (3.2)
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As a consequence, the minimum cost results from the input stack being
already increasingly sorted, that is, the keys in the result are increasing,
but may be repeated. Then Bins

n = |λ| = 1 and equation (3.1) implies
that straight insertion sort has a linear cost in the best case:

Bisrt
n = 2n + 1 ∼ 2n.

Maximum cost The worst case must exert rule κ as much as possible,
which implies that the worst case happens when the input is a stack
decreasingly sorted. We have

W ins
n = |κnλ| = n+ 1.

Substituting maximum costs in equation (3.1) then implies that straight
insertion sort has a quadratic cost in the worst case:

W isrt
n =

1

2
n2 +

3

2
n+ 1 ∼ 1

2
n2.

Another way is to take the length of the longest trace:

W isrt
n =

∣
∣
∣
∣
∣
νnµ

n−1
∏

i=0

κiλ

∣
∣
∣
∣
∣
= |νnµ|+

n−1
∑

i=0

|κiλ| = 1

2
n2 +

3

2
n+ 1.

This cost should not be surprising because isrt/1 and rev0/1, in sec-
tion 2.2, yield the same kind of partial rewrite, as seen by comparing (3.2),
on the facing page, and (2.4) on page 41, and also Ccat

n = W ins
n , where

n is the size of their first argument. Hence W isrt
n = W rev0

n .

Average cost The average cost obeys equation (3.1) because all per-
mutations (x1, . . . , xn) are equally likely, hence

Aisrt
n = 1 + n+

n−1
∑

i=0

Ains
i . (3.3)

Without loss of generality, Ains
i is the cost of inserting the key i + 1

into all permutations of (1, . . . , i), divided by i+ 1. (This is how the set
of permutations of a given length is inductively built on page 79.) The
partial evaluation (3.2) on page 92 has length |νnµ| = n + 1. The trace
for inserting in an empty stack is µ. If the stack has length i, inserting
on top has trace λ; just after the first key, κλ etc. until after the last key,
κiλ. Therefore, the average cost for inserting one key is, for i # 0,

Ains
i =

1

i+ 1

i
∑

j=0

|κjλ| = i

2
+ 1. (3.4)
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The average cost for inserting n keys in an empty stack is therefore
∑n−1

i=0 Ains
i = 1

4n
2 + 3

4n. Finally, from equation (3.3), the average cost of
sorting n keys by straight insertion is

Aisrt
n =

1

4
n2 +

7

4
n+ 1.

Assessment Despite the average cost being asymptotically equivalent
to 50% of the maximum cost, it is nevertheless quadratic. On a positive
note, straight insertion is quite efficient when the data is short or nearly
sorted (Cook and Kim, 1980). It is a typical example of an adaptive
sorting algorithm (Estivill-Castro and Wood, 1992, Moffat and Petersson,
1992). The natural measure of sortedness for insertion sort is the number
of inversions. Indeed, the partial evaluation (3.2), on page 92 shows that
the keys are inserted in reverse order. Thus, in rule κ, we know that the
key x was originally before y, but x ≻ y. Therefore, one application of
rule κ removes one inversion from the input. As a corollary, the average
number of inversions in a random permutation of n objects is

n−1
∑

j=0

1

j + 1

j
∑

i=0

|κi| = n(n− 1)

4
.

Exercises

1. A sorting algorithm that preserves the relative order of equal keys
is said stable. Is isrt/1 stable?

2. Prove len([x |s]) ≡ len(ins(x, s)).
3. Prove len(s) ≡ len(isrt(s)).
4. Traditionally, textbooks about the analysis of algorithms assess

the cost of sorting procedures by counting the comparisons, not
the function calls. Doing so allows one to compare with the same
measure different sorting algorithms as long as they perform com-
parisons, even if they are implemented in different programming
languages. (There are sorting techniques that do not rely on com-
parisons.) Let Bisrt

n , W isrt
n and Aisrt

n be the minimum, maximum and
average numbers of comparisons needed to sort by straight inser-
tion a stack of length n. Establish that

Bisrt
n = n− 1; W isrt

n =
1

2
n(n− 1); Aisrt

n =
1

4
n2 +

3

4
n−Hn,

where Hn :=
∑n

k=1 1/k is the nth harmonic number and, by con-
vention, H0 := 0. Hint: the use of rule λ implies a comparison if,
and only if, s is not empty.



3.1. STRAIGHT INSERTION 95

Ordered stacks As we did for the proof of the soundness of cut/2 on
page 68, we need to express the characteristic properties we expect on
the output of isrt/1, and relate them to some assumptions on the input,
first informally, then formally. We would say that ‘The stack isrt(s) is
totally, increasingly ordered and contains all the keys in s, but no more.’
This captures all what is expected from any sorting program.

Let us name Ord(s) the proposition ‘The stack s is sorted increas-
ingly.’ To define formally this concept, let us use inductive logic defini-
tions. We employed this technique to formally define stacks, on page 6,
in a way that generates a simple well-founded order used by structural
induction, to wit, [x | s] ≻ x and [x | s] ≻ s. Here, we similarly propose
that, for Ord(s) to hold, Ord(t) must hold with s ≻ t. We defined cut/2 in
section 2.6, on page 66, using the same technique and relying on inference
rules. All three cases, namely, data structure, proposition and function,
are instances of inductive definitions. Let us constructively define Ord by
the axioms Ord0 and Ord1, and the inference rule Ord2:

Ord([ ]) Ord0 Ord([x]) Ord1
x ≺ y Ord([y |s])

Ord([x, y |s])
Ord2

Note that this system is parameterised by the well-founded order (≺)
on the keys such that x ≺ y :⇔ y ≻ x. Rule Ord2 could equivalently
be (x ≺ y ∧ Ord([y |s])) ⇒ Ord([x, y |s]) or x ≺ y ⇒ (Ord([y |s]) ⇒
Ord([x, y |s])) or x ≺ y ⇒ Ord([y |s]) ⇒ Ord([x, y |s]). Because the set
of ordered stacks is exactly generated by this system, if the statement
Ord([x, y |s]) holds, then, necessarily, Ord2 has been used to produce it,
hence x ≺ y and Ord([y |s]) are true as well. This usage of an inductive
definition is called an inversion lemma and can be understood as infer-
ring necessary conditions for a putative formula, or as case analysis on
inductive definitions.

Equivalent stacks The second part of our informal definition above
was: ‘The stack isrt(s) contains all the keys in s, but no more.’ In order
to provide a general criterion matching this concept, we should abstract
it as: ‘The stack s contains all the keys in the stack t, but no more.’ Per-
mutations allow us to clarify the meaning with a mathematical phrasing:
‘Stacks s and t are permutations of each other,’ which we note s ≈ t and
t ≈ s. Since the role of s do not differ in any way from that of t, we
expect the relation (≈) to be symmetric: s ≈ t ⇒ t ≈ s. Moreover, we
expect it to be transitive as well: s ≈ u and u ≈ t imply s ≈ t. Also, we
want (≈) to be reflexive, that is, s ≈ s. By definition, a binary relation
which is reflexive, symmetric and transitive is an equivalence relation .
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[1, 2] ≈ [2, 1] Swap

[3, 1, 2] ≈ [3, 2, 1]
Push

[3, 2, 1] ≈ [2, 3, 1] Swap

[3, 1, 2] ≈ [2, 3, 1]
Trans

(a) Extended tree

Trans

Push

Swap

Swap

(b) Pruned tree

Figure 3.2: Proof tree of [3, 1, 2] ≈ [2, 3, 1]

The relation (≈) can be defined in different ways. The idea here
consists in defining a permutation as a series of transpositions, namely,
exchanges of adjacent keys. This approach is likely to work here because
insertion can be thought of as adding a key on top of a stack and then
performing a series of transpositions until the total order is restored.

[ ] ≈ [ ] Pnil [x, y |s] ≈ [y, x |s] Swap

s ≈ t

[x |s] ≈ [x |t]
Push

s ≈ u u ≈ t

s ≈ t
Trans

We recognise Pnil and Swap as axioms, the latter being synonymous with
transposition. Rule Trans is transitivity and offers an example with two
premises, so a derivation using it becomes a binary tree, as shown in
figure 3.2. As an exception to the convention about tree layouts, proof
trees have their root at the bottom of the figure.

We must now prove the reflexivity of (≈), namely Refl(s) : s ≈ s, by
induction on the structure of the proof. The difference with the proof
of the soundness of cut/2, on page 68, is that, due to Trans having
two premises, the induction hypothesis applies to both of them. Also,
the theorem is not explicitly an implication. First, we start by proving
Refl on the axioms (the leaves of the proof trees) and proceed with the
induction on the proper inference rules, to wit, reflexivity is conserved
while moving towards the root of the proof tree.

• Axiom Pnil proves Refl([ ]). Axiom Swap proves Refl([x, x |s]).

• Let us assume now that Refl holds for the premise in Push, namely,
s = t. Clearly, the conclusion implies Refl([x |s]).

• Let us assume that Refl holds for the two antecedents in Push, that
is, s = u = t. The conclusion leads to Refl(s). ✷

Let us prove the symmetry of (≈) using the same technique. Let
Sym(s, t) : s ≈ t ⇒ t ≈ s. We deal with an implication here, so let us
suppose that s ≈ t, that is, we have a proof tree ∆ whose root is s ≈ t,
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and let us establish t ≈ s. In the following, we overline variables from
the inference system.

• If ∆ ends with Pnil, then [ ] = s = t, which trivially implies t ≈ s.

• If ∆ ends with Swap, then [x, y |s] = s and [y, x |s] = t, so t ≈ s.

• If ∆ ends with Push, then [x |s] = s and [x | t] = t. The induction
hypothesis applies to the premise, s ≈ t, hence t ≈ s holds. An
application of Push with the latter premise implies [x | t] ≈ [x | s],
that is, t ≈ s.

• If ∆ ends with Trans, then the induction hypothesis applies to its
premises and we deduce u ≈ s and t ≈ u, which can be premises
for Trans itself and lead to t ≈ s. ✷

Soundness Let us now turn our attention to our main objective, which
we may call Isrt(s) : Ord(isrt(s)) ∧ isrt(s) ≈ s. Let us tackle its proof by
structural induction on s.

• The basis is Isrt([ ]) and it is showed to hold twofold. First, we have
isrt([ ])

µ−→ [ ] and Ord([ ]) is axiom Ord0. The other conjunct holds
as well since isrt([ ]) ≈ [ ]⇔ [ ] ≈ [ ], which is axiom Pnil.

• Let us assume Isrt(s) and establish Isrt([x |s]). In other words, let
us assume Ord(isrt(s)) and isrt(s) ≈ s. We have

isrt([x |s]) ν−→ ins(isrt(s), x). (3.5)

Since we want Ord(isrt([x |s])), assuming Ord(isrt(s)), we realise
that we need the lemma Ord(s) ⇒ Ord(ins(s, x)), which we may
name InsOrd(s). To prove the conjunct isrt([x |s]) ≈ [x |s], assuming
isrt(s) ≈ s, we need the lemma InsCmp(s) : ins(s, x) ≈ [x | s]. In
particular, InsCmp(isrt(s)) is ins(isrt(s), x) ≈ [x | isrt(s)]. We have

– Rule Push and the induction hypothesis isrt(s) ≈ s imply
[x | isrt(s)] ≈ [x |s].

– By the transitivity of (≈), we draw ins(isrt(s), x) ≈ [x |s],
– by rewrite (3.5), isrt([x |s]) ≈ [x |s] and Isrt([x |s]) follow.

By the induction principle, we conclude ∀s ∈ S.Isrt(s). ✷
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Insertion adds a key To complete the previous proof, we prove the
lemma InsCmp(s) : ins(s, x) ≈ [x |s] by structural induction on s.

• The basis InsCmp([ ]) stands because ins([ ], x)
λ−→ [x] ≈ [x], by

composing rules Pnil and Push.
• Let us assume InsCmp(s) and deduce InsCmp([y |s]), that is,

ins(s, x) ≈ [x |s]⇒ ins([y |s], x) ≈ [x, y |s].

There are two cases to analyse.

– If y ≻ x, then ins([y |s], x) λ−→ [x, y |s] ≈ [x, y |s], by rule Swap.
– Otherwise, x ≻ y and ins([y |s], x) κ−→ [y | ins(s, x)].

∗ We deduce [y | ins(s, x)] ≈ [y, x |s] by using the induction
hypothesis as the premise of rule Push.

∗ Furthermore, Swap yields [y, x |s] ≈ [x, y |s].
∗ Transitivity of (≈) applied to the two last statements

leads to ins([y |s], x) ≈ [x, y |s].
Note that we do not need to assume that s is sorted: what
matters here is that ins/2 loses no key it inserts, but misplace-
ment is irrelevant. ✷

Insertion preserves order To complete the soundness proof, we must
prove the lemma InsOrd(s) : Ord(s)⇒ Ord(ins(s, x)) by induction on the
structure of s, meaning that insertion preserves order.

• The basis InsOrd([ ]) is easy to check: Ord0 states Ord([ ]); we have
the rewrite ins([ ], x)

λ−→ [x] and Ord1 is Ord([x]).
• Let us prove InsOrd(s)⇒ InsOrd([x |s]) by assuming

(H0) Ord(s), (H1) Ord(ins(s, x)), (H2) Ord([y |s]),

and deriving Ord(ins([y |s], x)).
Two cases arise from comparing x to y:

– If y ≻ x, then H2 implies Ord([x, y |s]), by rule Ord2. Since
ins([y |s], x) λ−→ [x, y |s], we have Ord(ins([y |s], x)).

– Otherwise, x ≻ y and we derive

ins([y |s], x) κ−→ [y | ins(s, x)]. (3.6)

Here, things get more complicated because we need to con-
sider the structure of s.

∗ If s = [ ], then [y | ins(s, x)]
λ−→ [y, x]. Furthermore, x ≻ y,

Ord1 and Ord2 imply Ord([y, x]), so Ord(ins([y |s], x)).



3.1. STRAIGHT INSERTION 99

∗ Else, there exists a key z and a stack t such that s = [z |t].
· If z ≻ x, then

[y | ins(s, x)] = [y | ins([z |t], x)] λ−→ [y, x, z |t] =[y, x |s].
(3.7)

H0 is Ord([z |t]), which, with z ≻ x and rule Ord2,
implies Ord([x, z |t]). Since x ≻y, another application
of Ord2 yields Ord([y, x, z |t]), that is, Ord([y, x |s]).
This and rewrite (3.7) entail that Ord([y | ins(s, x)]).
Finally, due to rewrite (3.6), Ord(ins([y |s], x)) holds.

· The last remaining case to examine is when x ≻ z:

[y | ins(s, x)]=[y | ins([z |t], x)] κ−→ [y, z | ins(t, x)]. (3.8)

Hypothesis H2 is Ord([y, z |t]), which, by means of
the inversion lemma of rule Ord2, leads to y ≻ z.
By the last rewrite, hypothesis H1 is equivalent to
Ord([z | ins(t, x)]), which, with y ≻ z, enables the use
of rule Ord2 again, leading to Ord([y, z | ins(t, x)]). Re-
write (3.8) then yields Ord([y | ins(s, x)]), which, to-
gether with rewrite (3.6) yields Ord(ins([y |s], x)). ✷

Assessment Perhaps the most striking feature of the soundness proof
is its length. More precisely, two aspects may give rise to questions.
First, since the program is four lines long and the specification (the
Si and Pj) consists in a total of seven cases, it may be unclear how
the proof raises our confidence in the program. Second, the proof itself
is rather long, which leads us to wonder whether any error is hiding
in it. The first concern can be addressed by noting that the two parts
of the specification are disjoint and thus as easy to comprehend as the
program. Moreover, specifications, being logical and not necessarily com-
putable, are likely to be more abstract and composable than programs,
so a larger proof may reuse them in different instances. For example,
the predicate Isrt can easily be abstracted (higher-order) over the sorting
function as Isrt(f, s) : Ord(f(s)) ∧ f(s) ≈ s and thus applies to many sort-
ing algorithms, with the caveat that (≈) is probably not always suitably
defined by transpositions. The second concern can be completely taken
care of by relying on a proof assistant, like Coq (Bertot and Castéran,
2004). For instance, the formal specification of (≈) and the automatic
proofs (by means of eauto) of its reflexivity and symmetry consists in
the following script, where x::s stands for [x | s], (->) is (⇒), perm s t

is s ≈ t and List is synonymous with stack:
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Set Implicit Arguments.

Require Import List.

Variable A: Type.

Inductive perm: list A -> list A -> Prop :=

Pnil : perm nil nil

| Push : forall x s t, perm s t -> perm (x::s) (x::t)

| Swap : forall x y s, perm (x::y::s) (y::x::s)

| Trans : forall s t u, perm s u -> perm u t -> perm s t.

Hint Constructors perm.

Lemma reflexivity: forall s, perm s s.

Proof. induction s; eauto. Qed.

Lemma symmetry: forall s t, perm s t -> perm t s.

Proof. induction 1; eauto. Qed.

Termination Informally, what soundness means is that, if some pro-
gram terminates, then the result is what was expected. This property
is called partial correctness when it is relevant to distinguish it from
total correctness, which is partial correctness and termination. Let us
prove the termination of isrt/1 by the dependency pairs method (sec-
tion 2.4, page 58). The pairs to order are (ins([y |s], x), ins(s, x))κ, (isrt([x |
s]), isrt(s))ν and (isrt([x |s]), ins(isrt(s), x))ν . By using the proper subterm
relation on the first parameter of ins/2, we order the first pair:

ins([y |s], x) ≻ ins(s, x)⇔ [y |s] ≻ s.

This is enough to prove that ins/2 terminates. The second pair is similarly
oriented:

isrt([x |s]) ≻ isrt(s)⇔ [x |s] ≻ s.

The third pair is not worth considering after all, because we already know
that ins/2 terminates, so the second pair is enough to entail the termina-
tion of isrt/1. In other words, since ins/2 terminates, it can be considered,
as far as termination analysis is concerned, as a data constructor, so the
third pair becomes useless:

isrt([x |s]) ≻ ins(isrt(s), x)⇔ isrt([x |s]) ≻ isrt(s)⇔ [x |s] ≻ s,

where ins/2 stands for ins/2 considered as a constructor. (We have used
this notation in figure 2.33 on page 76.) ✷
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3.2 2-way insertion

Let us recall the definition of sorting by straight insertion:

ins([y |s], x) κ−→ [y | ins(s, x)], if y ≻ x; isrt([ ])
µ−→ [ ];

ins(s, x)
λ−→ [x |s]. isrt([x |s]) ν−→ ins(isrt(s), x).

The reason why ins/2 is called straight insertion is because keys are
compared in one direction only: from the top of the stack towards its
bottom. We may wonder what would happen if we could move up or
down, starting from the previously inserted key. Conceptually, this is like
having a finger pointing at the last inserted key and the next insertion
resuming from that point, up or down the stack. Let us call it two-way
insertion and name i2w/1 the sorting function based upon it. The stack
with finger can be simulated by having two stacks, t and u, such that
rcat(t, u) stands for the currently sorted stack, corresponding to isrt(s)
in rule ν. (In section 2.5, on page 60, we used two stacks to simulate
a queue.) Let us call rcat(t, u) the simulated stack ; stack t is a reversed
prefix of the simulated stack and stack u is a suffix . For example, a finger
pointing at 5 in the simulated stack [0, 2, 4, 5, 7, 8, 9] would be represented
by [4, 2, 0] and [5, 7, 8, 9]. The reversing of the first stack is best visually
understood by drawing it with the top facing the right side of the page:

↓
t = 0 2 4 5 7 8 9 = u

Given some key x, it is straightly inserted either in t (minding it is sorted
in reverse order) or in u. If we want to insert 1, we should pop 4 and
push it on the right stack, same for 2 and then push 1 on the right stack,
as, by convention, the finger always points to the top of the right stack,
where the last inserted key is:

↓
0 1 2 4 5 7 8 9

Let i2w(s) (insertion going two ways) be the sorted stack corres-
ponding to stack s. Let i2w(s, t, u) be the sorted stack containing all
the keys from s, t and u, where s is a suffix of the original (probably
unsorted) stack and rcat(t, u) is the current simulated stack, that is,
t is the left stack (reversed prefix) and u the right stack (suffix). The
function i2w/1 is defined in figure 3.3 on the next page. Rule ξ in-
troduces the two stacks used for insertion. Rules π and ρ could be re-
placed by i2w([ ], t, u) → rcat(t, u), but we opted for a self-contained
definition. Rule σ is used to move keys from the right stack to the left
stack. Rule τ moves them the other way. Rule υ performs the insertion
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i2w(s)
ξ−→ i2w(s, [ ], [ ]).

i2w([ ], [ ], u)
π−→ u;

i2w([ ], [y |t], u) ρ−→ i2w([ ], t, [y |u]);
i2w([x |s], t, [z |u]) σ−→ i2w([x |s], [z |t], u), if x ≻ z;
i2w([x |s], [y |t], u) τ−→ i2w([x |s], t, [y |u]), if y ≻ x;

i2w([x |s], t, u) υ−→ i2w(s, t, [x |u]).

Figure 3.3: Sorting with 2-way insertion i2w/1

itself, namely, on top of the right stack. Figure 3.4 shows the evalu-
ation of i2w([2, 3, 1, 4]), whose trace is then (ξ)(υ)(συ)(τυ)(σ3υ)(ρ3π).
The number of times rule ρ is used is the number of keys on the left
stack after there are no more keys to sort. Rule π is used once.

i2w([2, 3, 1, 4])
ξ−→ i2w([2, 3, 1, 4], [ ], [ ])
υ−→ i2w([3, 1, 4], [ ], [2])
σ−→ i2w([3, 1, 4], [2], [ ])
υ−→ i2w([1, 4], [2], [3])
τ−→ i2w([1, 4], [ ], [2, 3])
υ−→ i2w([4], [ ], [1, 2, 3])
σ−→ i2w([4], [1], [2, 3])
σ−→ i2w([4], [2, 1], [3])
σ−→ i2w([4], [3, 2, 1], [ ])
υ−→ i2w([ ], [3, 2, 1], [4])
ρ−→ i2w([ ], [2, 1], [3, 4])
ρ−→ i2w([ ], [1], [2, 3, 4])
ρ−→ i2w([ ], [ ], [1, 2, 3, 4])
π−→ [1, 2, 3, 4].

Figure 3.4: i2w([2, 3, 1, 4]) ! [1, 2, 3, 4]

Extremal costs Let us find the minimum and maximum costs for an
input stack of n keys. The best case will exert minimally rules σ and τ ,
and this minimum number of calls turns out to be zero when the two
comparisons are false. The first key inserted does not use rules σ and τ ,
but only rule υ, so, right after, the reversed prefix is empty and the suffix
contains this key. If we want to insert the second key without moving the
first key, and go straight to use rule υ, the second key must be smaller
than the first. Based on the same argument, the third key must be smaller
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than the second etc. In the end, this means that the input, in the best
case, is a stack sorted non-increasingly. The last steps consisting in the
reversal of the prefix, such prefix being empty, we do not even use rule ρ
at all – only rule π once. In other words, the evaluation trace is ζϵnα and,
if we note Bi2w

n the cost when the stack contains n keys in non-increasing
order, then we have

Bi2w
n = |ζϵnα| = n+ 2.

Let us assume that the input stack is noted [x0, x1, . . . , xn−1] and
x ≺ y means y ≻ x. The worst case must exert maximally rules σ and τ ,
on the one hand, and rules π and ρ, on the other hand. Let us focus first
on maximising the use of σ and τ . Since x0 is the first key, it is always
pushed on the suffix stack by rule υ. The second key, x1, in order to
travel the furthest, has to be inserted below x0. By doing so, rule σ is
used once and then υ, therefore, as a result, x0 is on the left (the reversed
prefix) and x1 on the right (the suffix). In other words: we have [x0] and
[x1]. Because of this symmetry, in pursuit of the worst case, we can now
move either x0 or x1 to the facing stack, that is, choose either to set
x2 ≺ x0 or x1 ≺ x2.

• If x2 ≺ x0, rule τ is used once, then rule υ. As a result, we have the
configuration [ ] and [x2, x0, x1]. This translates as x2 ≺ x0 ≺ x1.
The fourth key, x3, must be inserted at the bottom of the right
stack, which must be first reversed on top of the left stack by rule σ:
we then obtain [x1, x0, x2] and [x3], that is, x2 ≺ x0 ≺ x1 ≺ x3.
Finally, the left stack is reversed on top of the second by rule ρ and
rule π is last. The evaluation trace is (ξ)(υ)(συ)(τυ)(σ3υ)(ρ3π),
whose length is 14.

• If x1 ≺ x2, we would have [x1, x0] and [x2], then the stacks [ ]
and [x3, x0, x1, x2], that is, x3 ≺ x0 ≺ x1 ≺ x2. The complete
evaluation trace is (ξ)(υ)(συ)(συ)(τ2υ)(π). The length of this trace
is 10, which is shorter than the previous trace.

As a conclusion, the choice x2 ≺ x0 leads to a worse case. But what if the
input stack contains an odd number n of keys? To guess what happens,
let us insert x4 assuming either x1 ≺ x2 or x2 ≺ x0.

• If x2 ≺ x0, we move all the keys out of the left stack, yielding the
configuration [x4] and [x2, x0, x1, x3], so x4 ≺ x2 ≺ x0 ≺ x1 ≺ x3,
corresponding to the trace (ξ)(υ)(συ)(τυ)(σ3υ)(τ3υ)(ρπ), whose
length is 16.
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x3 ≺ x0 ≺ x1 ≺ x2 ≺ x4

Figure 3.5: Worst case for i2w/1 if n = 5 (x1 ≺ x2)

• If x1 ≺ x2, we want to insert x4 at the bottom of the right stack,
thus obtaining [x2, x1, x0, x3] and [x4]: x3 ≺ x0 ≺ x1 ≺ x2 ≺ x4,
corresponding to the trace (ξ)(υ)(συ)(συ)(τ2υ)(σ4υ)(ρ4π), whose
length is 19. It is perhaps better visualised by means of oriented
edges, revealing a spiral in figure 3.5.

Therefore, it seems that when the number of keys is odd, having x1 ≺ x2
leads to the maximum cost, whilst x2 ≺ x0 leads to the maximum cost
when the number of keys is even. Let us determine these costs for any n
and find out which is the greater. Let us note Wx1≺x2

2p+1 the former cost

and Wx2≺x0
2p the latter.

• If n = 2p + 1 and x1 ≺ x2, then the evaluation trace is

(ξ)(υ)(συ)(συ)(τ2υ)(σ4υ)(τ4υ) . . . (σ2p−2υ)(τ2p−2υ)(σ2pυ)(ρ2pπ),

as a partial evaluation with p = 3 suggests:

i2w([x0, x1, x2, x3, x4, x5, x6])
ξ−→ i2w([ ], [ ], [x0, x1, x2, x3, x4, x5, x6])
υ−→ i2w([ ], [x0], [x1, x2, x3, x4, x5, x6])
σ−→ i2w([x0], [ ], [x1, x2, x3, x4, x5, x6])
υ−→ i2w([x0], [x1], [x2, x3, x4, x5, x6])
σ−→ i2w([x1, x0], [ ], [x2, x3, x4, x5, x6])
υ−→ i2w([x1, x0], [x2], [x3, x4, x5, x6])
τ2

! i2w([ ], [x0, x1, x2], [x3, x4, x5, x6])
υ−→ i2w([ ], [x3, x0, x1, x2], [x4, x5, x6])
σ4

! i2w([x2, x1, x0, x3], [ ], [x4, x5, x6])
υ−→ i2w([x2, x1, x0, x3], [x4], [x5, x6])
τ4

! i2w([ ], [x3, x0, x1, x2, x4], [x5, x6])
υ−→ i2w([ ], [x5, x3, x0, x1, x2, x4], [x6])
σ6

! i2w([x4, x2, x1, x0, x3, x5], [ ], [x6])
υ−→ i2w([x4, x2, x1, x0, x3, x5], [x6], [ ]).

If we omit rules ξ, υ, π and ρ, we can see a pattern emerge from the
subtrace (σ2τ2)(σ4τ4)(σ6τ6) . . . (σ2p−2τ2p−2)(σ2p). Rule υ is used
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n times because it inserts the key in the right place. So the total
cost is

Wx1≺x2
2p+1 = |ξ|+ |υ2p+1|+

p−1
∑

k=1

(

|σ2k|+ |τ2k|
)

+ |σ2p|+ |ρ2pπ|

= 1 + (2p + 1) +
p−1
∑

k=1

2(2k) + (2p) + (2p + 1)

= 2p2 + 4p+ 3.

• If n = 2p and x2 ≺ x0, then the evaluation trace is

(ξ)(υ)(συ)(τυ)(σ3υ)(τ3υ) . . . (σ2p−1υ)(ρ2p−1π),

as the following partial evaluation with p = 3 suggests (first differ-
ence with the previous case is in boldface type):

i2w([x0, x1, x2, x3, x4, x5]) → i2w([ ], [ ], [x0, x1, x2, x3, x4, x5])
υ−→ i2w([ ], [x0], [x1, x2, x3, x4, x5])
σ−→ i2w([x0], [ ], [x1, x2, x3, x4, x5])
υ−→ i2w([x0], [x1], [x2, x3, x4, x5])
τ−→ i2w([ ], [x0, x1], [x2, x3, x4, x5])
υ−→ i2w([ ], [x2, x0, x1], [x3, x4, x5])
σ3

! i2w([x1, x0, x2], [ ], [x3, x4, x5])
υ−→ i2w([x1, x0, x2], [x3], [x4, x5])
τ3

! i2w([ ], [x2, x0, x1, x3], [x4, x5])
υ−→ i2w([ ], [x4, x2, x0, x1, x3], [x5])
σ5

! i2w([x3, x1, x0, x2, x4], [ ], [x5])
υ−→ i2w([x3, x1, x0, x2, x4], [x5], [ ])

If we omit rules ξ, υ, π and ρ, we can see a pattern emerge from
the subtrace (σ1τ1)(σ3τ3)(σ5τ5) . . . (σ2p−3τ2p−3)(σ2p−1). Rule υ is
used n times because it inserts the key in the right place. So the
total cost is

Wx2≺x0
2p = |ξ|+ |υ2p|+

p−1
∑

k=1

(

|σ2k−1|+ |τ2k−1|
)

+ |σ2p−1|+ |ρ2p−1π|

= 1 + (2p) +
p−1
∑

k=1

2(2k − 1) + (2p − 1) + ((2p − 1) + 1)

= 2p2 + 2p + 2.
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These formulas hold for all p # 0. We can now conclude this discussion
about the worst case of i2w/1:

• If n = 2p, the worst case happens when the keys satisfy the total
order x2p ≺ x2p−2 ≺ · · · ≺ x0 ≺ x1 ≺ x3 ≺ · · · ≺ x2p−3 ≺ x2p−1

and W i2w
2p = 2p2 + 2p+ 2, that is, W i2w

n = 1
2n

2 + n+ 2.

• If n = 2p+1, the worst case happens when the keys satisfy the order
x2p−1 ≺ x2p−3 ≺ · · · ≺ x3 ≺ x0 ≺ x1 ≺ x2 ≺ · · · ≺ x2p−2 ≺ x2p
and W i2w

2p+1 = 2p2 + 4p+ 3, that is, W i2w
n = 1

2n
2 + n+ 3

2 .

The first case yields the maximum cost:

W i2w
n =

1

2
n2 + n+ 2 = W isrt

n − n+ 1 ∼W isrt
n ∼ 1

2
n2.

Average cost Let Ai2w
n be the average cost of the call i2w(s), where

the stack s has length n. We are going to use the same assumption as
with Aisrt

n , namely, we look for the cost for sorting all permutations of
(1, 2, . . . , n), divided by n!. The insertions are illustrated by the evalu-
ation tree in figure 3.6, where the keys a, b and c are inserted in this
order in a stack originally empty, with all possible total orders. Note
how all permutations are attained exactly once at the external nodes
(see page 87). For example, [a, b, c] and [c, b, a] are external nodes. The
total cost is the external path length of the tree, that is, the sum of the
lengths of the paths from the root to all the external nodes, which is
the same as the sum of the lengths of all possible traces: |ξυσυσυρ2π|+
|ξυσυτυπ|+ |ξυσυ2ρπ|+ |ξυ2σ2υρ2π|+ |ξυ2συρπ|+ |ξυ3π| = 44, so the
average cost of sorting 3 keys is 44/3! = 22/3.

Given a left stack of p keys and a right stack of q keys, let us charac-
terise all the possible traces for the insertion of one more key, stopping
before another key is inserted or the final stack is made. In the left stack,
an insertion is possible after the first key, after the second etc. until after
the last. After the kth key, with 1 " k " p, the trace is thus τkυ. In the
right stack, an insertion is possible on top, after the first key, after the
second etc. until after the last. After the kth key, with 0 " k " q, the
trace is hence σkυ. All the possible traces are thus

p
∑

k=1

τkυ +
q
∑

k=0

σkυ,

whose cumulated lengths amount to

Cp,q :=
p
∑

k=1

|τkυ|+
q
∑

k=0

|σkυ| = (p + q + 1) +
1

2
p(p+ 1) +

1

2
q(q + 1).
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[ ], [ ]

ξ

[ ], [a]

υ

[a], [ ]

σ

[a], [b]

υ

[b, a], [ ]

σ

[b, a], [c]

υ

[a], [b, c]

ρ

[ ], [a, b, c]

ρ

[a, b, c]

π

[ ], [a, b]

τ

[ ], [c, a, b]

υ

[c, a, b]

π

[a], [c, b]

υ

[ ], [a, c, b]

ρ

[a, c, b]

π

[ ], [b, a]

υ

[b], [a]

σ

[a, b], [ ]

σ

[a, b], [c]

υ

[b], [a, c]

ρ

[ ], [b, a, c]

ρ

[b, a, c]

π

[b], [c, a]

υ

[ ], [b, c, a]

ρ

[b, c, a]

π

[ ], [c, b, a]

υ

[c, b, a]

π

Figure 3.6: Sorting [a, b, c] (first argument of i2w/3 hidden)

There are p+ q + 1 insertion loci, so the average cost of one insertion in
the configuration (p, q) is

Ap,q :=
Cp,q

p+ q + 1
= 1 +

p2 + q2 + p+ q

2p + 2q + 2
. (3.9)

By letting k := p+ q, we can re-express this cost as

Aq−k,q =
1

k + 1
q2 − k

k + 1
q +

k + 2

2
.

The left stack is reversed after the last insertion, so the subsequent traces
are ρp−kπ, with 1 " k " p, if the last insertion took place on the left,
otherwise ρp+kπ, with 0 " k " q, that is, ρ0π, ρ1π, . . . , ρp+qπ. In
other words, after an insertion, all possible configurations are uniquely
realised (only the right stack being empty is invalid, due to rule υ). As a
consequence, we can average the average costs of inserting one key over
all the partitions of k into p + q, with q ̸= 0, so the average cost of
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inserting one key in a simulated stack of k keys is

A0 := 1; Ak :=
1

k

∑

p+q=k

Ap,q =
1

k

k
∑

q=1

Aq−k,q =
1

3
k +

7

6
,

minding that
∑k

q=1 q
2 = k(k + 1)(2k + 1)/6 (see equation (2.8) on

page 53). The cost of the final reversal is also averaged over all possible
configurations, here of n > 0 keys:

A#
n =

1

n

n−1
∑

k=0

|ρkπ| = n+ 1

2
.

Finally, we know that all traces start with ξ, then proceed with all the
insertions and conclude with a reversal. This means that the average cost
Ai2w

n of sorting n keys is defined by the following equations:

Ai2w
0 = 2; Ai2w

n = 1 +
n−1
∑

k=0

Ak +A#
n =

1

6
n2 +

3

2
n+

4

3
∼ 1

6
n2.

We can check that Ai2w
3 = 22/3, as expected. As a conclusion, in average,

sorting with 2-way insertions is faster than with straight insertions, but
the cost is still asymptotically quadratic.

Exercises

1. When designing i2w/3, we chose to always push the key to be
inserted on top of the right stack in rule υ. Let us modify slightly
this strategy and push instead onto the left stack when it is empty.
See rule (❀) in figure 3.7. Prove that the average cost satisfies
now the equation

Ai2w1
n = Ai2w

n −Hn + 2.

i2w1(s)→ i2w1(s, [ ], [ ]).
i2w1([ ], [ ], u) → u;

i2w1([ ], [y |t], u) → i2w1([ ], t, [y |u]);
i2w1([x |s], t, [z |u]) → i2w1([x |s], [z |t], u), if x ≻ z;

i2w1([x |s], [ ], u) ❀ i2w1(s, [x], u);
i2w1([x |s], [y |t], u) → i2w1([x |s], t, [y |u]), if y ≻ x;

i2w1([x |s], t, u)→ i2w1(s, t, [x |u]).

Figure 3.7: Variation i2w1/1 on i2w/1 (see (❀))
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Hint: write down the examples similar to the ones in figure 3.6 on
page 107, determine the average path length and observe that the
difference with i2w/1 is that the configuration with an empty left
stack is replaced with a configuration with a singleton left stack,
to wit, A0,k is replaced with A1,k−1 in the definition of Ak.

2. In rule υ of i2w/3, the key x is pushed on the right stack. Consider
in figure 3.8 (rule (❀)) the variant where it is pushed on the left
stack instead. Show very simply that the average cost satisfies

Ai2w2
n = Ai2w

n + 1.

i2w2(s)→ i2w2(s, [ ], [ ]).
i2w2([ ], [ ], u) → u;

i2w2([ ], [y |t], u) → i2w2([ ], t, [y |u]);
i2w2([x |s], t, [z |u]) → i2w2([x |s], [z |t], u), if x ≻ z;
i2w2([x |s], [y |t], u) → i2w2([x |s], t, [y |u]), if y ≻ x;

i2w2([x |s], t, u) ❀ i2w2(s, [x |t], u).

Figure 3.8: Variation i2w2/1 on i2w/1 (see (❀))

3.3 Balanced 2-way insertion

When sorting with 2-way insertions, keys are inserted from whence the
finger is on the simulated stack. We could maintain the finger at the
middle of the stack, leading to what we call balanced 2-way insertions.
The adjective ‘balanced’ refers to the shape of the comparison tree.

Our best effort to keep the two stacks about the same length must
lead to two cases: either (a) they are exactly of the same length, or (b) one
of them, say the right one, contains one more key. Let us envisage how
to maintain this invariant through insertions. Let us suppose we are in
case (b). Then, if the key has to be inserted in the left stack, the resulting
stacks will have equal lengths, which means case (a); otherwise, we move
the top of the right stack to the top of the left stack, in addition to the
insertion itself, and we are back to case (a) as well. If we are in case (a)
and the insertion takes place in the right stack, no rebalancing has to be
done; otherwise, the top of the left stack is moved to the top of the right:
in both events, we are in case (b). What if the key has to be inserted at
the finger position? If the two stacks have same length, that is, case (a),



110 CHAPTER 3. INSERTION SORT

i2wb(s)
ξ−→ i2wb(s, [ ], [ ], 0).

i2wb([ ], [ ], u, d)
π−→ u;

i2wb([ ], [y |t], u, d) ρ−→ i2wb([ ], t, [y |u], d);
i2wb([x |s], t, [z |u], 0) σ−→ i2wb(s, t, [z | iup(u, x)], 1), if x ≻ z;
i2wb([x |s], [y |t], u, 0) τ−→ i2wb(s, idn(t, x), [y |u], 1), if y ≻ x;

i2wb([x |s], t, u, 0) υ−→ i2wb(s, t, [x |u], 1);
i2wb([x |s], t, [z |u], 1) φ−→ i2wb(s, [z |t], iup(u, x), 0), if x ≻ z;
i2wb([x |s], [y |t], u, 1) χ−→ i2wb(s, [y | idn(t, x)], u, 0), if y ≻ x;

i2wb([x |s], t, u, 1) ψ−→ i2wb(s, [x |t], u, 0).

Figure 3.9: Balanced 2-way insertion

we push the key on top of the right one and go back to case (b); otherwise,
it means that the right stack exceeds the left by one, that is, case (b), so
it is best to push it on the left stack: as a result, the stacks end having
equal lengths and we are back to case (a).

To program this algorithm, we need a variant idn/2 (insert down-
wardly) of ins/2 because the left stack is sorted decreasingly. Let us
rename ins/2 into iup/2 (insert upwardly).

iup([y |s], x) κ0−→ [y | iup(s, x)], if y ≻ x; iup(s, x)
λ0−→ [x |s].

idn([y |s], x) κ1−→ [y | idn(s, x)], if x ≻ y; idn(s, x)
λ1−→ [x |s].

Furthermore, we need an additional parameter that represents the dif-
ference in length between the two stacks: 0 if they have the same length
and 1 if the right contains one more key. Let us call the new function
i2wb/1, whose definition is displayed in figure 3.9. In figure 3.10 on
the next page are shown all the possible traces and outcomes of sorting
[a, b, c]. Note that the tree is not perfect, but balanced, as some arrows
correspond to two rewrites. The internal path length of the tree is 43,
that is the sum of the lengths of the paths from the root to each internal
node, so the average cost is 43/6.

Minimum cost Let us continue by finding what is the minimum cost
of i2wb/1. Let us assume that we have the input [x0, x1, x2, x3, x4] and
we want it to minimise the rewrites, which means not to use rules σ, τ , φ
and χ; also, the usage of rule ρ should be minimum. The latter rule is not
an issue because it reverses the left stack and, by design, the right stack
has the same length as the left, or exceeds it at most by one key. A simple
diagram with the two stacks initially empty suffices to convince us that
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[ ], [ ]

ξ

[ ], [a]

υ

[a], [b]

φλ0

[c], [a, b]

τλ1

[ ], [c, a, b]

ρ

[c, a, b]

π

[a], [c, b]

υ

[ ], [a, c, b]

ρ

[a, c, b]

π

[a], [b, c]

σλ0

[ ], [a, b, c]

ρ

[a, b, c]

π

[b], [a]

ψ

[c], [b, a]

τλ1

[ ], [c, b, a]

ρ

[c, b, a]

π

[b], [c, a]

υ

[ ], [b, c, a]

ρ

[b, c, a]

π

[b], [a, c]

σλ0

[ ], [b, a, c]

ρ

[b, a, c]

π

Figure 3.10: Sorting [a, b, c] by balanced 2-way insertions

the keys must go alternatively to the right and then to the left, leading,
for example, to [x3, x1] and [x4, x2, x0]. This is perhaps better visualised
by means of oriented edges revealing a whirlpool in figure 3.11, to be
contrasted with the spiral in figure 3.5 on page 104 for i2w/1.

The rule definining i2w/1 has to be used first. Then each key is in-
serted, alternatively by means of rule υ and ψ. Finally, the left stack
is reversed by rules π and ρ, so the question hinges on determining the
length of the left stack in the best case. By design, if the total number
of keys is even, then the two stacks will end up containing, before using
rule ρ, exactly half of them, because the stacks have the same length. If
the total is odd, the left stack contains the integral part of this number
halved. Technically, let us note Bi2wb

n the cost of any call i2wb(s), where
the stack s contains n keys. If p # 0, then

Bi2wb
2p = 1 + 2p+ p = 3p + 1, Bi2wb

2p+1 = 1 + (2p + 1) + p = 3p+ 2.

Another, more compact, way to put it is: Bi2wb
n = 1 + n + ⌊n/2⌋ ∼ 3

2n.
The equivalence is correct because n/2− 1 < ⌊n/2⌋ " n/2.

x1 ≺ x3 ≺ x4 ≺ x2 ≺ x0

Figure 3.11: Best case for i2wb/1 if n = 5
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Exercise The worst case occurs when insertions are repeatedly per-
formed at the bottom of the longest stack. Find W i2wb

n and characterise
the worst case.

Average cost Let us consider the average cost when n = 2p. Then

Ai2wb
2p = 1 +

2p−1
∑

k=0

Ak +A#
p ,

where Ak is the average cost of inserting a key into a simulated stack
of k keys and A#

p is the cost of reversing p keys from left to right. The
variable p in A#

p is correct since there are ⌊n/2⌋ keys in the left stack
after all insertions are over. Clearly,

A#
p = p+ 1.

The determination of Ak requires the consideration of only two cases: k is
even or not. When analysing the average cost of i2w/1, there were much
more configurations to take into account because not all the insertions
lead to balanced stacks. If k is even, then there exists an integer j such
that k = 2j and

A2j = Aj,j,

where Aj,j is the average number of rewrites to insert a random number
into a configuration of two stacks of length j. We already computed Ap,q

in equation (3.9) on page 107. Consequently,

A2j =
j2 + 3j + 1

2j + 1
=

1

2
j − 1

4
· 1

2j + 1
+

5

4
.

The case k = 2j + 1 is similarly derived: A2j+1 = (j + 3)/2. Hence:

Ai2wb
2p = 1 +

2p−1
∑

k=0

Ak + (p+ 1) = 2 + p+
p−1
∑

j=0

(A2j +A2j+1)

=
1

2
p2 +

13

4
p+ 2− 1

4

p−1
∑

j=0

1

2j + 1
. (3.10)

We need to find the value of this sum. Let Hn :=
∑n

k=1 1/k be the nth
harmonic number . Then

H2p =
p−1
∑

j=0

1

2j + 1
+

p
∑

j=1

1

2j
=

p−1
∑

j=0

1

2j + 1
+

1

2
Hp.
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We can now replace our sum by harmonic numbers in equation (3.10):

Ai2wb
2p =

1

2
p2 +

13

4
p− 1

4
H2p +

1

8
Hp + 2.

The remaining case is to find Ai2wb
2p+1, which, by the same reckoning, is

Ai2wb
2p+1 = 1 +

2p
∑

k=0

Ak +A#
p .

Let us reuse previous calculations:

Ai2wb
2p+1 = Ai2wb

2p +A2p =
1

2
p2 +

15

4
p− 1

4
H2p+1 +

1

8
Hp +

13

4
.

We have 1 + x < ex, for all real x ̸= 0. In particular, x = 1/i, for i > 0
integer, leads to 1 + 1/i < e1/i. Both sides being positive, we deduce
∏n

i=1(1 + 1/i) <
∏n

i=1 e
1/i ⇔ n+ 1 < exp(Hn). Finally, ln(n+ 1) < Hn.

An upper bound of Hn can be similarly derived by replacing x by −1/i:

ln(n+ 1) < Hn < 1 + lnn. (3.11)

We can now express the bounds on Ai2wb
n without Hn:

ln(p+ 1)− 2 ln(2p) + 14 < 8 · Ai2wb
2p − 4p2 − 26p

< ln p− 2 ln(2p + 1) + 17;

ln(p+ 1)− 2 ln(2p+ 1) + 24 < 8 · Ai2wb
2p+1 − 4p2 − 30p

< ln p− 2 ln(2p + 2) + 27.

Setting n = 2p and n = 2p+ 1 leads to the respective bounds

−2 lnn+ ln(n+ 2) + 4 < ϕ(n) < −2 ln(n+ 1) + lnn+ 7,

−2 lnn+ ln(n+ 1) < ϕ(n) < −2 ln(n+ 1) + ln(n− 1) + 3,

where ϕ(n) := 8 · Ai2wb
n − n2 − 13n − 10 + ln 2. We retain the minimum

of the lower bounds and the maximum of the upper bounds of ϕ(n) so,

ln(n + 1)− 2 ln n < ϕ(n) < −2 ln(n+ 1) + lnn+ 7.

We can weaken the bounds a little bit with lnn < ln(n+1) and simplify:

0 < 8 · Ai2wb
n − n2 − 13n + ln 2n− 10 < 7.

Therefore, for all n > 0, there exists ϵn such that 0 < ϵn < 7/8 and

Ai2wb
n =

1

8
(n2 + 13n − ln 2n+ 10) + ϵn. (3.12)
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Chapter 4

Merge Sort

Knuth (1996) reports that the first computer program, designed in 1945
by the mathematician John von Neumann, was a sorting algorithm, now-
adays called merge sort. It is amongst the most widely taught sorting
algorithms because it illustrates the important solving strategy known
as ‘divide and conquer ’: the input is split, each non-trivial part is recurs-
ively processed and the partial solutions are finally combined to form
the complete solution. While merge sort is not difficult to program, find-
ing its cost requires advanced mathematical knowledge. Most textbooks
(Graham et al., 1994, Cormen et al., 2009) show how to find the or-
der of growth of an upper bound of the cost (expressed by means of
Bachmann’s notation O) from recurrences it satisfies, but the general
case is often not presented in the main chapters, or not at all, because a
precise asymptotic solution requires skills in analytic combinatorics (Fla-
jolet and Sedgewick, 2001, 2009, Flajolet and Golin, 1994, Hwang, 1998,
Chen et al., 1999). Moreover, there are several variants of merge sort
(Knuth, 1998a, Golin and Sedgewick, 1993) and often the only one intro-
duced, called top-down, is illustrated on arrays. We show in this chapter
that stacks, as a purely functional data structure (Okasaki, 1998b), are
suitable both for a top-down and a bottom-up approach of merge sort
(Panny and Prodinger, 1995).

4.1 Merging

John von Neumann did not actually described merge sort, but its ba-
sic operation, merging, which he named meshing. Merging consists in
combining two ordered stacks of keys into one ordered stack. Without
loss of generality, we shall be only interested in sorting keys in increas-
ing order. For instance, merging [10, 12, 17] and [13, 14, 16] results in

115
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mrg([ ], t)
θ−→ t;

mrg(s, [ ])
ι−→ s;

mrg([x |s], [y |t]) κ−→ [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t) λ−→ [x |mrg(s, t)].

Figure 4.1: Merging two stacks

[10, 12, 13, 14, 16, 17]. One way to achieve this consists in comparing the
two smallest keys, output the smallest and repeat the procedure until one
of the stacks becomes empty, in which case the other is wholly appended.
We have (compared keys underlined):

{

10 12 17

13 14 16
→ 10

{

12 17

13 14 16
→ 10 12

{

17

13 14 16
→ 10 12 13

{

17

14 16

The function mrg/2 (merge) in figure 4.1 implements this scheme.
Rule ι is not necessary but is retained because it allows the cost to
be symmetric, just as mrg/2 is: Cmrg

m,n = Cmrg
n,m and mrg(s, t) ≡ mrg(t, s),

where m and n are the lengths of s and t. This property enables easier
cost calculations and faster computations. Note that in the definition
of cat/2 (equation (1.3) on page 7), we do not include a similar rule,
cat(s, [ ]) → s, because, despite the gain in speed, the function is asym-
metric and cost calculations are simplified when using Ccat

n rather than
Ccat
m,n. Figure 4.2 shows a trace for mrg/2. Rules κ and λ involve a com-

parison, while θ and ι do not and end the evaluations; therefore, if Cmrg
m,n

is the number of comparisons to merge with mrg/2 two stacks of lengths
m and n, we have

Cmrg
m,n = Cmrg

m,n + 1. (4.1)

mrg([3, 4, 7], [1, 2, 5, 6])
κ−→ [1 |mrg([3, 4, 7], [2, 5, 6])]
κ−→ [1, 2 |mrg([3, 4, 7], [5, 6])]
λ−→ [1, 2, 3 |mrg([4, 7], [5, 6])]
λ−→ [1, 2, 3, 4 |mrg([7], [5, 6])]
κ−→ [1, 2, 3, 4, 5 |mrg([7], [6])]
κ−→ [1, 2, 3, 4, 5, 6 |mrg([7], [ ])]
ι−→ [1, 2, 3, 4, 5, 6, 7].

Figure 4.2: mrg([3, 4, 7], [1, 2, 5, 6]) ! [1, 2, 3, 4, 5, 6, 7]
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In order to gain some generality, we shall study Cmrg
m,n. Graphically, we

represent a key from one stack as a white node (◦) and a key from the
other as a black node (•). Nodes of these kinds are printed in a horizontal
line, the leftmost being the smallest. Comparisons are always performed
between black and white nodes and are represented as edges in

(4.2)

An incoming arrow means that the node is smaller than the other end
of the edge, so all edges point leftwards and the number of comparisons
is the number of nodes with an incoming edge.

Minimum cost There are two consecutive white nodes without any
edges at the right end, which suggests that the more keys from one
stack we have at the end of the result, the fewer comparisons we needed
for merging: the minimum number is achieved when the shorter stack
comes first in the result. Consider the following example (the number of
comparisons is the number of black nodes):

The minimum number of comparisons Bmrg
m,n when merging stacks of size

m and n is
Bmrg
m,n = min{m,n}. (4.3)

Maximum cost We can see that we can increase the number of com-
parisons with respect to m + n by removing, in (4.2), those rightmost
nodes in the result that are not compared, as can be seen in

This maximises comparisons because all nodes, but the last, are the
destination of an edge. The maximum number of comparisons Wmrg

m,n is

Wmrg
m,n = m+ n− 1. (4.4)

Interchanging the two rightmost nodes in the previous example leaves
m+ n− 1 invariant:

so the maximum number of comparisons occurs when the last two keys
of the result come from two stacks.
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Average cost Let us seek the average number of comparisons in all
distinct mergers of two stacks of lengths m and n. Consider figure 4.3,
with m = 3 white nodes and n = 2 black nodes which are interleaved in
all possible manners. Note how the figure is structured. The first column
lists the configurations where the rightmost black node is the last of
the result. The second column lists the cases where the rightmost black
node is the penultimate node of the result. The third column is divided
in two groups itself, the first of which lists the cases where the rightmost
black node is the antepenultimate. The total number of comparisons
is 35 and the number of configurations is 10, thus the average number of
comparisons is 35/10 = 7/2. Let us devise a method to find this ratio for
any m and n. First, the number of configurations: how many ways are
there to combine m white nodes and n black nodes? This is the same as
asking how many ways there are to paint in black n nodes picked amongst
m + n white nodes. More abstractly, this is equivalent to wonder how
many ways there are to choose n objects amongst m + n. This number
is called a binomial coefficient and noted

(m+n
n

)

. For example, let us
consider the set {a, b, c, d, e} and the combinations of 3 objects taken
from it are

{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e},
{b, c, d}, {b, c, e}, {b, d, e},

{c, d, e}.

This enumeration establishes that
(5
3

)

= 10. Notice that we use mathem-
atical sets, therefore the order of the elements or their repetition are not
meaningful. It is not difficult to count the combinations if we recall how
we counted the permutations, on page 79. Let us determine

(r
k

)

. We can
pick the first object amongst r, the second amongst r−1 etc. until we pick
the rth object amongst r−k+1, so there are r(r−1) . . . (r−k+1) choices.
But these arrangements contain duplicates, for example, we may form
{a, b, c} and {b, a, c}, which are to be considered identical combinations
because order does not matter. Therefore, we must divide the number

Figure 4.3: All possible mergers with m = 3 (◦) and n = 2 (•)
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we just obtained by the number of redundant arrangements, which is the
number of permutations of k objects, that is, k!. In the end:

(
r

k

)

:=
r(r − 1) . . . (r − k + 1)

k!
=

r!

k!(r − k)!
.

We can check now that in figure 4.3 on the preceding page, we must
have 10 cases:

(5
2

)

= 5!/(2!3!) = 10. The symmetry of the problem means
that merging a stack of m keys with a stack of n leads to exactly the
same results as merging a stack of n keys with a stack of m keys:

(
m+ n

n

)

=

(
m+ n

m

)

.

This can also be easily proved by means of the definition:

(
m+ n

n

)

:=
(m+ n)!

n!(m+ n− n)!
=

(m+ n)!

m!n!
=:

(
m+ n

m

)

.

The total number K(m,n) of comparisons needed to merge m and n keys
in all possible manners with our algorithm is the number of nodes with
incoming edges. Let K(m,n) be the total number of nodes without in-
coming edges, circled in figure 4.4. This figure has been obtained by
moving the third column of figure 4.3 on the facing page below the
second column and by removing the edges. Since, for each merger, there
are m + n nodes and each has an incoming edge or not, and because
there are

(m+n
n

)

mergers, we have

K(m,n) +K(m,n) = (m+ n)

(
m+ n

n

)

. (4.5)

It is simple to characterise the circled nodes: they make up the longest,
rightmost contiguous series of nodes of the same colour. Since there are

Figure 4.4: Counting vertically
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only two colours, the problem of determining the total number W (m,n)
of white circled nodes is symmetric to the determination of the total
number B(m,n) of black circled nodes, that is,

B(m,n) = W (n,m).

Therefore,

K(m,n) = W (m,n) +B(m,n) = W (m,n) +W (n,m). (4.6)

From equations (4.5) and (4.6), we draw

K(m,n) = (m+ n)

(
m+ n

n

)

−W (m,n)−W (n,m). (4.7)

We can decompose W (m,n) by counting the circled white nodes vertic-
ally. In figure 4.4, W (3, 2) is the sum of the numbers of mergers with at
least one, two and three ending circled white nodes: W (3, 2) = 1+3+6 =
10. The first column yields B(3, 2) = 1 + 4 = 5. In general, the number
of mergers with one ending circled white node is the number of ways to
combine n black nodes with m − 1 white nodes:

(n+m−1
n

)

. The number

of mergers with at least two ending white nodes is
(n+m−2

n

)

, etc.

W (m,n) =

(
n+m− 1

n

)

+

(
n+m− 2

n

)

+· · ·+
(
n+ 0

n

)

=
m−1
∑

j=0

(
n+ j

n

)

.

This sum can actually be simplified, more precisely, it has a closed form,
but in order to understand its underpinnings, we need firstly to develop
our intuition about combinations. By computing combinations

(r
k

)

for
small values of r and k using the definition, we can fill a table traditionally
known as Pascal’s triangle and displayed in figure 4.5 on the next page.
Note how we set the convention

(r
k

)

= 0 if k > r. Pascal’s triangle features
many interesting properties relative to the sum of some of its values. For
instance, if we choose a number in the triangle and look at the one on
its right, then the one below the latter is their sum. For the sake of
illustration, let us extract from figure 4.5 on the facing page the lines
r = 7 and r = 8:

7 1 7 21 35 35 21 7 1 0 0
8 1 8 28 56 70 56 28 8 1 0

We surrounded two examples of the additive property of combinations
we discussed: 21 + 35 = 56 and 21 + 7 = 28. We would then bet that

(
r − 1

k − 1

)

+

(
r − 1

k

)

=

(
r

k

)

.
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k
(
r

k

)

0 1 2 3 4 5 6 7 8 9

r

0 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

2 1 2 1 0 0 0 0 0 0 0

3 1 3 3 1 0 0 0 0 0 0

4 1 4 6 4 1 0 0 0 0 0

5 1 5 10 10 5 1 0 0 0 0

6 1 6 15 20 15 6 1 0 0 0

7 1 7 21 35 35 21 7 1 0 0

8 1 8 28 56 70 56 28 8 1 0

9 1 9 36 84 126 126 84 36 9 1

Figure 4.5: The corner of Pascal’s triangle (in boldface type)

This is actually not difficult to prove if we go back to the definition:
(
r

k

)

:=
r!

k!(r − k)!
=

r

k
· (r − 1)!

(k − 1)!((r − 1)− (k − 1))!
=

r

k

(
r − 1

k − 1

)

.

(
r

k

)

:=
r!

k!(r − k)!
=

r

r − k
· (r − 1)!

k!((r − 1)− k)!
=

r

r − k

(
r − 1

k

)

.

The first equality is valid if k > 0 and the second if r ̸= k. We can now
replace

(r−1
k−1

)

and
(r−1

k

)

in terms of
(r
k

)

in the sum
(
r − 1

k − 1

)

+

(
r − 1

k

)

=
k

r

(
r

k

)

+
r − k

r

(
r

k

)

=

(
r

k

)

.

The sum is valid if r > 0. There is direct proof of the formula by enu-
merative combinatorics without algebra. Let us suppose that we already
have all the subsets of k keys chosen among r. By definition, there are
(r
k

)

of them. We choose to distinguish an arbitrary key amongst r and we
want to group the subsets in two sets: on one side, all the combinations
containing this particular key, on the other side, all the combinations
without it. The former subset has cardinal

(r−1
k−1

)

because its combina-
tions are built from the fixed key and further completed by choosing
k − 1 remaining keys amongst r − 1. The latter subset is made of

(r−1
k

)

combinations which are made from r − 1 keys, of which k have to be
selected because we ignore the distinguished key. This yields the same
additive formula. Now, let us return to our pending sum

W (m,n) =
m−1
∑

j=0

(
n+ j

n

)

.
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1 0
5 1

15 6

35 21

56

In terms of navigation across Pascal’s triangle, we under-
stand that this sum operates on numbers in the same column.
More precisely, it starts from the diagonal with the number
(n
n

)

= 1 and goes down until a total of m numbers have been
added. So let us choose a simple example and fetch two adja-
cent columns were the sum is small. On the left is an excerpt

for n = 4 (the left column is the fifth in Pascal’s triangle) and m = 4
(height of the left column). Interestingly, the sum of left column, which
is the sum under study, equals the number at the bottom of the second
column: 1 + 5 + 15 + 35 = 56. By checking other columns, we may feel
justified to think that this is a general pattern. Before attempting a gen-
eral proof, let us see how it may work on our particular example. Let
us start from the bottom of the second column, that is, 56, and use
the addition formula in reverse, that is, express 56 as the sum of the
numbers in the row above it: 56 = 35 + 21. We would like to keep 35
because it is part of the equality to prove. So let us apply the addition
formula again to 21 and draw 21 = 15 + 6. Let us keep 15 and resume
the same procedure on 6 so 6 = 5+1. Finally, 1 = 1+0. We just checked
56 = 35+(15+(5+(1+0))), which is exactly what we wanted. Because
we want the number corresponding to 35 in our example to be

(n+m−1
n

)

,
we have the derivation
(
n+m

n+ 1

)

=

(
n+m− 1

n

)

+

(
n+m− 1

n+ 1

)

=

(
n+m− 1

n

)

+

[(
n+m− 2

n

)

+

(
n+m− 2

n+ 1

)]

=

(
n+m− 1

n

)

+

(
n+m− 2

n

)

+ · · ·+
[(

n

n

)

+

(
n

n+ 1

)]

,

(
n+m

n+ 1

)

=
m−1
∑

j=0

(
n+ j

n

)

= W (m,n). (4.8)

Now, we can replace this closed form in equation (4.7) on page 120 so

K(m,n) = (m+ n)

(
m+ n

n

)

−
(
m+ n

n+ 1

)

−
(
m+ n

m+ 1

)

.

By definition, the average number of comparisons Amrg
m,n is the ratio of

K(m,n) by
(m+n

n

)

, therefore

Amrg
m,n = m+ n− m

n+ 1
− n

m+ 1
=

mn

m+ 1
+

mn

n+ 1
. (4.9)

Since we necessarily expect Bmrg
m,n " Amrg

m,n "Wmrg
m,n, we may wonder if and

when the bounds are tight. For the upper bound to be tight, we need
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(m,n) to satisfy the equation m2 + n2 − mn = 1, whose only natural
solutions are (0, 1), (1, 0) and (1, 1). For the lower bound to be tight, we
must have mn/(m+ 1) +mn/(n+ 1) = min{m,n}, whose only natural
solutions are (0, n), (m, 0) and (1, 1). Furthermore, the cases (m, 1) and
(1, n) may suggest that merging one key with others is equivalent to
inserting that key amongst the others, as we did with straight insertion
in section 3.1 on page 91. In other words, we expect the theorem

ins(x, s) ≡ mrg([x], s). (4.10)

Therefore, insertion is a special case of merging. Nevertheless, the av-
erage costs are not exactly the same. First, we have Amrg

m,n = Amrg
m,n + 1,

because we need to account for using once either rule θ or ι in figure 4.1,
as we already acknowledged by equation (4.1). Then, equations (3.4) on
page 93 and (4.9) yield

Amrg
1,n =

1

2
n+ 2− 1

n+ 1
and Ains

n =
1

2
n+ 1.

Asymptotically, they are equivalent:

Amrg
1,n ∼ Ains

n .

But mrg/2 is slightly slower in average than ins/2 in this special case:

Amrg
1,n −Ains

n = 1− 1

n+ 1
< 1 and Amrg

1,n −Ains
n ∼ 1.

Also, it may be interesting to see what happens when m = n, that is,
when the two stacks to be merged have the same length:

Amrg
n,n = 2n − 1 +

2

n+ 1
= Wmrg

n,n − 1 +
2

n+ 1
∼ 2n. (4.11)

In other words, the average cost of merging two stacks of identical length
is asymptotically the total number of keys being merged, which is the
worst case.

Termination The termination of mrg/2 in figure 4.1 on page 116 is
easy to prove by considering a lexicographic order (page 13) on pairs of
stacks which are, in turn, partially ordered by the immediate subterm
relation (page 12), or, more restrictively, the immediate substack relation ,
that is, [x |s] ≻ s. The dependency pairs of rules κ and λ are ordered by
([x |s], [y |t]) ≻ ([x |s], t) and ([x |s], t) ≻ (s, t). ✷
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[1, 2, 3, 4, 5, 6, 7, 8]

[1, 3, 5, 7]

[3, 7]

[7] [3]

[1, 5]

[5] [1]

[2, 4, 6, 8]

[6, 8]

[6] [8]

[2, 4]

[4] [2]

Figure 4.6: Sorting [7, 3, 5, 1, 6, 8, 4, 2]

4.2 Sorting 2
n keys

Merging can be used to sort one stack of keys as follows. The initial
stack of keys is split in two, then the two pieces are split again etc.
until singletons remain. These are then merged pairwise etc. until only
one stack remains, which is inductively sorted, since a singleton stack is a
sorted stack on its own and mrg(s, t) is sorted if s and t are. The previous
scheme leaves open the choice of a splitting strategy and, perhaps, the
most intuitive way is to cut in two halves, which works well in the case
of 2p keys. We will see in later sections how to deal with the general
case and with a different splitting strategy. For now, let us consider in
figure 4.6 all the mergers and their relative order to sort the stack
[7, 3, 5, 1, 6, 8, 4, 2]. We name this structure a merge tree, because each
node of the tree is a sorted stack, either a singleton or the merger of its
two children. The root logically holds the result. The merge tree is best
understood from a bottom-up, level by level examination. Let us note
C✶
p the number of comparisons to sort 2p keys and consider a merge tree

with 2p+1 leaves. It is made of two immediate subtrees with 2p leaves
and the root holds 2p+1 keys. Therefore

C✶

0 = 0, C✶

p+1 = 2 · C✶

p + Cmrg
2p,2p .

Unrolling the recursion, we arrive at

C✶

p+1 = 2p
p
∑

k=0

1

2k
Cmrg
2k,2k

. (4.12)

Minimum cost When the given stack is already sorted, either in in-
creasing or decreasing order, the number of comparisons is minimum. In
fact, given a minimum-comparison merge tree, any exchange of two sub-
trees whose roots are merged leaves the number of comparisons invariant.
This happens because the merge tree is built bottom-up and the number
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of comparisons is a symmetric function. Let us note B✶
p the minimum

number of comparisons to sort 2p keys. From equations (4.12) and (4.3),

B✶

p = 2p−1
p−1
∑

k=0

1

2k
Bmrg
2k,2k

= p2p−1. (4.13)

Maximum cost Just as with the best case, constructing a maximum-
comparison merge sort is achieved by making worst cases for all the sub-
trees, for example, [7, 3, 5, 1, 4, 8, 6, 2]. Let W✶

p be the maximum number
of comparisons for sorting 2p keys. From equations (4.12) and (4.4),

W✶

p = 2p−1
p−1
∑

k=0

1

2k
Wmrg

2k,2k
= (p− 1)2p + 1. (4.14)

Average cost For a given stack, all permutations of which are equally
likely, the average cost of sorting it by merging is obtained by consid-
ering the average costs of all the subtrees of the merge tree: all the
permutations of the keys are considered for a given length. Therefore,
equation (4.12) is satisfied by Amrg

2k ,2k
and A✶

p , that is, the average num-

ber of comparisons for sorting 2p keys. Equations (4.11) and (4.1) yield

Amrg
n,n = 2n− 2 +

2

n+ 1
.

Together with equation (4.12), we further draw, for p > 0,

A✶

p = 2p−1
p−1
∑

k=0

1

2k
Amrg

2k,2k
= 2p

p−1
∑

k=0

1

2k

(

2k − 1 +
1

2k + 1

)

= 2p
(

p−
p−1
∑

k=0

1

2k
+

p−1
∑

k=0

1

2k(2k + 1)

)

= 2p
(

p−
p−1
∑

k=0

1

2k
+

p−1
∑

k=0

(
1

2k
− 1

2k + 1

)
)

= p2p − 2p
p−1
∑

k=0

1

2k + 1

= p2p − 2p
∑

k#0

1

2k + 1
+ 2p

∑

k#p

1

2k + 1
= p2p − α2p +

∑

k#0

1

2k + 2−p
,

(4.15)

where α :=
∑

k#0
1

2k+1
≃ 1.264500 is irrational (Borwein, 1992). Since

0 < 2−p < 1, we have 1/(2k +1) < 1/(2k +2−p) < 1/2k and we conclude

(p − α)2p + α < A✶

p < (p − α)2p + 2. (4.16)
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The uniform convergence of the series
∑

k#0
1

2k+2−p allows us to inter-

change the limits on k and p and deduce that A✶
p − (p− α)2p − 2→ 0−,

as p→∞. In other words, A✶
p is best approximated by its upper bound,

for sufficiently large values of p.

4.3 Top-down merge sort

When generalising the fifty-fifty splitting rule to an arbitrary number
of keys, thus obtaining stacks of lengths ⌊n/2⌋ and ⌈n/2⌉, we obtain
the variant of merge sort called top-down. The corresponding program is
shown in figure 4.7. Note that the call cutr(s, t, u) reverses the first half
of t on top of s if s = t. The technique consists in starting with s = [ ] and
projecting the keys of t one by one and those of u two by two, so when
cutr(s, t, [ ]) or cutr(s, t, [y]) are reached, we know that t is the second half
of the original stack and s is the reversed first half (of length ⌊n/2⌋ if
n is the length of the original stack). In the first rule of tms/1, we saved
one recursive call to cutr/3 and some memory by calling cutr([x], [y |t], t)
instead of cutr([ ], [x, y | t], [x, y | t]). Moreover, this way, the second rule
implements the two base cases, tms([ ]) and tms([y]). Furthermore, notice
that, in the second rule of cutr/2, if u = [ ], then the length of the original
stack is even and if u = [a], then it is odd. One possible drawback of
tms/1 is that the sort is unstable, that is, the relative order of equal keys
is not invariant.

Since all comparisons are performed by mrg/2, the definition of tms/1
implies that the number of comparisons satisfies

Ctms
0 = Ctms

1 = 0, Ctms
n = Ctms

⌊n/2⌋ + Ctms
⌈n/2⌉ + Cmrg

⌊n/2⌋,⌈n/2⌉. (4.17)

tms([x, y |t])→ cutr([x], [y |t], t);
tms(t)→ t.

cutr(s, [y |t], [a, b |u])→ cutr([y |s], t, u);
cutr(s, t, u)→ mrg(tms(s), tms(t)).

mrg([ ], t)→ t;
mrg(s, [ ])→ s;

mrg([x |s], [y |t]) → [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t)→ [x |mrg(s, t)].

Figure 4.7: Top-down merge sort with tms/1
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Minimum cost The minimum number of comparisons satisfies

Btms
0 = Btms

1 = 0, Btms
n = Btms

⌊n/2⌋ + Btms
⌈n/2⌉ + Bmrg

⌊n/2⌋,⌈n/2⌉.

20 1

21 10
11

22 100
101
110
111

23 1000
1001
1010
1011
1100
1101
1110
1111

...
...

2⌊lgn⌋ . . .
...
n

Figure 4.8

We have Btms
n = Btms

⌊n/2⌋ + Btms
⌈n/2⌉ + ⌊n/2⌋, using equa-

tion (4.3) on page 117. In particular

Btms
2p = 2 · Btms

p + p, Btms
2p+1 = Btms

p + Btms
p+1 + p.

Let us introduce the difference of two successive terms,
∆n := Btms

n+1 − Btms
n , so ∆0 = 0, and find some con-

straints on it. Because of the floor and ceiling func-
tions of n/2, we consider two complementary cases.

• ∆2p = Btms
2p+1 − Btms

2p = Btms
p+1 − Btms

p = ∆p.

• ∆2p+1 = Btms
p+1 − Btms

p + 1 = ∆p + 1.

We already met ∆n under the name νn in equa-
tion (1.7) on page 11. Let us define it recursively:

ν0 := 0, ν2n := νn, ν2n+1 := νn + 1. (4.18)

This definition becomes obvious when we consider the
binary representations of 2n and 2n + 1. Notice that
ν is a deceptively simple function: it is periodic be-
cause ν1 = ν2p = 1, but ν2p−1 = p. Resuming our
argument: Btms

n+1 = Btms
n + νn, and summing on both

sides yields

Btms
n =

n−1
∑

k=0

νk. (4.19)

Trollope (1968) first found a closed form for
∑n−1

k=0 νk, whose demonstra-
tion was later simplified by Delange (1975), who extended the analysis
with Fourier series. Stolarsky (1977) provided many references on the
subject. In equation (4.13), we have Btms

2p = 1
2p2

p, that is, Btms
n = 1

2n lg n
when n = 2p. This should prompt us to look, like McIlroy (1974), for
an additional linear term in the general case, that is, the greatest real
constants a and b such that, for n # 2,

Low(n) : 1
2n lg n+ an+ b " Btms

n . (4.20)

The base case is Low(2) : 2a+ b " 0. The most obvious way to structure
the inductive argument is to follow the definition of Btms

n when n = 2p
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Bits of n n

0 0 . . . 0 0
... Btms

2p
...

0 1 . . . 1 2p − 1
1 0 . . . 0 2p

... Btms
i

...
1 . . . 2p + i− 1

2p + i

Figure 4.9: Btms
2p+i = Btms

2p + Btms
i + i

and n = 2p + 1, but a bound on Btms
2p+1 would rely on bounds on Btms

p

and Btms
p+1, compounding imprecision. Instead, if we could have at least

one exact value from which to inductively build the bound, we would
gain accuracy. Therefore, we may expect a better bound if we can find a
decomposition of Btms

2p+i, where 0 < i " 2p, in terms of Btms
2p (exact) and

Btms
i . This is easy if we count the 1-bits in figure 4.9, which is the same

as the table in figure 4.8, where n = 2p + i. (Keep in mind that Btms
n

is the sum of the bits up to n− 1, as seen in equation (4.19).) We find:

Btms
2p+i = Btms

2p + Btms
i + i. (4.21)

(The term i is the sum of the leftmost bits.) Therefore, let us assume
Low(n), for all 1 " n " 2p, and prove Low(2p + i), for all 0 < i " 2p.
The induction principle entails then that Low(n) holds for all n # 2. The
inductive step Low(2p + i) should give us the opportunity to maximise
the constants a and b. Let m = 2p. Using Btms

2p = 1
2p2

p and the inductive
hypothesis Low(i), we have

1
2m lgm+ (12 i lg i+ ai+ b) + i " Btms

m + Btms
i + i = Btms

m+i. (4.22)

We need now to find a and b such that the inductive step L(m+ i) holds
as well, that is, 1

2(m+ i) lg(m+ i) + a(m+ i) + b " Bm+i. Using (4.22),
this is implied by

1
2(m+ i) lg(m+ i) + a(m+ i) + b " 1

2m lgm+ (12 i lg i+ ai+ b) + i.

We can already notice that this inequality is equivalent to

1
2m lg(m+ i) + 1

2 i lg(m+ i) + am " 1
2m lgm+ 1

2 i lg i+ i. (4.23)

But 1
2m lg(m + i) > 1

2m lgm and 1
2 i lg(m + i) > 1

2 i lg i, therefore the
constant a we are seeking must satisfy am " i for all 0 < i < m, hence
we expect a < 0.
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We extend i over the real numbers by defining i = x2p = xm, where
x is a real number such that 0 < x " 1. By replacing i by xm in
inequality (4.23), we obtain

1
2(1 + x) lg(1 + x) + a " 1

2x lg x+ x.

Let Φ(x) := 1
2x lg x−

1
2 (1 + x) lg(1 + x) + x. Then, this is equivalent to

a " Φ(x).
The function Φ can be continuously extended at 0, as limx→0 x lg x =

0, and it is differentiable on the interval ]0, 1]:

dΦ

dx
=

1

2
lg

4x

x+ 1
. (4.24)

The root of dΦ/dx = 0 is 1/3, and the derivative is negative before, and
positive after. Therefore, amax := min0"x"1Φ(x) = Φ(13) = −

1
2 lg

4
3 . The

base case was b " −2a, therefore bmax := −2amax = lg 4
3 . Finally,

1
2n lg n−

(
1
2 lg

4
3

)

n+ lg 4
3 " Btms

n , (4.25)

where 1
2 lg

4
3 ≃ 0.2075 and lg 4

3 ≃ 0.415. Importantly, the lower bound is
tight if x = 1/3, that is, when 2p + i = 2p + x2p = (1 + 1/3)2p = 2p+2/3,
or, in general, 2k/3. The nearest integers are ⌊2k/3⌋ and ⌈2k/3⌉, so we
must find out which one minimises Btms

n − 1
2n lg(34n), because we have

1
2n lg n−

(
1
2 lg

4
3

)

n = 1
2n lg(34n). We start with the following theorems.

Lemma 1. Integers of the form 4p − 1 are divisible by 3.

Proof. Let Div(p) be the proposition to prove. Trivially, Div(1) is true.
Let us assume Div(p) and proceed to establish Div(p+ 1). The former
means that there exists an integer q such that 4p − 1 = 3q. Therefore,
4p+1 − 1 = 3(4q + 1), which means that Div(p+ 1) holds. The induction
principle then entails that the lemma holds for all integers p.

Theorem 2. We have Btms
1+φk

− Btms
φk

= ⌊k/2⌋, where φk := ⌊2k/3⌋.

Proof. Let φk := ⌊2k/3⌋. Either k is even or odd.

• If k = 2m, then 2k/3 = (4m − 1)/3 + 1/3. Since 1/3 < 1 and, by
lemma 1, (4m − 1)/3 is an integer, we have 2k/3 = ⌊2k/3⌋ + 1/3
and ⌊2k/3⌋ = (4m − 1)/3 = 4m−1 + 4m−2 + · · · + 1 = 22m−2 +
22m−4 + · · · + 1 = (1010 . . . 01)2. Hence νφ2m = m. We know that
Btms
m+1 = Btms

m + νm, therefore Btms
1+φ2m

−Btms
φ2m

= m, or, equivalently,

Btms
1+φk

− Btms
φk

= ⌊k/2⌋.
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• If k = 2m+1, then 2k/3 = 2(4m−1)/3+2/3. Since 2/3 < 1 and, by
lemma 1, (4m − 1)/3 is an integer, we have 2k/3 = ⌊2k/3⌋+ 2/3 =
⌈2k/3⌉−1/3 and ⌊2k/3⌋ = 2(4m−1)/3 = 22m−1+22m−3+ · · ·+2 =
(1010 . . . 10)2; so νφ2m+1 = m. From Btms

m+1 = Btms
m + νm comes

Btms
1+φ2m+1

−Btms
φ2m+1

= m, or, equivalently, Btms
1+φk

−Btms
φk

= ⌊k/2⌋.✷

Let Q(x) := 1
2x lg(

3
4x) and let us proceed to compare Btms

φk
−Q(φk) with

Btms
1+φk

−Q(1 + φk) by making two cases depending upon the parity of k.
If the former difference is smaller, then p = φk is the integer which
minimises Btms

p − 1
2p lg(

3
4p); otherwise, it is p = 1 + φk.

• If k = 2m+ 2, then φ2m+2 = 22m + φ2m (see proof of theorem 2).
From equation (4.21), we draw Btms

φ2m+2
= Btms

22m + Btms
φ2m

+ φ2m =

Btms
φ2m
−m4m+φ2m. Summing both sides from m = 0 to m = n− 1

yields Btms
φ2n

= Btms
φ0

+ Sn +
∑n−1

m=0 φ2m, where Sn :=
∑n−1

m=0 m4m.

We have Sn + n4n =
∑n

m=1m4m =
∑n−1

m=0(m+ 1)4m+1 = 4 · Sn +
4
∑n−1

m=0 4
m. Finally, 9 · Sn = (3n − 4)4n + 4. On the other hand,

9
∑n−1

m=0 φ2m = 4n − 3n − 1. Finally, remarking that φ0 = 0 and
Btms
0 = 0, we gather that

Btms
φ2n

= (n− 1)φ2n. (4.26)

Let us now work out Q(φ2n) = 1
2φ2n(2(n − 1) + lg(1 − 1/4n)) =

Btms
φ2n

+ 1
2φ2n lg(1 − 1/4n), with an application of (4.26). If we let

f(x) := (1 − x) ln(1 − 1/x), then Btms
φ2n
− Q(φ2n) = f(4n)/(6 ln 2).

Elementary analysis shows that 3 ln 3
4 " f(x) < 1, for x # 4, that

is, 1 − 1
2 lg 3 " Btms

φ2n
− Q(φ2n) < 1/(6 ln 2), if n # 1. This means

that 0.2075 < Btms
φ2n
−Q(φ2n) < 0.2405.

From theorem 2 and equation (4.26), we have

Btms
1+φ2n

= (n− 1)(1 + φ2n) + 1. (4.27)

Furthermore, Q(1+φ2n) =
1
2(1+φ2n)(2(n−1)+lg(1+1/22n−1)) =

Btms
1+φ2n

−1+ 1
6 (4

n+2) lg(1+2/4n), the last step making use of (4.27).

If g(x) := 1− 1
6 (x+2) lg(1+2/4n), then Btms

1+φ2n
−Q(1+φ2n) = g(4n).

Elementary analysis entails that 2 − lg 3 " g(x) < 1 − 1/(3 ln 2),
when x # 4, that is, 2 − lg 3 " g(4n) < 1 − 1/(3 ln 2), for n # 1.

Approximately, 0.4150 < Btms
1+φ2n

−Q(1 + φ2n) < 0.5192.

Hence p = φ2n = (1010 . . . 01)2 minimises Btms

p − 1
2p lg(

3
4p).
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• If k = 2m + 1, then φ2m+1 = 22m−1 + φ2m−1 (see proof of the-
orem 2). From equation (4.21), we draw Btms

φ2m+1
= Btms

22m−1+Btms
φ2m−1

+

φ2m−1 = Btms
φ2m−1

− (2m − 1)4m−1 + φ2m−1. Summing both sides

from m = 1 to m = n − 1 and multiplying by 9 yields 9Btms
φ2n+1

=
1
2Sn+1 − 3(4n − 1) +

∑n−1
m=0 φ2m+1, which simplifies into

Btms
φ2n+1

= (n− 1
2)φ2n+1. (4.28)

We have Q(φ2n+1) = 1
2φ2n+1(2n − 1 + lg(1 − 1/4n)) = Btms

φ2n+1
+

1
2φ2n+1 lg(1− 1/4n), where the last equality follows from (4.28). If
we let f(x) := (1 − x) ln(1 − 1/x), as we did for Q(φ2n), we have
Btms
φ2n+1

− Q(φ2n+1) = f(4n)/(3 ln 2). We know 3 ln 3
4 " f(x) < 1,

for x # 4, therefore lg 3 − 2 " Btms
φ2n+1

− Q(φ2n+1) < 1/(3 ln 2), if

n # 1. Hence 0.4150 < Btms
φ2n+1

−Q(φ2n+1) < 0.4809.

From theorem 2 and equation (4.28), we deduce

Btms
1+φ2n+1

= (n − 1
2 )(1 + φ2n+1) +

1
2 . (4.29)

Moreover, Q(1+φ2n+1) =
1
2(1+φ2n+1)(2n−1+lg(1+1/22n+1)) =

Btms
1+φ2n+1

− 1
2 +

1
6(1 + 22n+1) lg(1 + 1/22n+1), the last step being a

consequence of (4.29). If we let h(x) := 1
2 −

1
6 (1 + x) lg(1 + 1/x),

then Btms
1+φ2n+1

− Q(1 + φ2n+1) = h(22n+1). Elementary analysis
shows that 5 − 3 lg 3 " h(x) < 1/2 − 1/(6 ln 2), for x # 8, that is,
5 − 3 lg 3 " Btms

1+φ2n+1
− Q(1 + φ2n+1) < 1/2 − 1/(6 ln 2), if n # 1.

So 0.2450 < Btms
1+φ2n+1

−Q(1 + φ2n+1) < 0.2596.

Hence p = 1 + φ2m+1 = (1010 . . . 1011)2 minimises Btms

p − 1
2p lg p.

Finally, we conclude that the lower bound in (4.25) is tight if n = 2 (from
the base case) and is otherwise the sharpest when n = (1010 . . . 01)2 or
n = (1010 . . . 1011)2. As a whole, these values constitute the Jacobsthal
sequence, defined as

J0 = 0; J1 = 1; Jn+2 = Jn+1 + 2Jn, for n # 0. (4.30)

Let us use now the same inductive approach to find a good upper
bound to Btms

n . In other words, we want to minimise the real constants
a′ and b′ such that, for n # 2,

Btms
n " 1

2n lgn+ a′n+ b′.
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The only difference with the search for the lower bound is that inequal-
ities are reversed, so we want

Φ(x) " a′, where Φ(x) := 1
2x lg x−

1
2(1 + x) lg(1 + x) + x.

Here, we need to find the maximum of Φ on the closed interval [0, 1]. The
two positive roots of Φ are 0 and 1, and Φ is negative between them (see
equation (4.24)). Therefore a′min := max0"x"1Φ(x) = Φ(0) = Φ(1) = 0.
From the base case, we have b′min = −2amin = 0. Therefore, we have the
bounds

1
2n lg n−

(
1
2 lg

4
3

)

n+ lg 4
3 " Btms

n " 1
2n lg n. (4.31)

The upper bound is clearly tight when n = 2p because of equation (4.13).
It is also very obvious now that we have Btms

n ∼ 1
2n lg n, but if we were

only interested in this asymptotic result, Bush (1940) gave a very simple
counting argument on the bits in figure 4.8 on page 127. Delange (1975)
investigated Btms

n by means of advanced real analysis and showed that
Btms
n = 1

2n lg n + F0(lg n) · n, where F0 is a continuous, nowhere differ-
entiable function of period 1, and whose Fourier series shows the mean
value to be approximately −0.145599.

Maximum cost The maximum number of comparisons satisfies

W tms
0 = W tms

1 = 0, W tms
n = Wtms

⌊n/2⌋ +Wtms
⌈n/2⌉ +Wmrg

⌊n/2⌋,⌈n/2⌉.

Equation (4.4) on page 117 yields W tms
n = Wtms

⌊n/2⌋ +W tms
⌈n/2⌉ + n− 1 and

Wtms
0 = Wtms

1 = 0; W tms
2p = 2Wtms

p +2p−1, Wtms
2p+1 = Wtms

p +Wtms
p+1+2p.

Let the difference of two successive terms be ∆n := Wn+1 −Wn. If we

know ∆n, we know Wn because
∑n−1

k=1 ∆k =
∑n−1

k=1 Wk+1 −
∑n−1

k=1 Wk =
Wn −W1 = Wn. We remark that

• if n = 2p, then ∆2p = ∆p + 1,

• else n = 2p+1 and W2p+2 = 2 ·Wp+1+2p+1, so ∆2p+1 = ∆p+1.

In summary, ∆0 = 0 and ∆n = ∆⌊n/2⌋+1. If we start unravelling the re-
currence, we get ∆n = ∆⌊⌊n/2⌋/2⌋+2, so we must simplify ⌊⌊⌊. . .⌋/2⌋/2⌋.

Theorem 3 (Floors and Fractions). Let x be a real number and q a
natural number. Then ⌊⌊x⌋/q⌋ = ⌊x/q⌋.
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Proof. The equality is equivalent to the conjunction of the two comple-
mentary inequalities ⌊⌊x⌋/q⌋ " ⌊x/q⌋ and ⌊x/q⌋ " ⌊⌊x⌋/q⌋. The former
is straightforward because it is a consequence of ⌊x⌋ " x. In the latter,
because both sides of the inequality are integers, ⌊x/q⌋ " ⌊⌊x⌋/q⌋ is equi-
valent to state that p " ⌊x/q⌋ ⇒ p " ⌊⌊x⌋/q⌋, for any integer p. An obvi-
ous lemma is that if i is an integer and y a real number, i " ⌊y⌋ ⇔ i " y,
so the original inequality is equivalent to p " x/q ⇒ p " ⌊x⌋/q, which
is trivially equivalent to pq " x⇒ pq " ⌊x⌋. Since pq is an integer, this
implication is true from the same lemma.

Using theorem 3 on the facing page, we deduce ∆n = m, with m be-
ing the largest natural number such that ⌊n/2m⌋ = 0. In other words,
m is the number of bits in the binary notation of n, which is found
in equation (1.6) to be ∆n = ⌊lg n⌋ + 1. Since we already know that
Wn =

∑n−1
k=1 ∆k, we conclude, with (1.4), that

Wn =
n−1
∑

k=1

(⌊lg k⌋+ 1). (4.32)

Whilst the minimum cost is the number of 1-bits up to n−1, we find now
that the maximum cost is the total number of bits up to n−1. Informally,
this leads us to bet that W tms

n ∼ 2 · Btms
n ∼ n lg n, since we would expect

the number of 0-bits and 1-bits to be the same in average. Consider again
the bit table in figure 4.8 on page 127. The greatest power of 2 smaller
than n is 2⌊lgn⌋ because it is the binary number (10 . . . 0)2 having the
same number of bits as n; it thus appears in the same section of the
table as n. The trick consists in counting the bits in columns, from top
to bottom, and leftwards. In the rightmost column, we find n bits. In the
second column, from the right, we find n−21+1 bits. The third from the
right contains n − 22 + 1 bits etc. until the leftmost column containing
n− 2⌊lgn⌋ + 1 bits. The total number of bits in the table is
n
∑

k=1

(⌊lg k⌋+ 1) =

⌊lgn⌋
∑

k=0

(n− 2k + 1) = (n+ 1)(⌊lg n⌋+ 1)− 2⌊lgn⌋+1 + 1.

Let n := (bm−1 . . . b0)2, then 2m−1 " n " 2m−1 and 2m−1 < 2m−1+1 "
n+ 1 " 2m, so m− 1 < lg(n + 1) " m, that is, m = ⌈lg(n+ 1)⌉, which,
with equation (1.6) on page 11, proves 1 + ⌊lg n⌋ = ⌈lg(n+ 1)⌉. As a
consequence, equation (4.32) can be rewritten as

W tms
0 = W tms

1 = 0, W tms
n = n⌈lg n⌉ − 2⌈lgn⌉ + 1. (4.33)

This equation is subtler than it seems, due to the periodicity hidden in
2⌈lgn⌉. Depending on whether n = 2p or not, two cases arise:
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• if n = 2p, then W tms
n = n lg n− n+ 1;

• otherwise, we have ⌈lg n⌉ = ⌊lg n⌋+1 = lg n−{lg n}+1 and Wtms
n =

n lg n+θ(1−{lgn})·n+1, with θ(x) := x−2x and {x} := x−⌊x⌋ is
the fractional part of the real x. In particular, we have 0 " {x} <
1. The derivative is θ′(x) = 1 − 2x ln 2; it has one root θ′(x0) =
0 ⇔ x0 = − lg ln 2 and it is positive before x0, and negative after.
Concordantly, θ(x) reaches its maximum at x0: max0<x"1 θ(x) =
θ(x0) = −(1+ln ln 2)/ln 2 ≃ −0.9139, and min0<x"1 θ(x) = θ(1) =
−1. By injectivity, θ(1) = θ(1− {lg n}) implies {lg n} = 0, that is,
n = 2p (first case).

Hence Wtms
n = n lg n+A(lg n) · n+1, where A(x) := 1− {x}− 21−{x} is

a periodic function, since A(x) = A({x}), such that −1 " A(x) < −0.91.
Further analysis of A(x) requires Fourier series or complex analysis; its
mean value is about −0.942695. Read Flajolet and Golin (1994), as well
as Panny and Prodinger (1995).

n lg n− n+ 1 "Wtms
n < n lg n− 0.91n + 1. (4.34)

The lower bound is attained when n = 2p. The upper bound is most
accurate when {lg n} = 1+ lg ln 2, that is, when n is the nearest integer
to 2p ln 2 (take the binary expansion of ln 2, shift the point p times to
the right and round). Obviously, Wtms

n ∼ n lg n.

Average cost Let Atms
n be the average number of comparisons to sort

n keys top-down. All permutations of the input stack being equally likely,
equation (4.17) becomes

Atms
0 = Atms

1 = 0, Atms
n = Atms

⌊n/2⌋ +Atms
⌈n/2⌉ +Amrg

⌊n/2⌋,⌈n/2⌉,

which, with equation (4.9), in turn implies

Atms
n = Atms

⌊n/2⌋ +Atms
⌈n/2⌉ + n− ⌊n/2⌋

⌈n/2⌉+ 1
− ⌈n/2⌉
⌊n/2⌋+ 1

.

If we proceed as we did for the extremal costs, we get

Atms
2p = 2 ·Atms

p +2p− 2+
2

p+ 1
, Atms

2p+1 = Atms
p +Atms

p+1+2p− 1+
2

p+ 2
.

These recurrences are a bit tricky. Setting ∆n := Atms
n+1 −Atms

n yields

∆2p = ∆p + 1 +
2

p+ 2
− 2

p+ 1
, ∆2p+1 = ∆p + 1.
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Contrary to the difference equations derived for the extremal costs, these
are not helpful, so we should try an inductive approach, as we did for
finding bounds on Btms

n . Inequations (4.16) on page 125 are equivalent to
n lg n−αn+α < Atms

n < n lgn−αn+2, where n = 2p, and this suggests
us to also look for bounds of the form n lg n+ an+ b when n ̸= 2p.

Let us start with the lower bound and set to maximise the real con-
stants a and b in

H(n) : n lgn+ an+ b " Atms
n , for n # 2.

Since H(2p) depends on H(p), and H(2p+1) depends on H(p) and H(p+1),
the property H(n), for any n > 1, transitively depends on H(2) alone,
because we are iterating divisions by 2. If we write H(n) ❀ H(m) to mean
‘H(n) depends on H(m),’ we have, for example, H(23) ❀ H(22) ❀ H(21);
H(7) ❀ H(3) ❀ H(2) and H(7) ❀ H(4) ❀ H(2). H(2) is equivalent to

2a+ b+ 1 " 0. (4.35)

Because the definition of Atms
n depends on the parity of n, the inductive

step will be twofold. Let us assume H(m) for m < 2p, in particular, we
suppose H(p), which, with the expression of Atms

2p above, entails

(2p lg p+ 2ap + 2b) + 2p − 2 +
2

p+ 1
" Atms

2p .

We want H(2p) : 2p lg(2p)+2ap+b = 2p lg p+2ap+2p+b " Atms
2p , which

holds if the following condition does:

2p lg p+ 2ap+ 2p+ b " 2p lg p+ 2ap+ 2b+ 2p− 2 +
2

p+ 1
,

which is equivalent to

2− 2

p+ 1
=

2p

p+ 1
" b.

Let Φ(p) := 2p/(p+1). This function is strictly increasing for p > 0 and
Φ(p)→ 2−, as p→ +∞.

The other inductive step deals with the odd values of n. We assume
H(m) for all m < 2p + 1, in particular, we suppose H(p) and H(p+ 1),
which, with the expression of Atms

2p+1 above, implies

(p lg p+ap+b)+((p+1) lg(p+1)+a(p+1)+b)+2p−1+ 2

p+ 2
" Atms

2p+1,

which may be simplified slightly into

p lg p+ (p + 1) lg(p+ 1) + a(2p+ 1) + 2b+ 2p− 1 +
2

p+ 2
" Atms

2p+1.

We want to prove H(2p + 1): (2p+1) lg(2p+1)+ a(2p+1)+ b " A2p+1,
which is thus implied by

(2p+1) lg(2p+1) " p lg p+(p+1) lg(p+1)+ b+2p−1+
2

p+ 2
. (4.36)
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Let Ψ(p) := (2p+1) lg(2p+1)−(p+1) lg(p+1)−p lg p−2p+1−2/(p+2).
Then (4.36) is equivalent to Ψ(p) " b. Furthermore,

dΨ

dp
(p) =

2

(p + 2)2
+ lg

(

1 +
1

4p(p + 1)

)

.

Clearly, dΨ/dp > 0, for all p > 0, so Ψ(p) is strictly increasing for p > 0.
Let us find limp→+∞Ψ(p) by rewriting Ψ(p) as follows:

Ψ(p) = 2− 2

p+ 2
+ (2p+ 1) lg(p + 1

2 )− (p+ 1) lg(p + 1)− p lg p

= 2− 2

p+ 2
+ p

(

lg(p + 1
2 )

2 − lg(p+ 1)− lg p
)

+ lg(p + 1
2 )

− lg(p+ 1)

= 2− 2

p+ 2
+ p lg

(

1 +
1

4p(p + 1)

)

+ lg
p+ 1/2
p+ 1

.

The limit of x ln(1 + 1/x2) as x→ +∞ can be found by changing x into
1/y and considering the limit as y → 0+, which is shown by l’Hôpital’s
rule to be 0. This result can be extended to apply to the large term
in Ψ(p) and, since all the other variable terms converge to 0, we can
conclude that Ψ(p)→ 2−, as p→ +∞.

Because we need to satisfy the conditions Ψ(p) " b and Φ(p) " b for
both inductive steps to hold, we have to compare Ψ(p) and Φ(p), when
p is a natural number: we have Φ(1) < Ψ(1) and Φ(2) < Ψ(2), but Ψ(p) <
Φ(p) if p # 3. Therefore, for b not to depend on p, we need it to be greater
than 2, the smallest upper bound of Φ and Ψ. Inequality (4.35) means
that we need to minimise b in order to maximise a (which is the priority),
so we settle for the limit: bmin = 2, and the same inequality entails
a " −3/2, hence amax = −3/2. The principle of complete induction
finally establishes that, for n # 2,

n lg n− 3

2
n+ 2 < Atms

n . (4.37)

This bound is not very good, but it was easy to obtain. We may recall the
lower bound when n = 2p, in (4.16) on page 125: n lg n−αn+α < Atms

n ,
where α ≃ 1.264499. In fact, Flajolet and Golin (1994) proved

n lgn− αn < Atms
n . (4.38)

Asymptotically, that bound is, up to the linear term, the same as for the
case n = 2p. Our inductive method cannot reach this nice result because
it yields sufficient conditions that are too strong, in particular, we found
no obvious way to get the decomposition Atms

2p+i = Atms
2p +Atms

i + . . .
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Now, let us find the smallest real constants a′ and b′ such that for
n # 2, Atms

n " n lg n + a′n + b′. The base case of H(n) in (4.35) is here
reversed: 2a′ + b′ + 1 # 0. Hence, in order to minimise a′, we need to
maximise b′. Furthermore, the conditions on b′ from the inductive steps
are reversed as well with respect to b: b′ " Φ(p) and b′ " Ψ(p). The base
case is H(2), that is, p = 1, and we saw earlier that Φ(1) " Ψ(1), thus we
must have b′ " Φ(1) = 1. The maximum value is thus b′max = 1. Finally,
this implies that a′ # −1, thus a′min = −1.

Gathering the bounds, we hence established that

n lg n− 3

2
n+ 2 < Atms

n < n lg n− n+ 1.

Trivially, we have Atms
n ∼ n lg n ∼ Wtms

n ∼ 2 · Btms
n . Flajolet and Golin

(1994) proved, using complex analysis the following very strong result:

Atms
n = n lgn+B(lg n) · n+O(1),

where B is continuous, non-differentiable, periodic with period 1, of mean
value −1.2481520. The notation O(1) is an instance of Bachmann’s nota-
tion for an unknown positive constant. The maximum value of B(x) is
approximately −1.24075, so

Atms
n = n lg n− (1.25 ± 0.01) · n+O(1).

4.4 Bottom-up merge sort

Instead of cutting a stack of n keys in two halves, we could split into
2⌈lgn⌉−1 and n − 2⌈lg n⌉−1 keys, where the first number represents the
highest power of 2 strictly smaller than n. For instance, if n = 11 =
23+21+20, we would split into 23 = 8 and 21+20 = 3. Of course, if n = 2p,
this strategy, called bottom-up, coincides with that of top-down merge
sort, which, in terms of cost, is expressed as Cbms

2p = Ctms
2p = C✶

p , where
bms/1 implements bottom-up merge sort. The difference between top-
down and bottom-up merge sort can be easily seen in the figure 4.10.
In all generality,

Cbms
0 = Cbms

1 = 0, Cbms
n = Cbms

2⌈lgn⌉−1 + Cbms
n−2⌈lgn⌉−1 + Cmrg

2⌈lgn⌉−1,n−2⌈lgn⌉−1 .

(4.39)
Figure 4.11a on the next page shows the merge tree of seven keys

being sorted in that fashion. Note how the bottommost singleton [4]
is merged with [2, 6], a stack twice as long. The imbalance in length
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[1, 2, 3, 4, 5, 6]

[2, 3, 4, 6]

[3, 6]

[6] [3]

[2, 4]

[2] [4]

[1, 5]

[1] [5]

(a) Bottom-up

[1, 2, 3, 4, 5, 6]

[2, 3, 6]

[3, 6]

[6] [3] [2]

[1, 4, 5]

[1, 4]

[4] [1] [5]

(b) Top-down

Figure 4.10: Comparing merge sorts on [6, 3, 2, 4, 1, 5]

[1, 2, 3, 4, 5, 6, 7]

[1, 3, 5, 7]

[3, 7]

[7] [3]

[1, 5]

[5] [1]

[2, 4, 6]

[2, 6]

[6] [2] [4]

(a) Merge tree of [7, 3, 5, 1, 6, 2, 4]

22 + 21 + 20

22 21 + 20

21

20

(b) Lengths only

Figure 4.11: Sorting seven keys

is further propagated upwards. The general case is better suggested by
retaining at each node only the length of the associated stack, as shown
in figure 4.11b.

Minimum cost Let Bbms
n be the minimum cost for sorting n keys,

bottom-up. Let n = 2p + i, with 0 < i < 2p. Then, from equation (4.39),
on the previous page, and (4.3) on page 117, we deduce

Bbms
2p+i = Bbms

2p + Bbms
i + i,

which we recognise as an instance of the following functional equations:
f(0) = f(1) = 0, f(2) = 1 and f(2p + i) = f(2p) + f(i) + i, where
f = Btms as seen in equation (4.21) on page 128. Therefore,

Bbms
n = Btms

n =
n−1
∑

k=0

νk. (4.40)

We can thus reuse the bounds on Btms
n :

1

2
n lg n−

(
1

2
lg

4

3

)

n+ lg
4

3
" Bbms

n "
1

2
n lg n. (4.41)
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The lower bound is tight for n = 2 and most accurate when n is a
Jacobsthal number (see equations (4.30) on page 131). The upper bound
is tight when n = 2p.

Maximum cost Let Wbms
n be the maximum cost for sorting n keys,

bottom-up. Let n = 2p + i, with 0 < i < 2p. Then, from equation (4.39),
on page 137, and (4.4) on page 117, we deduce

Wbms
2p+i = Wbms

2p +Wbms
i + 2p + i− 1. (4.42)

Let us search a lower bound of Wbms
n by induction based on that equation.

Let us find the greatest real constants a and b such that, for n # 2,

n lg n+ an+ b "Wbms
n .

The base case is n = 2, that is, b " −2a − 1. Let us assume the bound
holds for n = i and let us recall equation (4.14) on page 125, which here
takes the guise of Wbms

2p = p2p − 2p + 1. Then (4.42) yields

(p2p − 2p + 1) + (i lg i+ ai+ b) + 2p + i− 1 "Wbms
2p+i,

which is equivalent to p2p+i lg i+i+ai+b "Wbms
2p+i. We want to prove the

bound holds for n = 2p+i, that is, (2p+i) lg(2p+i)+a(2p+i)+b "Wbms
2p+i.

Clearly, this is true if the following stronger constraint holds:

(2p + i) lg(2p + i) + a(2p + i) + b " p2p + i lg i+ i+ ai+ b.

It is equivalent to a2p " p2p−(2p+i) lg(2p+i)+i lg i+i. Let us extend i
over the real numbers by defining i = x2p, where x is a real number such
that 0 < x " 1. Then, the running inequality is equivalent to

a " Φ(x), where Φ(x) := x lg x− (1 + x) lg(1 + x) + x.

The function Φ can be continuously extended at 0, as limx→0 x lg x = 0,
and it is differentiable on the closed interval [0, 1]:

dΦ

dx
= lg

2x

x+ 1
.

The root of dΦ/dx = 0 is 1, the derivative is negative before, and positive
after; so Φ decreases until x = 1: amax := min0"x"1Φ(x) = Φ(1) = −1.
From the base case, bmax := −2amax − 1 = 1. Therefore, we have

n lg n− n+ 1 "Wbms
n .

The bound is tight when x = 1, that is, i = 2p, hence n = 2p+1.
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Let us find the smallest real constants a′ and b′ such that, for n # 2,

Wbms
n " n lg n+ a′n+ b′.

The difference with the lower bound is that the inequalities are reversed
and we minimise the unknowns, instead of maximising them. Thus, the
base case here is b′ # −2a−1 and the condition for induction is a′ # Φ(x).
We know the behaviour of Φ, so a′min := max0"x"1Φ(x) = Φ(0) = 0, and
b′min := −2a′min − 1 = −1. As a conclusion,

n lg n− n+ 1 "Wbms
n < n lg n− 1. (4.43)

Because Φ(x) was extended at x = 0, the upper bound is best approched
when i = 1, the smallest possible integer value, that is, when n = 2p + 1
(the most unbalanced merger: stacks of size 2p and 1). A deeper study
by Panny and Prodinger (1995), based on Fourier analysis, confirms that
the linear terms of these bounds cannot be improved and shows the mean
value of the coefficient of the linear term to be, approximately, −0.70057.

Alternative expression While we already bounded Wbms
n tightly, we

may learn something more about it by expressing it differently from
its definition, in a way more suitable to elementary computations as
well. In all generality, let us set n := 2er + · · · + 2e1 + 2e0 > 0, with
er > · · · > e1 > e0 # 0 and r # 0. We used this decomposition in

2er + . . .+ 2e0

2er 2er−1 + . . .+ 2e0

2er−1 2e1 + 2e0

2e1 2e0

Figure 4.12:
∑r

j=0 2
ej keys

equation (1.6) on page 11. Let us con-
sider in figure 4.12 the tree of all the
mergers when we only retain the stacks
lengths. The triangles are subtrees made
of balanced mergers, that is, mergers per-
formed on stacks of same length, for which
we already found the number of compar-
isons. The lengths of the unbalanced mer-
gers are found in the nodes from the root
2er + · · ·+ 2e0 down to 2e1 + 2e0 . In figure 4.13 on the facing page are
shown the maximum-cost trees for n even and n+ 1. The boxed expres-
sions are not found in the opposite tree, therefore, the sum in each tree
of the non-boxed terms is identical.

• If n is even, in figure 4.13a on the next page, this sum is Wbms
n −r.

It equals Wbms
n+1 − 2e0 −Wbms

20 in figure 4.13b on the facing page.
Equating both counts yields

Wbms
n − r = Wbms

n+1 − 2e0 −Wbms
20 . (4.44)
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∑r
j=0 2

ej −1

Wbms
2er

∑r−1
j=0 2

ej −1

Wbms

2er−1 2e1 + 2e0 −1

Wbms
2e1 Wbms

2e0

(a) The sum of the nodes is Wbms
n

∑r
j=0 2

ej

Wbms
2er

∑r−1
j=0 2

ej

Wbms

2er−1 2e1 + 2e0

Wbms
2e1 2e0

Wbms
2e0 Wbms

20

(b) The sum of the nodes is Wbms
n+1

Figure 4.13: Maximum-cost trees for n even and n+ 1

Let us explicit that e0 is a function of n (it is the highest power of 2
dividing n): e0 := ρn. Furthermore, we already know νn = r + 1
and Wbms

1 = 0. Setting n = 2k in equation (4.44) is equivalent to

Wbms
2k+1 = Wbms

2k + 2ρ2k + ν2k − 1. (4.45)

The function ρn is the ruler function (Graham et al., 1994, Knuth,
2011), which satisfies, for n > 0, the recurrences

ρ1 = 0, ρ2n = ρn + 1, ρ2n+1 = 0, (4.46)

which are easily guessed from the binary notation of n as ρn simply
counts the number of trailing zeros. This enables us to slightly
simplify equation (4.45) into

Wbms
2k+1 = Wbms

2k + 2 · 2ρk + νk − 1. (4.47)

• If n is odd, we make figure 4.14a on the next page, where the
non-boxed expressions sum Wbms

n −
∑q−1

k=0Wbms
2k −

∑q
k=2 2

k+2((q−
1) + (r− q+1)) = Wbms

n −
∑q−1

k=0((k− 1)2k +1)−
∑q

k=2 2
k +2r =

Wbms
n −(q−1)2q−q+2r+1, using equation (4.14) and

∑q−1
k=0 k2

k =

(q − 2)2q + 2. Indeed, let Sq :=
∑q−1

k=0 k2
k−1. Then Sq + q2q−1 =

∑q
k=1 k2

k−1 =
∑q−1

k=0 (k + 1)2k =
∑q−1

k=0 k2
k +

∑q−1
k=0 2

k = 2 · Sq +
2q − 1, hence

Sq =
∑q−1

k=1 k2
k−1 = (q − 2)2q−1 + 1. (4.48)

The same sum in figure 4.14b equals Wbms
n+1−Wbms

2q +(r−q+1) =
Wbms

n+1−(q−1)2q−q+r. Equating the two quantities and simplifying
yields

Wbms
n+1 = Wbms

n + r + 1 = Wbms
n + νn.
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∑r
j=q 2

ej + 2q −2

Wbms
2er 2eq + 2q −2

Wbms
2eq 2q −2

Wbms

2q−1 22 −2

Wbms

21 Wbms

20

(a) The sum of the nodes is Wbms
n

∑r
j=q 2

ej + 2q −1

Wbms
2er 2eq + 2q −1

Wbms
2eq Wbms

2q

(b) The sum of the nodes is Wbms
n+1

Figure 4.14: Maximum-cost trees for n odd and n+ 1

Recalling the recurrences (4.18) on page 127 and setting n = 2k−1,
this equation is simplified into

Wbms
2k = Wbms

2k−1 + νk−1 + 1. (4.49)

From equations (4.49) and (4.47), we deduce

Wbms
2k+1 = Wbms

2k−1 + 2 · 2ρk + νk−1 + νk, Wbms
2k+2 = Wbms

2k + 2 · 2ρk + 2νk.

These equations allow us to compute the values of Wbms
n only with ele-

mentary operations. Furthermore, summing on all sides yields

Wbms
2p+1 = Wbms

1 + 2
p
∑

k=1

2ρk +
p
∑

k=1

νk−1 +
p
∑

k=1

νk = 2
p
∑

k=1

2ρk+ 2
p−1
∑

k=1

νk +νp.

(4.50)

Wbms
2p = Wbms

2 + 2
p−1
∑

k=1

2ρk + 2
p−1
∑

k=1

νk = 1 + 2
p−1
∑

k=1

2ρk + 2
p−1
∑

k=1

νk. (4.51)

These expressions involve two interesting number-theoretic functions,
∑p−1

k=1 2
ρk and

∑p−1
k=1 νk, the latter being Bbms

p , as found in equation (4.40).

Average cost Let Abms
n be the average number of comparisons to sort

n keys bottom-up. All permutations of the input stack being equally
likely, equation (4.39) on page 137 becomes Abms

0 = Abms
1 = 0 and

Abms
n = Abms

2⌈lgn⌉−1 +Abms
n−2⌈lgn⌉−1 +Amrg

2⌈lgn⌉−1,n−2⌈lgn⌉−1 ,
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which, with equation (4.9), in turn implies Abms
0 = Abms

1 = 0 and

Abms
n = Abms

2⌈lg n⌉−1 +Abms
n−2⌈lgn⌉−1 + n− 2⌈lg n⌉−1

n− 2⌈lgn⌉−1 + 1
− n− 2⌈lg n⌉−1

2⌈lgn⌉−1 + 1
.

This definition is quite daunting, so let us turn to induction to find
bounds, as we did for Btms

n in inequality (4.20) on page 127. Let us start
with the lower bound and set to maximise the real constants a and b in

H(n) : n lg n+ an+ b " Abms
n , for n # 2.

The base case for induction is H(2):

2a+ b+ 1 " 0. (4.52)

Let us assume now H(n) for all 2 " n " 2p, and let us prove H(2p + i),
for all 0 < i " 2p. The induction principle entails then that H(n) holds
for any n # 2. If n = 2p + i, then ⌈lg n⌉ − 1 = p, so

Abms
2p+i = Abms

2p +Abms
i + 2p + i− 2p

i+ 1
− i

2p + 1
. (4.53)

By hypothesis, H(i) holds, that is, i lg i+ ai+ b " Abms
i , but, instead of

using H(2p), we will use the exact value in equation (4.15) on page 125,
where α :=

∑

k#0 1/(2
k + 1). From equation (4.53), we derive

(p−α)2p+
∑

k#0

1

2k + 2−p
+(i lg i+ai+b)+2p+i− 2p

i+ 1
− i

2p + 1
< Abms

2p+i.

We want to prove H(2p + i) : (2p + i) lg(2p + i) + a(2p + i) + b " Abms
2p+i,

which is thus implied by

(2p + i) lg(2p + i) + a2p " (p−α+1)2p − 2p

i+ 1
+ i lg i+ i− i

2p + 1
+ cp,

where cp :=
∑

k#0 1/(2
k + 2−p). Let

Ψ(p, i) := p−α+1− 1

i+ 1
+

i

2p + 1
− 1

2p
((2p+ i) lg(2p+ i)− i lg i− cp).

Then the sufficient condition above is equivalent to a " Ψ(p, i). To study
the behaviour of Ψ(p, i), let us fix p and let i range over the real interval
]0, 2p]. The partial derivative of Ψ with respect to i is

∂Ψ

∂i
(p, i) =

1

2p + 1
+

1

(i+ 1)2
− 1

2p
lg

(
2p

i
+ 1

)

.
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Let us also determine the second derivative with respect to i:

∂2Ψ

∂i2
(p, i) =

1

(2p + i)i ln 2
− 2

(i+ 1)3
,

where lnx is the natural logarithm of x. Let the cubic polynomial

Kp(i) := i3 + (3− 2 ln 2)i2 + (3− 2p+1 ln 2)i+ 1.

Then ∂2Ψ/∂i2 = 0 ⇔ Kp(i) = 0 and the sign of ∂2Ψ/∂i2 is the sign of
Kp(i). In general, a cubic equation has the form

ax3 + bx2 + cx+ d = 0, with a ̸= 0.

A classic result about the nature of the roots is as follows. Let the dis-
criminant of the cubic be ∆ := 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

• If ∆ > 0, the equation has three distinct real roots;
• if ∆ = 0, the equation has a multiple root and all its roots are real;
• if ∆ < 0, the equation has one real root and two nonreal complex

conjugate roots.

Let us resume now our discussion. Let the cubic polynomial

∆(x) := (4 ln 2)x3−(9−2 ln 2)(3+2 ln 2)x2+12(9−2 ln 29)x−4(27−8 ln 2).

Then the discriminant of Kp(i) = 0 is ∆(2p+1) · ln2 2. The discriminant
of ∆(x) = 0 is negative, thus ∆(x) has one real root x0 ≃ 8.64872.
Because the coefficient of x3 is positive, ∆(x) is negative if x < x0 and
positive if x > x0. Since p # 3 implies 2p+1 > x0, the discriminant of
Kp(i) = 0 is positive, which means that Kp(i) has three distinct real
roots if p # 3, and so does ∂2Ψ/∂i2. Otherwise, Kp(i) has one real root
if 0 " p " 2. Before we study these two cases in detail, we need a small
reminder about cubic polynomials. Let ρ0, ρ1 and ρ2 be the roots of
P (x) = ax3+ bx2+ cx+ d. So P (x) = a(x− ρ0)(x− ρ1)(x− ρ2) = ax3−
a(ρ0+ρ1+ρ2)x2+a(ρ0ρ1+ρ0ρ2+ρ1ρ2)x−a(ρ0ρ1ρ2), so ρ0ρ1ρ2 = −d/a.

• Let p ∈ {0, 1, 2}. We just found that Kp(i) has one real root,
say ρ0, and two nonreal conjugate roots, say ρ1 and ρ2 = ρ1. Then
ρ0ρ1ρ2 = ρ0|ρ1|2 = −1, so ρ0 < 0. Since the coefficient of x3 is pos-
itive, this entails that Kp(i) > 0 if i > 0, which is true for ∂2Ψ/∂i2

as well: i > 0 implies ∂2Ψ/∂i2 > 0, therefore ∂Ψ/∂i increases.
Since

∂Ψ

∂i
(p, i) −−−→

i→0+
−∞ < 0, and

∂Ψ

∂i
(p, i)

∣
∣
∣
∣
i=2p

= − 1

2p(2p + 1)2
< 0,
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we deduce that ∂Ψ/∂i < 0 if i > 0, which means that Ψ(p, i)
decreases when i ∈ ]0, 2p]. Since we are looking to minimise Ψ(p, i),
we have min0<i"2p Ψ(p, i) = Ψ(p, 2p).

• If p # 3, then Kp(i) has three real roots. Here, the product of the
roots of Kp(i) is −1, so at most two of them are positive. Since we
have Kp(0) = 1 > 0, Kp(1) < 0 and limi→+∞Kp(i) > 0, we see
that Kp(i) has one root in ]0, 1[ and one in ]1,+∞[, and so does
∂2Ψ/∂i2. Furthermore, ∂Ψ/∂i|i=1 > 0 and ∂Ψ/∂i|i=2p < 0, there-
fore, from the intermediate theorem, there exists a real ip ∈ ]1, 2p[
such that ∂Ψ/∂i|i=ip = 0, and we know that it is unique because

∂Ψ2/∂i2 changes sign only once in ]1,+∞[. This also means that
Ψ(p, i) increases if i increases on [1, ip[, reaches its maximum when
i = ip, and then decreases on ]ip, 2p]. Since limi→0+ Ψ(p, i) = −∞
and we are searching for a lower bound of Ψ(p, i), we need to know
which of i = 1 or i = 2p minimises Ψ(p, i): actually, we have
Ψ(p, 1) # Ψ(p, 2p), so we conclude min0<i"2p Ψ(p, i) = Ψ(p, 2p).

In any case, we need to minimise Ψ(p, 2p). We have:

Ψ(p, 2p) = − 2

2p + 1
−

p−1
∑

k=0

1

2k + 1
.

We check that Ψ(p, 2p) > Ψ(p + 1, 2p+1), so the function decreases for
integer points and amax = minp>0Ψ(p, 2p) = limp→∞Ψ(p, 2p) = −α+.
From inequation (4.52), we draw bmax = −2amax−1 = 2α−1 ≃ 1.52899.
In total, by the principle of induction, we have established, for n # 2,

n lg n− αn+ 2α− 1 < Abms
n .

This bound is better than for the average cost of top-down merge sort,
inequation (4.37) on page 136, because there, we had to decompose n
into even and odd values, not n = 2p+ i which allowed us here to use the
exact value of Abms

2p . It is even slightly better than (4.16) on page 125,
which is quite a nice surprise.

We need now to work out an upper bound using the same technique.
In other words, we want to minimise the real constants a′ and b′ in
Abms

n " n lg n+ a′n+ b′, for n # 2. The difference with the lower bound
is that the inequations are reversed: a′ # Ψ(p, i) and b′ # −2a′ − 1. We
revisit the two cases above:

• If 0 " p " 2, then max0<i"2p Ψ(p, i) = Ψ(p, 1). We easily check
that max0"p"2Ψ(p, 1) = Ψ(0, 1) = 1− α.
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limit of asymptotes
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i = 3

i = 2
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Figure 4.15: Φ(p, 1), Φ(p, 2) and Φ(p, 3)

• If p # 3, we need to express ip as a function of p, but it is hard to
solve the equation ∂Ψ/∂i|i=ip = 0, even approximately.

Before giving up, we could try to differentiate Ψ with respect to p, instead
of i. Indeed, (p, i,Ψ(p, i)) defines a surface in space, and by privileging
p over i, we are slicing the surface along planes perpendicular to the
i axis. Sometimes, slicing in one direction instead of another makes the
analysis easier. The problem here is to differentiate cp. We can work our
way round with the bound cp < 2 from (4.16) on page 125 and define

Φ(p, i) := p−α+1− 1

i+ 1
+

i

2p + 1
− 1

2p
((2p + i) lg(2p + i)− i lg i− 2).

Now we have Ψ(p, i) < Φ(p, i) and, instead of Ψ(p, i) " a′, we can impose
the stronger constraint Φ(p, i) " a′ and cross our fingers. In figure 4.15,
are outlined Φ(p, 1), Φ(p, 2) and Φ(p, 3). (The starting point for each
curve is marked by a white disk.) Differentiating with respect to p yields

∂Φ

∂p
(p, i) =

i

2p
ln

(
2p

i
+ 1

)

− ln 2

2p−1
− i2p ln 2

(2p + 1)2
.

To study the sign of ∂Φ(p, i)/∂p when p varies, let us define

ϕ(x, i) :=
x

i ln 2
· ∂Φ
∂p

(p, i)

∣
∣
∣
∣
p=lgx

.

Because x # 1 implies x/i ln 2 > 0 and lg x # 0, the sign of ϕ(x, i)
when x # 1 varies is the same as the sign of ∂Φ(p, i)/∂p when p # 0
varies, bearing in mind that x = 2p. We have

ϕ(x, i) = lg
(x

i
+ 1
)

−
(

x

x+ 1

)2

− 2

i
,
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∂ϕ

∂x
(x, i) =

1

(x+ i) ln 2
− 2x

(x+ 1)3
.

This should remind us of a familiar sight:

∂ϕ

∂x
(x, i) = x · ∂

2Ψ

∂x2
(p, x)

∣
∣
∣
∣
p=lg i

.

When x # 1 varies, the sign of ∂ϕ(x, i)/∂x is the same as the sign of
∂2Ψ(p, x)/∂x2

∣
∣
p=lg i

, so we can reuse the previous discussion on the roots

of Kp(i), while taking care to replace i by x, and 2p by i:

• If i ∈ {1, 2, 3, 4}, then ∂ϕ(x, i)/∂x > 0 when x > 0.

• If i # 5, then ∂ϕ(x, i)/∂x > 0 when x # 1.

In both cases, ϕ(x, i) increases when x # 1, which, with the facts that
limx→0+ ϕ(x, i) = −∞ < 0 and limx→∞ ϕ(x, i) = +∞ > 0, entails that
there exists a unique root ρ > 0 such that ϕ(x, i) < 0 if x < ρ, and
ϕ(x, i) > 0 if x > ρ, and the same holds for ∂Φ/∂p (with a different root).
Concordantly, Φ(p, i) is decreasing down to its minimum, and increasing
afterwards. (See again figure 4.15 on the facing page.)

Moreover limp→∞Φ(p, i) = i/(i + 1) − α < 1 − α = Φ(0, 1), so the
curves have asymptotes. Since we are searching for the maximum, we
deduce: a′min = max0<i"2p Φ(p, i) = 1 − α ≃ −0.2645, and the constant
is b′min = −2a′min − 1 = 2α− 3 ≃ −0.471. In sum, we found, for n # 2,

n lg n− αn+ (2α− 1) < Abms
n < n lg n− (α− 1)n − (3− 2α). (4.54)

The lower bound is most accurate when n = 2p. To interpret the values
of n for which the upper bound is most accurate, we need another glance
at figure 4.15 on the preceding page. We have i/(i + 1) − α → 1 − α,
as p→∞, but this does not tell us anything about p. Unfortunately, as
noted earlier, for a given p, we cannot characterise explicitly ip, which
is the value of i maximising Φ(p, i) (in the planes perpendicular to this
page). Anyway, the linear terms of these bounds cannot be improved
upon. This means that the additional number of comparisons incurred
by sorting n = 2p + i keys instead of 2p is at most n. As with top-down
merge sort, more advanced mathematics by Panny and Prodinger (1995)
show that Abms

n = n lg n + B∗(lg n) · n, where B∗ is a continuous, non-
differentiable, periodic function whose average value is approximately
−0.965. Obviously, we have Abms

n ∼ n lg n ∼Wbms
n ∼ 2 · Bbms

n .
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bms([ ])
µ−→ [ ]; solo([ ])

ξ−→ [ ];
bms(s)

ν−→ all(solo(s)). solo([x |s]) π−→ [[x] |solo(s)].

all([s])
ρ−→ s; nxt([s, t |u]) τ−→ [mrg(s, t) |nxt(u)];

all(s)
σ−→ all(nxt(s)). nxt(u)

υ−→ u.

mrg([ ], t)
θ−→ t;

mrg(s, [ ])
ι−→ s;

mrg([x |s], [y |t]) κ−→ [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t) λ−→ [x |mrg(s, t)].

Figure 4.16: Sorting by bottom-up mergers with bms/1

Program We managed to analyse the number of comparisons to sort
by merging because the whole process can easily be depicted as a tree.
It is time to provide a program whose traces conform to these merge
trees. In figure 4.16 is shown the definitions of the main sorting func-
tion bms/1 and several auxiliaries. The call solo(s) is a stack containing
singletons with all the keys of s in the same order. In other words, it is
the leaves of the merge tree. The call all(u) is a stack containing stacks
which are the result of merging adjacent stacks in u. In other words, it is
the level just above u in the merge tree. The call all(solo(s)) is the sorted
stack corresponding to the stack of singletons solo(s). In other words,
starting with the leaves, it keeps building levels up by calling mrg/2 un-
til the root of the merge tree is reached. What is beautiful about this
program is that there is no need for two distinct phases, first building the
perfect merge trees and then performing the unbalanced mergers with
the roots of these: it is possible to achieve the same effect by interleaving
rightwards and upwards constructions.

Additional cost In order to determine the cost Cbms
n we need to add

to the number of comparisons the number of rewrite steps that do not
involve comparisons, that is, other than by rules κ and λ.

• Rules θ and ι are used once to conclude each merger. Let C$
n be the

number of comparisons to perform the unbalanced mergers when
there are n keys to sort. Looking back at figure 4.12 on page 140,
we see that

C$
n :=

r
∑

i=1

Cmrg
2ei ,2ei−1+···+2e0 . (4.55)
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The total number of comparisons is the sum of the numbers of
comparisons of the balanced and unbalanced mergers:

Cbms
n =

r
∑

i=0

C✶

ei + C$
n =

r
∑

i=0

Cbms
2ei +

r
∑

i=1

Cmrg
2ei ,2ei−1+···+2e0 . (4.56)

To find the number of mergers, let us set Cmrg
m,n = 1 in equation (4.12)

on page 124, yielding Cbms
2p = 2p − 1. By plugging this result in

equation (4.56), we draw Cbms
n = n−1. In other words, rules θ and ι

are used n− 1 times in total.

• In rule τ , one call nxt([s, t | u]) corresponds to one call mrg(s, t),
one for each merger. Therefore, τ is used n− 1 times.

• Rule υ is used once for each level in the merge tree, except the root,
with u either empty or a singleton. Let Λ(j) be the number of nodes
at level j, where j = 0 represents the level of the leaves. Then, the
number z we are looking for is the greatest natural satisfying the
equation Λ(z) = 1, at the root. Function nxt/1 implies

Λ(j + 1) = ⌈Λ(j)/2⌉, with Λ(0) = n.

This recurrence is equivalent to the closed form Λ(j) = ⌈n/2j⌉, as
a consequence of the following theorem.

Theorem 4 (Ceilings and Fractions). Let x be a real number and
q a natural number. Then ⌈⌈x⌉/q⌉ = ⌈x/q⌉.

Proof. The equality is equivalent to the conjunction of the two
complementary inequalities ⌈⌈x⌉/q⌉ # ⌈x/q⌉ and ⌈⌈x⌉/q⌉ " ⌈x/q⌉.
The former is direct: ⌈x⌉ # x ⇒ ⌈x⌉/q # x/q ⇒ ⌈⌈x⌉/q⌉ # ⌈x/q⌉.
Since both sides of the inequality are integers, ⌈⌈x⌉/q⌉ " ⌈x/q⌉ is
equivalent to state that p " ⌈⌈x⌉/q⌉ ⇒ p " ⌈x/q⌉, for any integer p.
An obvious lemma is that if i is an integer and y a real number,
i " ⌈y⌉ ⇔ i " y, so the original inequality is equivalent to p "
⌈x⌉/q ⇒ p " x/q, for any integer p, which is pq " ⌈x⌉ ⇒ pq " x.
The lemma yields this implication, achieving the proof.

To find z, we express n in binary: n :=
∑m−1

k=0 bk2k = (bm−1 . . . b0)2,
where bk ∈ {0, 1} and bm−1 = 1. It is easy to derive a formula for bi.
We have

n

2i+1
=

1

2i+1

m−1
∑

k=0

bk2
k =

1

2i+1

i
∑

k=0

bk2
k + (bm−1 . . . bi+1)2. (4.57)
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We prove that ⌊n/2i+1⌋ = (bm−1 . . . bi+1)2 as follows:

i
∑

k=0

2k < 2i+1 ⇒ 0 "
i
∑

k=0

bk2
k < 2i+1 ⇔ 0 "

1

2i+1

i
∑

k=0

bk2
k < 1.

This and equation (4.57) imply that

⌈ n

2i

⌉

= (bm−1 . . . bi)2 +

{

0, if (bi−1 . . . b0)2 = 0;

1, otherwise.

Therefore, ⌈n/2z⌉ = 1 is equivalent to z = m− 1 if n = 2m−1, and
z = m otherwise. Equation (1.6) on page 11 states m = ⌊lg n⌋+ 1,
thus z = ⌊lg n⌋ if n is a power of 2, and z = ⌊lg n⌋ + 1 otherwise.
More simply, this means that z = ⌈lg n⌉.

• Rule ρ is used once, at the root. Rule σ is used z times.

• The trace of solo(s) is πnξ if s contains n keys, so Csolo
n = n+ 1.

• The contribution to the total cost of rules µ and ν is simply 1.

In total, Cbms
n = Cbms

n + 3n+ 2⌈lg n⌉+ 1 and Cbms
n ∼ Cbms

n .

Improvement It is easy to improve upon bms/1 by directly building
the second level of the merge tree without using mrg/2 . Consider the
program in figure 4.17 on the facing page, where solo/1 has been re-
placed by duo/1. The number of comparisons is unchanged, but the cost,
measured as the number of rewrites, is slightly smaller. The added cost
of duo(s) is ⌊n/2⌋+1, where n is the length of s. On the other hand, we
save the cost of solo(s). The first rewrite by rule σ is not performed, as
well as the subsequent call nxt(s), to wit, ⌊n/2⌋ calls to mrg/2 on pairs
of singletons by κ or λ, plus one rewrite by θ or ι for the last singleton
or the empty stack, totalling ⌊n/2⌋Cmrg

1,1 + 1 = 2⌊n/2⌋ + 1. In the end,
the total cost is decreased by

((n+ 1) + 1 + (2⌊n/2⌋+ 1))− (⌊n/2⌋+ 1) = n+ ⌊n/2⌋+ 2.

Hence, Cbms0
n = Cbms

n + ⌈3n/2⌉ + 2⌈lg n⌉ − 1, for n > 0, and Cbms0
0 = 3.

Asymptotically, we have Cbms0
n ∼ Cbms

n .

4.5 Comparison

In this section we gather our findings about top-down and bottom-up
merge sort for an easier comparison, and we also present new results
which relate the costs of both algorithms.
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bms0(s)→ all(duo(s)).

duo([x, y |s])→ [[y, x] |duo(s)], if x ≻ y;
duo([x, y |s])→ [[x, y] |duo(s)];

duo(s)→ [s].

all([s])→ s;
all(s)→ all(nxt(s)).

nxt([s, t |u])→ [mrg(s, t) |nxt(u)];
nxt(u)→ u.

mrg([ ], t)→ t;
mrg(s, [ ])→ s;

mrg([x |s], [y |t])→ [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t)→ [x |mrg(s, t)].

Figure 4.17: Faster bottom-up merge sort with bms0/1

Minimum cost The minimum cost of both variants of merge sort is
the same: Btms

n = Bbms
n and

1
2n lg n−

(
1
2 lg

4
3

)

n+ lg 4
3 " Btms

n " 1
2n lg n.

The lower bound is tight for n = 2 and most accurate when n is a
Jacobsthal number (see (4.30) on page 131). The upper bound is tight
when n = 2p. These results may not be intuitive a priori.

Maximum cost In the previous sections, we found the following bounds:

n lg n− n+ 1 "Wtms
n < n lg n− 0.91n + 1;

n lg n− n+ 1 "Wbms
n < n lg n− 1.

In both cases, the lower bound is tight if, and only if, n = 2p. The upper
bound of top-down merge sort is most accurate when n is the nearest
integer to 2p ln 2. The upper bound of bottom-up merge sort is most
accurate if n = 2p + 1.

It is interesting to bound Wbms
n in term of Wtms

n , shedding further
light on the relationship between these two variants of merge sort.

We already noted Cbms
2p = Ctms

2p , so Wbms
2p = W tms

2p . Furthermore, we
have Wbms

2p = Wbms
2p−1 + p, thus Wbms

2p−1 = Wtms
2p−1. Another interesting
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value is W tms
2p+1 = (p−1)2p+p+2, so Wbms

2p+1−Wtms
2p+1 = 2p−p−1. This

leads us to conjecture the following tight bounds in relationship with
top-down merge sort:

Wtms
n "Wbms

n "W tms
n + n− ⌈lg n⌉ − 1.

We will prove these inequalities by means of mathematical induction
on n and, in the process, we will discover when they become equalities.
First, let us deduce from the general recurrence for the cost of bottom-up
merge sort the recurrence for the maximum cost:

Wbms
0 = Wbms

1 = 0; Wbms
n = Wbms

2⌈lgn⌉−1 +Wbms
n−2⌈lgn⌉−1 + n− 1. (4.58)

Also, we easily check that, for all p # 0,

Wtms
2p = Wbms

2p . (4.59)

Lower bound Let us prove, for all n # 0,

WL(n) : Wtms
n "Wbms

n . (4.60)

From (4.59), it is clear that WL(20) holds. Let the induction hypothesis
be ∀m " 2p.WL(m). The induction principle requires that we prove
WL(2p + i), for all 0 < i < 2p. Note that we leave aside the case when
i = 2p, because WL(2p+1) is already true from (4.59).

Equations (4.58) and (4.59) yield

Wbms
2p+i = Wbms

2p +Wbms
i + 2p + i− 1

= Wtms
2p +Wbms

i + 2p + i− 1 #W tms
2p +W tms

i + 2p + i− 1,

the inequality being the instance WL(i) of the induction hypothesis. Con-
sequently, if the inequality

Wtms
2p +Wtms

i + 2p + i− 1 #Wtms
2p+i (4.61)

holds, the result WL(2p + i) ensues. Let us try to prove it.
Let n = 2p+i. Then p = ⌊lg n⌋ and ⌈lg n⌉ = ⌊lg n⌋+1. Equation (4.33)

on page 133 entails

Wtms
2p+i = (2p + i)(p + 1)− 2p+1 + 1 = ((p − 1)2p + 1) + (p+ 1)i

= Wtms
2p + (p+ 1)i.

Therefore, inequation (4.61) is equivalent to pi " Wtms
i + 2p − 1. Using

equation (4.33), this inequality in turn is equivalent to

(p− ⌈lg i⌉)i " 2p − 2⌈lg i⌉. (4.62)

To prove it, we have two complementary cases to analyse:
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• i = 2q, with 0 " q < p. Then lg i = q and equation (4.62) is
equivalent to (p− q)2q " 2p − 2q, that is

p− q " 2p−q − 1. (4.63)

Let f(x) := 2x − x− 1, with x > 0. We have f(0) = f(1) = 0 and
f(x) > 0 for x > 1, so the inequality (4.63) holds and is tight if,
and only if, x = 1, that is, q = p− 1.

• i = 2q + j, with 0 " q < p and 0 < j < 2q. Then ⌊lg i⌋ = q =
⌈lg i⌉− 1 and inequation (4.62) is then equivalent to the inequality
(p− q − 1)i " 2p − 2q+1, that is to say,

(p− q + 1)2q + (p− q − 1)j " 2p. (4.64)

Since p− q−1 # 0 and j < 2q, we have (p− q−1)j " (p− q−1)2q

(tight if q = p−1). Hence (p− q+1)2q +(p− q−1)j " (p− q)2q+1.
Inequation (4.64) is entailed if 2(p−q) " 2p−q. Let g(x) := 2x−2x,
with x > 0. We have g(1) = g(2) = 0 and f(x) > 0 for x > 2. Thus,
inequality (4.64) holds and is tight if, and only if, x = 1, that is,
q = p− 1 (the case x = 2 implies i " 2p−1, which cannot be tight).
✷

Let us find now the shape of n when WL(n) is tight. We proved above
that if q = p− 1, that is, the binary notation of n starts with two 1-bits,
formally written as (11(0 + 1)∗)2, then the following inequality holds:

Wtms
2p+i = Wtms

2p +Wtms
i +2p+ i−1 "Wtms

2p +Wbms
i +2p+ i−1 = Wbms

2p+i.

The inequality is tight, Wtms
2p+i = Wbms

2p+i, if, and only if, Wbms
i = Wtms

i .
Using the case analysis above, if i = 2q + j, we have W tms

2p+i = Wbms
2p+i,

if, and only if, Wtms
2p−1+j = Wbms

2p−1+j . These equivalences can be repeated,
yielding two strictly decreasing sequences of positive integers, 2p + i >
2p−1 + j > 2p−2 + k > . . . and i > j > k > . . . The end of the latter
recursive descent is simply 0, which means that the former stops at a
power of 2, for which we know equation (4.59). In other words, the binary
representation of n is made of a series of one or more 1-bits (from 2p, 2p−1,
2p−2, . . . ), possibly followed by successive 0-bits, which we formally write
n = (1+0∗)2. This means that n is the difference between two powers
of 2:

Wbms
n = W tms

n ⇔ n = 2p − 2q. (4.65)

Note that if n = 2p−1, the number of unbalanced mergers, bottom-up, is
maximum, and the maximum costs are the same in both variants. Also,
the case n = 2p minimises both maximum costs.
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Upper bound If n = 2p+1, then p = ⌊lg n⌋ = ⌈lg n⌉−1. Furthermore,
definition (4.58) entails Wbms

2p+1 = p2p+1 and definition (4.33) on page 133
Wtms

2p+1 = (p − 1)2p + p + 2, so Wbms
2p+i −W tms

2p+i = 2p − p − 1. In terms
of n, this means that Wbms

n −Wtms
n = n− ⌈lg n⌉ − 1, if n = 2p + 1. We

want to prove that this difference is maximum:

WU (n) : Wbms
n "W tms

n + n− ⌈lg n⌉ − 1. (4.66)

Notice how equation (4.59) entails WU (20). Consequently, let the induc-
tion hypothesis be ∀m " 2p.WU (m) and let us prove that WU (2p + i),
for all 0 < i < 2p.

Let n = 2p + i. Equations (4.58) and (4.59) yield

Wbms
2p+i = Wbms

2p +Wbms
i + 2p + i− 1 = Wtms

2p +Wbms
i + 2p + i− 1

"W tms
2p +Wtms

i + 2p + 2i− ⌈lg i⌉ − 2,

where the inequality is the instance WU (i) of the induction hypothesis.
Furthermore, n− ⌈lg n⌉ − 1 = 2p + i− p− 2. Therefore, if

Wtms
2p +Wtms

i + 2p + 2i− ⌈lg i⌉ − 2 "W tms
2p+i + 2p + i− p− 2,

then WU (2p + i) would ensue. Using equation (4.33), we deduce

Wtms
i = i⌈lg i⌉−2⌈lg i⌉+1, W tms

2p = (p−1)2p+1, Wtms
2p+i = Wtms

2p +(p+1)i.

The unproven inequality becomes Wtms
i + i− ⌈lg i⌉ " (p+ 1)i− p, or

1 " (i− 1)(p − ⌈lg i⌉) + 2⌈lg i⌉. (4.67)

We have two complementary cases to consider:

• i = 2q, with 0 " q < p. Then lg i = q and inequation (4.67) is
equivalent to (p − q + 1)(2q − 1) # 0. Since 0 " q < p implies
p− q+1 > 1 and 2q # 1, the inequality is proved, the bound being
tight if, and only if, q = 0.

• i = 2q + j, with 0 " q < p and 0 < j < 2q. Then we have
⌊lg i⌋ = q = ⌈lg i⌉ − 1 and inequation (4.67) is then equivalent to
1 " (2q + j − 1)(p − q) + 2q, or

1 " (p − q + 1)2q + (p− q − 1)(j − 1). (4.68)

From q < p we deduce p − q + 1 # 2 and p − q − 1 # 0; we
also have 2q # 1 and j # 1. Consequently, (p − q + 1)2q # 2 and
(p− q−1)(j−1) # 0, hence inequation (4.68) holds but the bound
is never tight. ✷
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As a side-effect, we proved that if i = 1, that is, n = 2p + 1, then we
have the following inequation:

Wbms
2p+1 = W tms

2p +Wbms
1 +2p "Wtms

2p +Wtms
1 +2p = W tms

2p+1 +2p− p− 1.

But, since Wtms
1 = Wbms

1 = 0, the inequality is actually an equality.

Wbms
n = W tms

n + n− ⌈lg n⌉ − 1⇔ n = 1 or n = 2p + 1.

Program Although we will present the programming language Erlang
in part III, here is how to compute efficiently the maximum costs:

-module(max).

-compile(export_all).

ceiling(X) when X > trunc(X) -> trunc(X) + 1;

ceiling(X) -> trunc(X).

log2(X) -> math:log(X)/math:log(2).

exp2(0) -> 1;

exp2(N) -> E=exp2(N div 2), (1 + N rem 2)*(E*E).

rho(1) -> 0;

rho(N) -> case N rem 2 of

0 -> rho(N div 2) + 1;

1 -> 0

end.

nu(0) -> 0;

nu(N) -> nu(N div 2) + N rem 2.

bms(0) -> 0;

bms(1) -> 0;

bms(N) -> K = N div 2,

case N rem 2 of

0 -> bms(N-1) + nu(K-1) + 1;

1 -> bms(N-2) + 2*exp2(rho(K)) + nu(K-1) + nu(K)

end.

tms(0) -> 0;

tms(1) -> 0;

tms(N) -> L = ceiling(log2(N)), N*L - exp2(L) + 1.
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Note how we efficiently computed the binary exponentiation 2n by means
of the recurrent equations

20 = 1, 22m = (2m)2, 22m+1 = 2(2m)2.

The cost Cexp2
n thus satisfies Cexp2

0 = 1 and Cexp2
n = 1 + Cexp2

⌊n/2⌋, if n > 0.
Therefore, if n > 0, it is 1 plus the number of bits of n, that is to say,
Cexp2
n = ⌊lg n⌋+ 2, else Cexp2

0 = 1.

Average cost In sum, we established, for n # 2,

n lg n− 3
2n+ 2 < Atms

n < n lg n− n+ 1,

n lg n− αn + (2α− 1) < Abms
n < n lg n− (α− 1)n− (3− 2α),

where α ≃ 1.2645, 2α − 1 ≃ 1.52899 and 3 − 2α ≃ 0.471. For top-down
merge sort, the nature of n for the bounds to be most accurate was
not conclusively found by our inductive method. For bottom-up merge
sort, the lower bound is most accurate when n = 2p, but we could not
determine the values of n that make the upper bound most accurate.

The previous inequalities on Abms
n do not allow us to compare the

average costs of the two variants of merge sort we have studied. Here,
we prove that top-down merge sort performs fewer key comparisons than
bottom-up merge sort in average. Since we already proved that this is
true as well in the worst case (see (4.60) on page 152), and that their
minimum costs are equal (see (4.40) on page 138), this will be the last
nail in the coffin of the bottom-up variant, before its rebirth in section 4.6
on page 161. We want to prove by induction

Atms
n " Abms

n .

We already now that the bound is tight when n = 2p, so let us check the
inequality for n = 2 and let us assume that it holds up to 2p and proceed
to establish that it also holds for 2p + i, with 0 < i " 2p, thus reaching
our goal. Let us recall equation (4.53) on page 143:

Abms
2p+i = Abms

2p +Abms
i + 2p + i− 2p

i+ 1
− i

2p + 1
.

Since Abms
2p = Atms

2p and, by hypothesis, Atms
i " Abms

i , we have

Abms
2p+i # Atms

2p +Atms
i + 2p + i− 2p

i+ 1
− i

2p + 1
. (4.69)
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If we could show the right-hand side to be greater than or equal to
Atms

2p+i, we would win. Let us actually generalise this sufficient condition
and express it as the following lemma:

T(m,n) : Atms
m+n " Atms

m +Atms
n +m+ n− m

n+ 1
− n

m+ 1
.

Let us use a lexicographic ordering on the pairs (m,n) of natural numbers
m and n (see definition (1.8) on page 14). The base case, (0, 0), is easily
seen to hold. We observe that the statement to be proved is symmetric,
T(m,n) ⇔ T(n,m), hence we only need to make three cases: (2p, 2q),
(2p, 2q + 1) and (2p + 1, 2q + 1).

1. (m,n) = (2p, 2q). In this case,

• Atms
m+n = Atms

2(p+q) = 2Atms
p+q + 2(p + q)− 2 + 2/(p + q + 1);

• Atms
m = Atms

2p = 2Atms
p + 2p − 2 + 2/(p + 1);

• Atms
n = Atms

2q = 2Atms
q + 2q − 2 + 2/(q + 1).

Then, the right-hand side of T(m,n) is

r := 2
(

Atms
p +Atms

q + 2(p+ q)− 2 + 1
p+1 +

1
q+1 −

p
2q+1 −

q
2p+1

)

.

The induction hypothesis T(p, q) is

Atms
p+q " Atms

p +Atms
q + p+ q − p

q + 1
− q

p+ 1
.

Therefore, 1
2r # Atms

p+q + p+ q− 2+ q+1
p+1 +

p+1
q+1 −

p
2q+1 −

q
2p+1 . If the

right-hand side is greater than or equal to 1
2A

tms
m+n, then T(m,n) is

proved. In other words, we need to prove

p+ 1

q + 1
+

q + 1

p+ 1
# 1 +

p

2q + 1
+

q

2p + 1
+

1

p+ q + 1
.

We expand everything in order to get rid of the fractions; we then
observe that we can factorise pq and the remaining bivariate poly-
nomial is 0 if p = q (the inequality is tight), which means that we
can factorise by p− q (actually, twice). In the end, this inequation
is equivalent to pq(p − q)2(2p + 2q + 3) # 0, with p, q # 0, which
means that T(m,n) holds.

2. (m,n) = (2p, 2q + 1). In this case,

• Atms
m+n = Atms

2(p+q)+1 = Atms
p+q +Atms

p+q+1 + 2(p + q)− 1 + 2
p+q+2 ;
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• Atms
m = Atms

2p = 2Atms
p + 2p − 2 + 2/(p + 1);

• Atms
n = Atms

2q+1 = Atms
q +Atms

q+1 + 2q − 1 + 2/(q + 2).

Then, the right-hand side of T(m,n) is

r := 2Atms
p +Atms

q +Atms
q+1+4(p+ q)− 2+ 2

p+1 +
2

q+2 −
p

q+1 −
2q+1
2p+1 .

The induction hypotheses T(p, q) and T(p, q + 1) are

• Atms
p+q " Atms

p +Atms
q + p+ q − p

q+1 −
q

p+1 ,

• Atms
p+(q+1) " Atms

p +Atms
q+1 + p+ (q + 1)− p

q+2 −
q+1
p+1 .

Thus, r # Atms
p+q+Atms

p+q+1+2(p+ q)−3+ 2q+3
p+1 + p+2

q+2 −
2q+1
2p+1 . If the

right-hand side is greater than or equal to Atms
m+n, then T(m,n) is

proved. In other words, we need to prove

2q + 3

p+ 1
+

p+ 2

q + 2
# 2 +

2q + 1

2p+ 1
+

2

p+ q + 2
.

By expanding and getting rid of the fractions, we obtain a bivariate
polynomial with the trivial factors p and p − q (because if p = q,
the inequality is tight). After that, a computer algebra system can
finish the factorisation and the inequality is found to be equivalent
to p(p− q)(p− q − 1)(2p + 2q + 5) # 0, therefore T(m,n) holds.

3. (m,n) = (2p + 1, 2q + 1). In this case,

• Atms
m+n = Atms

2(p+q+1) = 2Atms
p+q+1 + 2(p+ q) + 2/(p + q + 2);

• Atms
n = Atms

2p+1 = Atms
p +Atms

p+1 + 2p− 1 + 2/(p + 2);

• Atms
n = Atms

2q+1 = Atms
q +Atms

q+1 + 2q − 1 + 2/(q + 2).

Then, the right-hand side of T(m,n) is

r := Atms
p +Atms

q +Atms
p+1+Atms

q+1+4(p+q)+ 2
p+2+

2
q+2−

2p+1
2q+2−

2q+1
2p+2 .

The (symmetric) induction hypotheses T(p, q + 1) and T(p+ 1, q):

• Atms
p+(q+1) " Atms

p +Atms
q+1 + p+ q + 1− p

q+2 −
q+1
p+1 ;

• Atms
(p+1)+q " Atms

p+1 +Atms
q + p+ q + 1− p+1

q+1 −
q

p+2 .

Thus, r # 2Atms
p+q+1+2(p+ q)− 2+ q+1

p+1 +
q

p+2 +
p+1
q+1 +

p
q+2 +

2
p+2 +

2
q+2 −

2p+1
2q+2 −

2q+1
2p+2 . If the right-hand side is greater than or equal

to Atms
m+n, then T(m,n) is proved. In other words, we need to prove

q + 1

p+ 1
+

q + 2

p+ 2
+

p+ 2

q + 2
+

p+ 1

q + 1
# 2+

2p + 1

2q + 2
+

2q + 1

2p + 2
+

2

p+ q + 2
.
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After expansion to form a positive polynomial, we note that the
inequality is tight if p = q, so the polynomial has a factor p − q.
After division, another factor p− q is clear. The inequality is thus
equivalent to (p− q)2(2p2(q+1)+ p(2q2 +9q+8)+2(q+2)2) # 0,
so T(m,n) holds in this case as well.

In total, T(m,n) holds in each case, therefore the lemma is true for
all m and n. By applying the lemma to (4.69), we prove the theorem
Atms

n " Abms
n , for all n. Collecting all the cases where the bound is tight

shows what we would expect: m = n, m = n+1 or n = m+1. For (4.69),
this means i = 2p or i = 2p − 1. In other words,

Atms
n = Abms

n ⇔ n = 2p or n = 2p − 1,with p # 0.

Program In Erlang, we would implement as follows the computation
of the average costs of top-down and bottom-up merge sort:

-module(mean).

-compile(export_all).

floor(X) when X < trunc(X) -> trunc(X) - 1;

floor(X) -> trunc(X).

ceiling(X) when X > trunc(X) -> trunc(X) + 1;

ceiling(X) -> trunc(X).

log2(X) -> math:log(X)/math:log(2).

exp2(0) -> 1;

exp2(N) -> E=exp2(N div 2), (1 + N rem 2)*(E*E).

mrg(M,N) -> M + N - M/(N+1) - N/(M+1).

bms0(N) -> bms(N) + N + ceiling(N/2) + 2*ceiling(log2(N)) - 1.

bms(0) -> 0;

bms(1) -> 0;

bms(N) -> E=exp2(ceiling(log2(N))-1),

bms(E) + bms(N-E) + mrg(E,N-E).

tms(0) -> 0;

tms(1) -> 0;

tms(N) -> F=floor(N/2), C=ceiling(N/2),

tms(F) + tms(C) + mrg(C,F).
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h(0) -> 0;

h(N) -> 1/N + h(N-1).

i2wb(N) -> P = N div 2,

case N rem 2 of

0 -> P*P/2 + 13*P/4 + h(P)/8 - h(N)/4 + 2;

1 -> P*P/2 + 15*P/4 + h(P)/8 - h(N)/4 + 13/4

end.

Merging vs. inserting Let us compare insertion sort and bottom-
up merge sort in their fastest variant. We found in equation (3.12) on
page 113 the average cost of balanced 2-way insertion sort:

Ai2wb
n =

1

8
(n2 + 13n− ln 2n+ 10) + ϵn, with 0 < ϵn <

7

8
.

We also just found that the cost in addition to comparisons is ⌈3n/2⌉ +
2⌈lg n⌉−1 for bms0/1, and Cbms0

n = Cbms
n . Moreover, we found bounds on

Abms
n in (4.54) on page 147, the upper one being excellent. Therefore

Abms0
n < (n lg n− (α− 1)n− (3− 2α)) + (⌈3n/2⌉+ 2⌈lg n⌉ − 1)

< (n+ 2) lg n+ 1.236n + 1.529;

Abms0
n > (n lg n− 1.35n + 1.69) + (⌈3n/2⌉+ 2⌈lg n⌉ − 1)

> (n+ 2) lg n+ 0.152n + 0.69;

(n2 + 13n − ln 2n + 10)/8 < Ai2wb
n < (n2 + 13n − ln 2n+ 17)/8.

where α ≃ 1.2645 and ⌈x⌉ < x+ 1.
Hence, (n + 2) lg n + 1.236n + 1.529 < (n2 + 13n − ln 2n + 10)/8

implies Abms0
n < Ai2wb

n , and also (n2+13n− ln 2n+17)/8 < (n+2) lg n+
0.152n+0.69 implies Ai2wb

n < Abms0
n . With the help of a computer algebra

system, we find that Abms0
n < Ai2wb

n if n # 43, and Ai2wb
n < Abms0

n if
3 " n " 29. For the case n = 2, we find: Ai2wb

2 = 11/2 > 5 = Abms0
2 .

If we set aside this peculiar case, we may conclude that insertion sort is
faster, in average, for stacks of less than 30 keys, and the opposite is true
for stacks of at least 43 keys. In-between, we don’t know, but we can
compute efficiently the average costs and use dichotomy on the interval
from 30 to 43. By using the Erlang program above, we quickly find that
insertion sort is first beaten by bottom-up merge sort at n = 36. This
suggests to drop duo/1 in favour of a function that constructs chunks of
35 keys from the original stack, then sorts them using balanced 2-way
insertions and, finally, if there are more than 35 keys, starts merging
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those sorted stacks. This improvement amounts to not constructing the
first 35 levels in the merge tree but, instead, build the 35th level by
insertions.

Despite the previous analysis, we should be aware that it relies on a
measure based on the number of function calls, which assumes that each
function call is indeed performed by the run-time system (no inlining),
that all context switchings have the same duration, that other operations
take a negligible time in comparison, that cache, jump predictions and
instruction pipelining have no effect etc. Even using the same compiler
on the same machine does not exempt from careful benchmarking.

4.6 On-line merge sort

Sorting algorithms can be distinguished depending on whether they oper-
ate on the whole stack of keys, or key by key. The former are said off-line,
as keys are not sorted while they are coming in, and the latter are called
on-line, as the sorting process can be temporally interleaved with the
input process. Bottom-up merge sort is an off-line algorithm, but it can
be easily modified to become on-line by remarking that balanced mer-
gers can be repeated whenever a new key arrives, and the unbalanced
mergers are performed only when the sorted stack is required.

More precisely, consider again figure 4.12 on page 140 without the
unbalanced mergers. The addition of another key (at the right) yields
two cases: if n is even, that is, e0 > 0, then nothing is done as the key
becomes a singleton, sorted stack of length 20; otherwise, a cascade of
mergers between stacks of identical lengths 2ei , with ei = i, is triggered
until ej > j. This is exactly the binary addition of 1 to n, except that
mergers, instead of bitwise additions, are performed as long as a carry is
issued and propagated.

To our knowledge, only Okasaki (1998a) mentions this variant; he
shows that it can be efficiently implemented with purely functional data
structures, just as the off-line version. (Notice that his context is never-
theless different from ours as he relies on lazy evaluation and amortised
analysis.)

Our code is shown in figure 4.18. We use zero() to represent a 0-bit
in the binary notation of the number of currently sorted keys. Dually,
the call one(s) denotes a 1-bit, where the stack s holds a number of
sorted keys equal to the associated power of two in the binary notation.
Each call to one/1 corresponds to a subtree in figure 4.12 on page 140.
For instance, [one([4]), zero(), one([3, 6, 7, 9])] corresponds to the binary
number (101)2, hence the stack holds 1·22+0·21+1·20 = 5 keys in total.
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oms(s)
φ−→ unb(sum(s, [ ]), [ ]).

sum([ ], t)
χ−→ t;

sum([x |s], t) ψ−→ sum(s, add([x], t)).

add(s, [ ])
ω−→ [one(s)];

add(s, [zero() |t]) γ−→ [one(s) |t];
add(s, [one(u) |t]) δ−→ [zero()|add(mrg(s, u), t)].

unb([ ], u)
µ−→ u;

unb([zero() |s], u) ν−→ unb(s, u);
unb([one(t) |s], u) ξ−→ unb(s,mrg(t, u)).

mrg([ ], t)
θ−→ t;

mrg(s, [ ])
ι−→ s;

mrg([x |s], [y |t]) κ−→ [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t) λ−→ [x |mrg(s, t)].

Figure 4.18: On-line merge sort with oms/1

Keep in mind that the bits are reversed in the stack, as the subsequent
processing of key 5 would yield [zero(), one([4, 5]), one([3, 6, 7, 9])].

Note that the program in figure 4.18 does not capture the normal
use case of on-line merge sort, as, in practice, the argument s of the
call oms(s) would not be known in its entirety, so add/2 would only
be called whenever a key becomes available. In the following analysis,
however, we are interested in the number of comparisons of a sequence
of updates by sum/2 (a framework we used in section 2.5), followed by
a series of unbalanced mergers by unb/2 (unbalanced) in order to obtain
a sorted stack; therefore, our program is suitable because we do want to
assess Coms

n .

Let us note Cadd
n the number of comparisons to add a new key to a

current stack of length n and recall that Cmrg
m,n is the number of comparis-

ons to merge two stacks of lengths m and n by calling mrg/2. If n is even,
then there are no comparisons, as this is similar to adding 1 to a binary
sequence (Ξ0)2, where Ξ is an arbitrary bit string. Otherwise, a series of
balanced mergers of size 2i are performed, as this is dual to adding 1 to
(Ξ011 . . . 1)2, where Ξ is arbitrary. Therefore

Cadd
2j = 0, Cadd

2j−1 =

ρ2j
∑

i=0

Cmrg
2i,2i ,
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where ρn is the highest power of 2 dividing n (ruler function). Let Csum
n

be the number of comparisons to add n keys to [ ]. We have

Csum
n =

n−1
∑

k=0

Cadd
k .

Csum
2p = Csum

2p+1 =
2p−1
∑

k=1

Cadd
k =

p
∑

j=1

Cadd
2j−1 =

p
∑

j=1

1+ρj
∑

i=0

Cmrg
2i,2i . (4.70)

From (4.55), the number of comparisons of the unbalanced mergers is

Cunb
n = C$

n =
r
∑

i=1

Cmrg
2ei ,2ei−1+···+2e0 . (4.71)

Let Coms
n the number of comparisons to sort n keys on-line. We have

Coms
n = Csum

n + Cunb
n . (4.72)

Minimum cost Replacing C by B in equation (4.70), we obtain the
equations for the minimum number of comparisons, allowing us to sim-
plify Bsum

n with the help of equation (4.3) on page 117:

Bsum
2p = Bsum

2p+1 =
p
∑

j=1

1+ρj
∑

i=0

Bmrg
2i,2i =

p
∑

j=1

1+ρj
∑

i=0

2i = 4
p
∑

j=1

2ρj − p. (4.73)

Let Tp :=
∑p

j=1 2
ρj . The recurrences on the ruler function (4.46) on

page 141 help us in finding a recurrence for Tp as follows:

T2q =
q−1
∑

k=0

2ρ2k+1 +
q
∑

k=1

2ρ2k = q + 2 · Tq,

T2q+1 =
2q+1
∑

j=1

2ρj = 1 + T2q = (q + 1) + 2 · Tq.

Equivalently, Tp = 2 · T⌊p/2⌋ + ⌈p/2⌉ = 2 · T⌊p/2⌋ + p − ⌊p/2⌋. Therefore,
unravelling a few terms of the recurrence quickly reveals the equation

2 · Tp = 2p+

⌊lg p⌋
∑

j=1

⌊ p

2j

⌋

2j ,

using Theorem 3 on page 132. By definition, {x} := x− ⌊x⌋, thus

2 · Tp = p⌊lg p⌋+ 2p−
⌊lg p⌋
∑

j=1

{ p

2j

}

2j .
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Using 0 " {x} < 1, we obtain the bounds

p⌊lg p⌋+ 2p− 2⌊lg p⌋+1 + 2 < 2 · Tp " p⌊lg p⌋+ 2p.

Furthermore, x− 1 < ⌊x⌋ " x and ⌊x⌋ = x− {x}, therefore

p(lg p− {lg p}) + 2p− 2lg p−{lg p}+1 + 2 < 2 · Tp " p lg p+ 2p,

p lg p+ 2p+ 2− p · θL({lg p}) < 2 · Tp " p lg p+ 2p,

with θL(x) := x+21−x. Since max0"x<1 θL(x) = θL(0) = 2, we conclude:

p lg p+ 2 < 2 · Tp " p lg p+ 2p.

The upper bound is tight if p = 2q. Applying these bounds to the defini-
tion of Bsum

2p in (4.73) yields

2p lg p− p+ 4 < Bsum
2p " 2p lg p+ 3p. (4.74)

Consequently, Bsum
2p = Bsum

2p+1 ∼ 2p lg p, hence Bsum
n ∼ n lg n.

Equation (4.3) and (4.71) imply Bunb
n =

∑r
i=1min{2ei , 2ei−1 + · · ·+ 2e0}.

Let us commence by noting that
∑i

j=0 2
ej "

∑ei
j=0 2

j = 2 · 2ei − 1. This
is equivalent to a given binary number being always lower than or equal
to the number with the same number of bits all set to 1, for example,
(10110111)2 " (11111111)2 . By definition of ei, we have ei−1+1 " ei, so
∑i−1

j=0 2
ej " 2ei−1+1 − 1 " 2ei − 1 < 2ei and min{2ei , 2ei−1 + · · ·+ 2e0} =

2ei−1 + · · ·+ 2e0 . We have now

Bunb
n =

r
∑

i=1

i−1
∑

j=0

2ej < n. (4.75)

Trivially, 0 < Bunb
n , so equation (4.72) entails Boms

n ∼ n lg n ∼ 2 · Bbms
n .

Maximum cost Replacing C by W in equation (4.70) on the previ-
ous page, we obtain equations for the maximum number of comparisons,
which we can simplify with the help of equation (4.4) on page 117 into

Wsum
2p = Wsum

2p+1 =
p
∑

j=1

1+ρj
∑

i=0

Wmrg
2i,2i = 8

p
∑

j=1

2ρj −
p
∑

j=1

ρj − 4p. (4.76)

We can reach a closed form for
∑p

j=1 ρj if we think of the carry propaga-
tion and the number of 1-bits when adding 1 to a binary number (since
j ranges over successive integers). This amounts to finding a relationship
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between ρj , ρj+1, νj and νj+1. Let us assume that 2n + 1 = (Ξ01a)2,
where Ξ is an arbitrary bit string and (1a)2 is a 1-bit string of length a.
Then ν2n+1 = νΞ+a and ρ2n+1 = 0. The next integer is 2n+2 = (Ξ10a)2,
so ν2n+2 = νΞ + 1 and ρ2n+2 = a. Now, we can relate ρ and ν by means
of a: ρ2n+2 = ν2n+1 − νΞ = ν2n+1 − (ν2n+2 − 1) = 1 + ν2n+1 − ν2n+2.
We can check now that the same pattern also works for ρ2n+1 by simply
using the definitions of ρ and ν: ρ2n+1 = 1 + ν2n − ν2n+1. This achieves
to establish, for any integer n > 0, that ρn = 1 + νn−1 − νn. Summing
on both sides yields

p
∑

j=1

ρj = p− νp.

Interestingly, we already met p − νp in equation (1.7), on page 11. We
can now further simplify (4.76) as follows:

Wsum
2p = Wsum

2p+1 = 8
p
∑

j=1

2ρj − 5p − νp = 2 · Bsum
2p − 3p− νp.

Reusing the bounds on Bsum
2p in (4.74) leads to Wsum

2p = Wsum
2p+1 ∼ 4p lg p.

Equations (4.4) and (4.71) and inequation (4.75) imply

Wunb
n =

r
∑

i=1

i
∑

j=0

2ej − νn + 1 = Bunb
n + n− ρn − νn + 1 < 2n + 1.

Therefore, Woms
n ∼ 2n lg n ∼ 2 · Wbms

n .

Additional cost Let us account now for all the rewrites in the eval-
uation of a call oms(s). Let Coms

n be this number. We already know the
contribution due to the comparisons, Coms

n , either in rule κ or λ, so let
us assess Coms

n − Coms
n :

• Rule φ is used once.

• Rules χ and ψ are involved in the subtrace ψnχ, hence are used
n+ 1 times.

• Rules ω, γ and δ are used F (n) = 2n − νn times, as seen in equa-
tion (1.7). We also must account for the rules θ and ι requested by
the calls mrg(s, u) in rule δ. Each 1-bit in the binary notations of
the numbers from 1 to n− 1 triggers such a call, that is,

∑n−1
k=1 νk.

• Rules ν and ξ are used for each bit in the binary notation of n and
rule µ is used once, making up ⌊lg n⌋+2 calls. We also need to add
the number of calls mrg(t, u) in rule ξ, witnessing the application
of rules θ and ι. This is the number of 1-bits in n, totalling νn.
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In total, we have Coms
n −Coms

n = 3n+⌊lgn⌋+
∑n−1

k=1 νk+2. Equation (4.40)
on page 138 entails Coms

n = Coms
n +3n+ ⌊lg n⌋+Bbms

n + 2. Bounds (4.31)
on page 132 imply Bbms

n ∼ 1
2n lg n, thus Coms

n ∼ Coms
n .

Exercises

1. Prove mrg(s, t) ≡ mrg(t, s).

2. Prove that mrg(s, t) is a sorted stack if s and t are sorted.

3. Prove that all the keys of s and t are in mrg(s, t).

4. Prove the termination of bms/1, oms/1 and tms/1.

5. Is bms/1 stable? What about tms/1?

6. Find Ctms
n − Ctms

n . Hint: mind equation (1.7) on page 11.

7. Page 149, we found that the number of mergers of bms(s) is n− 1
if n is the number of keys in s. Show that tms(s) performs the same
number of mergers. (Hint : Consider equation (4.17) on page 126.)

8. Find a counting argument on the table of figure 4.8 on page 127
showing that

p−1
∑

k=1

2ρk =

⌈lg p⌉−1
∑

i=0

⌈
p− 2i

2i+1

⌉

2i.

9. Compare the number of (|)-nodes created by bms/1 and tms/1.



Chapter 5

Word Factoring

Let us call alphabet a non-empty, finite set of symbols, called letters and
set in a sans-serif type, for example a, b etc. A word is a finite series
of letters, like word; in particular, a letter is a word, as in English. We
denote repetition of a letter or word with an exponent, for instance,
a3 = aaa. Just as letters can be joined to make up words, so can words:
the word u · v is made of the letters of word u followed by the letters
of word v, for instance, if u = back and v = up, then u · v = backup.
This operation is associative: (u · v) ·w = u · (v ·w). As a shorthand, the
operator may be omitted: (uv)w = u(vw). Catenation on words behave
like a non-commutative product, so it has a neutral element ε, called the
empty word : u · ε = ε · u = u.

A word x is a factor of a word y if there exists two words u and v
such that y = uxv. The word x is a prefix of y, noted x # y, if u = ε,
that is, if y = xv. Moreover, it is a proper prefix, noted x ▹ y, if v ̸= ε.
Given y = uxv, the word x is a suffix of y if v = ε. Furthermore, it is a
proper suffix if u ̸= ε. Let a be any letter and x, y any word, then the
prefix relation is easy to define by an inference system as

ε # y
x # y

a · x # a · y

The purpose being to write a functional program for factoring, we
need to translate words and operations on them into terms of the lan-
guage. A letter is translated into a constant data constructor; for ex-
ample, a becomes a(). A word of more than one letter is mapped to a
stack of mapped letters, such as hi in [h(), i()]. The catenation of a letter
and a word is translated as a push, like a · bed becomes [a(), b(), e(), d()].
The catenation of two words is associated to stack catenation, so ab · cd
leads to cat([a(), b()], [c(), d()]).

167
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As usual, the translation of the inference system defining (#) into
a function pre/2 requires that the cases corresponding to the axioms
evaluate in true() and the cases left unspecified ($) evaluate in false():

pre([ ], y)→ true(); pre([a |x], [a |y]) → pre(x, y); pre(x, y)→ false().

The inference system is now a formal specification for the program.
A letter in a word can be uniquely characterised by a natural number,

called index , assuming that the first letter has index 0 (Dijkstra, 1982).
If x = top, then the letter at index 0 is written x[0] = t and the one at
index 2 is x[2] = p. A factor x of y can be identified by the index of x[0]
in y. The end of the factor can also be given; for example, x = sit is a
factor of y = curiousity at index 6, written y[6, 8] = x, meaning y[6] =
x[0], y[7] = x[1] and y[8] = x[2]. Given two words p and t, determining
whether p is a factor of t is called factoring p in t.

Factor matching is common in text editing, although it is usually
better known as exact string matching in the academic field of stringology
or text algorithmics (Charras and Lecroq, 2004, Crochemore et al., 2007)
(Cormen et al., 2009, §32). Because of the asymmetric nature of factoring,
the word p is called the pattern and the word t is the text .

5.1 Naïve factoring

In section 2.3, on page 43, we introduced the linear search, that is, the
stepwise search for the occurrence of an item in a stack. We can generalise
it to search for a series of items occurring consecutively in a stack, that
is, to solve the factoring problem. This approach is qualified as being
naïve because it is a simple extension of a simple idea and it is implied
that it is not the most efficient.

Everything starts with p[0] and t[0] being compared, then, assuming
p[0] = t[0], letters p[1] and t[1] are, in turn, compared etc. until one of
the words is exhausted or a mismatch occurs. Assuming that p is shorter
than t, the former case means that p is a prefix of t. In the latter case, p is
shifted so p[0] is aligned with t[1] and the comparisons are resumed from
there. If p cannot be shifted anymore because its end would surpass the
end of t, then it is not a factor. The essence of this procedure is summed
up in figure 5.1 on the facing page, where p[i] ̸= t[j] (the letters a and b
are not relevant in themselves).

Figure 5.2 on the next page shows an abstract program implement-
ing this scheme. The call loc0(p, t) evaluates in absent() if the pattern p
is not a factor of the text t, otherwise in factor(k), where k is the index
in t where p occurs first. Conceptually, this design consists in combining
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j−i j−1 j

t : . . . p[0] p[1] p[2] . . . p[i− 1] b

0 i−1 i

p : p[0] p[1] p[2] . . . p[i− 1] a

shifted p : −−→ p[0] p[1] p[2] . . .

Figure 5.1: Naïvely matching pattern p against text t (failure in grey)

loc0(p, t)→ loc0(p, t, 0).

pre([ ], t)→ true();
pre([a |p], [a |t]) → pre(p, t);

pre(p, t)→ false().

loc0([x |p], [ ], j) → absent();

pre(p, t)! true()

loc0(p, t, j)→ factor(j)
;

pre(p, [a |t])! false()

loc0(p, [a |t], j) → loc0(p, t, j + 1)
.

Figure 5.2: Naïve factoring with loc0/2

a linear search for the first letter of the pattern and a prefix check for the
rest of the pattern and text. It is important to verify whether the invari-
ants implicit in general do not break in the presence of limit cases. For
instance, in stack processing, set the different stacks to be empty and
interpret the result of single rewrites and entire evaluations. We have
pre([ ], t)! true(), because t = ε · t. Accordingly, loc0([ ], t)! factor(0).

Refinements While this program composition is intuitive, it is too
long. We may remark that, after a call to pre/2 evaluates in true(), the
interpretation ends with factor(j). Dually, a value false() is followed by
the call loc0(p, t, j + 1). Therefore, instead of calling pre/2 and then in-
specting the resulting value to decide what to do next, we could have
pre/2 take the lead. This entails that it needs to receive additional argu-
ments to be able to end with factor(j) or resume with loc0(p, t, j +1), as
expected. The corresponding code is shown in figure 5.3.

Further examination reveals that we can merge loc1/3 and pre1/5 into
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loc1(p, t)→ loc1(p, t, 0).

loc1([a |p], [ ], j) → absent();
loc1(p, t, j)→ pre1(p, t, p, t, j).

pre1([ ], t, p
′, t′, j)→ factor(j);

pre1([a |p], [a |t], p′, t′, j)→ pre1(p, t, p
′, t′, j);

pre1(p, t, p
′, [a |t′], j)→ loc1(p′, t′, j + 1).

Figure 5.3: Refinement of figure 5.2 on the previous page

pre/5 in figure 5.4. This kind of progressive design, where a program
is transformed into a guided series of equivalent programs is called a
refinement. Here, each refinement is more efficient than the preceding,
but less legible than the original, so each step must be cautiously checked.

loc(p, t)
π−→ pre(p, t, p, t, 0).

pre([ ], t, p′, t′, j)
ρ−→ factor(j);

pre(p, [ ], p′, t′, j)
σ−→ absent();

pre([a |p], [a |t], p′, t′, j) τ−→ pre(p, t, p′, t′, j);
pre(p, t, p′, [b |t′], j) υ−→ pre(p′, t′, p′, t′, j + 1).

Figure 5.4: Refinement of figure 5.3

Termination We want to show that the index in the text always in-
creases, whether a comparison fails or not, so we choose a lexicographic
order on the dependency pairs of pre/5 made of the fourth and second
arguments (definition (1.8) on page 14), where s ≻ t if t is the immediate
substack of s. The third rule satisfies (t′, [a | t]) ≻ (t′, t). The fourth rule
is also ordered, because ([b |t′], t) ≻ (t′, t′). ✷

Completeness Note how, in rule σ, the pattern p can not be empty
because the rules are ordered and that case would always match rule ρ.
The completeness of the definition of pre/5 deserves some attention and
we need to justify why the call pre([a | p], [b | t], p′, [ ], j), with a ̸= b,
cannot happen. Perhaps surprisingly, a more general statement is easier
to establish:
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loc(p, t)! pre(p0, t0, p′0, t
′
0, j) implies t′0 * t0,

where (*) is the reflexive substack relation. Let us prove this property
by induction on the length of the derivation . More precisely, we want to
establish the proposition

Comp(n) : loc(p, t)
n−→ pre(p0, t0, p

′
0, t

′
0, j)⇒ t′0 * t0.

• The basis Comp(0) is easy to prove without induction by means of
rule π: loc(p, t)

π−→ pre(p, t, p, t, 0) and t * t trivially holds.

• The induction hypothesis is Comp(n) and we want to show that,
under this assumption, Comp(n+ 1) holds as well. In other words,
let us suppose that loc(p, t)

n−→ pre(p0, t0, p′0, t
′
0, j) implies t′0 * t0

and we want to prove that pre(p0, t0, p′0, t
′
0, j)→ pre(p1, t1, p′1, t

′
1, k)

implies t′1 * t1. This rewrite can only be by means of τ or υ.

– If τ , the induction hypothesis on the left-hand side entails
t′ * [a |t], so t′ * t in the right-hand side;

– otherwise, the right-hand side of υ trivially satisfies t′ * t′.

In summary, Comp(0) is true and Comp(n) ⇒ Comp(n+ 1). Therefore,
the induction principle yields ∀n.Comp(n), which, in turn, entails our for-
mulation with (!). Note how, in this case, this proof technique reduces
to mathematical induction on n. ✷

Cost In the following cost analysis, let m be the length of the pattern p
and n be the length of the text t. Moreover, as it is common with search
algorithms, we discriminate on p being a factor of t or not.

Minimum cost If m " n, the best case happens when the pattern is
a prefix of the text, so the evaluation trace is πτmρ and Bloc

m,n = m+ 2.

If m > n, the minimum cost is Bloc
m,n = |πτnσ| = n + 2. We can gather

these two cases in one formula:

Bloc
m,n = min{m,n}+ 2.

Maximum cost To find the maximum cost, let us investigate the cases
where the pattern is a factor of the text and when it is not.

• The text contains the pattern. The discovery of the pattern must
be delayed as much as possible, therefore the worst case is when
w is a suffix of t and every mismatch involves the last letter of the
pattern. An example is p = am−1b and t = an−1b. The evaluation
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trace corresponding to this case is π(τm−1υ)n−mτmρ, whose length
is mn−m2 +m+ 2.

• The text does not contain the pattern. The pattern is not the pre-
fix of any suffix of the text. The most delayed comparison failure
should occur at the last letter of the pattern, like p = am−1b and
t = an. The cost is |π(τm−1υ)n−m+1τm−1σ| = mn−m2 + 2m+ 1.

Therefore, the maximum cost is W loc
m,n = mn−m2 + 2m+ 1 , when the

pattern is not a factor of the text and m # 1. The previous analysis
suggests an improvement for that case, but would make the case when
the text contains the pattern the worst: just after rule τ , let us add

pre([a], [b], p′, t′, j)→ absent();

Average cost Let us suppose that 0 < m " n and that the letters
of p and t are chosen from the same alphabet, whose cardinal is ă > 1.
Naïve factoring consists in matching a pattern against the prefixes of the
suffixes of a text, by decreasing lengths. Let Aă

m be the average number
of letter comparisons for comparing two words of length m over the
alphabet ă. The average number Aloc

m,n of comparisons for naïve factoring
is

Aloc
m,n = (n−m+ 1)Aă

m +Aă
m−1, (5.1)

because there are n−m+ 1 suffixes of length at least m and 1 suffix of
length m− 1, against which the pattern is matched.

The determination of Aă
m is achieved by fixing the pattern p and

letting the text t vary over all possible letters. There are ăm comparisons
between p[0] and t[0], as much as there are different texts; if p[0] = t[0],
there are ăm−1 comparisons between p[1] and t[1], as much as there are
different t[1,m− 1] etc. In total, there are

ăm + ăm−1 + · · ·+ ă = ă(ăm − 1)/(ă − 1)

comparisons. There are ăm possible texts, hence the average is

Aă
m =

ă(ăm − 1)

ăm(ă− 1)
=

ă

ă− 1

(

1− 1

ăm

)

<
ă

ă− 1
" 2.

Since Aă
1 = 1, we draw the following bounds from equation (5.1):

n−m+ 2 " Aloc
m,n < 2(n−m+ 2) " 2n+ 4.

Naïve factoring is thus efficient in average, but its hypothesis is unlikely
to apply to random English texts. Moreover, notice how the average cost
gets down as the alphabet grows since limă→∞Aă

m = 1.
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5.2 Morris-Pratt algorithm

In case of mismatch, the naïve algorithm resumes comparing the first
letters of p without using the information of the partial success, to wit,
we know p[0, i − 1] = t[j − i, j − 1] and p[i] ̸= t[j] (see figure 5.1 on
page 169). The attempt at matching p with t[j − i+ 1, j − 1] could reuse
t[j − i+ 1, j − 1] = p[1, i− 1], in other words, p[0, i − 2] is compared
to p[1, i− 1], i.e., the pattern p is compared to a part of itself. If we know
an index k such that p[0, k − 1] = p[i− k, i− 1], that is, p[0, k − 1] is
a border of p[0, i− 1] (also known as a side), then we can resume by
comparing t[j] with p[k]. Clearly, the greater k, the more comparisons
are skipped, so we want to find the maximum borders of the prefixes of p.

Border The border of a non-empty word y is a proper prefix of y
which is also a suffix. For example, the word abacaba has three bor-
ders: ε, a and aba. The last one is the maximum border and we write
B(abacaba) = aba. Another example is B(abac) = ε, because abac =
εabacε. Maximum borders can overlap; consider, for example, B(aaaa) =
B(aaaa) = aaa.

The speed-up brought by Morris and Pratt to the naïve search is
depicted in figure 5.5. Notice that, contrary to naïve factoring, letters
in the text are compared in a strictly increasing order (never having to
backtrack). Consider the complete run in figure 5.6 on the following
page where, in the end, p is not found to be a factor of t. As usual,
letters on a grey background correspond to mismatches. It is clear that
B(a) = ε, for all letters a.

We now have the choice of finding either B(ay) or B(ya), where y is
a non-empty word. Since we are interested in knowing the maximum
borders of all the prefixes of a given pattern, the latter is more suitable
(y ▹ ya). The idea is to recursively consider B(y) · a: if it is a prefix of y,
then B(ya) = B(y) · a; otherwise, we seek the maximum border of the

0 j−i j−1 j

t : . . . B(p[0, i − 1]) . . . B(p[0, i − 1]) b

0 k i−k i−1 i

p : B(p[0, i − 1]) . . . B(p[0, i − 1]) a

0 k

shifted p : −−−−−−−−−−−−−−−−−−→ B(p[0, i − 1]) a

Figure 5.5: Morris-Pratt algorithm (failure in grey)
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0 1 2 3 4 5 6 7 8 9 10 11 12

t: b a b a c a a b a c a b b

p: a b a c a b a c
a b a c a b a c

a b a c a b a c
a b a c a b a c

a b a c a b a c
a b a c a b a c

a b a c a b a c

Figure 5.6: Morris-Pratt algorithm at work (no match found)

maximum border of y, namely, B2(y) · a etc. until Bq(y) · a is a prefix
of y or else Bq(y) = ε. For example, B(y · a) = B3(y) · a in figure 5.7.

Formally, for all words y ̸= ε and any letter a,

B(a) := ε; B(y · a) :=
{

B(y) · a, if B(y) · a # y;

B(B(y) · a), otherwise.
(5.2)

Consider the following examples where y and B(y) are given:

y = abaabb, B(y) = ε, B(y · b) = B(B(y) · b) = B(b) = ε;

y = baaaba, B(y) = ba, B(y · a) = B(y) · a = baa;

y = abbbab, B(y) = ab, B(y · a) = B(B(y) · a) = B2(y) · a = a.

Failure function Let us note ∥y∥ the length of a word y. For a given
word x, let us define a function Fx on all its prefixes as

Fx(∥y∥) := ∥B(y)∥, for all x and y ̸= ε such that y # x. (5.3)

y · a = B(y) a? . . . B(y) a

B(y) · a = B2(y) a? . . . B2(y) a

B2(y) · a = B3(y) a . . . B3(y) a

Figure 5.7: B(y · a) = B(B(y) · a) = B(B2(y) · a) = B3(y) · a.
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x a b a c a b a c

i 0 1 2 3 4 5 6 7
Fx(i) −1 0 0 1 0 1 2 3

Figure 5.8: Failure function of abacabac

For reasons which will be clear soon, this function is called the failure
function of x. An equivalent definition is

Fx(i) = ∥B(x[0, i − 1])∥, for all x and i such that 0 < i " ∥x∥.

For example, figure 5.8 shows the table of the maximum borders for
the prefixes of the word abacabac. In figure 5.5 on page 173, the length
of the maximum border is k, so k = Fp(i) and p[Fp(i)] is the first letter
to be compared with t[j] after the shift. Also, the figure assumes that
i > 0, so the border in question is defined. Equations (5.2) on the facing
page defining the maximum border can be unfolded as follows:

B(ya) = B(B(y) · a), B(y) · a $ y;

B(B(y) · a) = B(B2(y) · a), B2(y) · a $ B(y);
...

...

B(Bp−1(y) · a) = B(Bp(y) · a), Bp(y) · a $ Bp−1(y);

and ε ̸∈ {y,B(y), . . . ,Bp−1(y)}. By transitivity, the equations entail
B(ya) = B(Bp(y) · a). Two cases are possible: either Bp(y) = ε, so
B(ya) = B(a) = ε, or the unfolding resumes until we find the smallest
q > p such that B(Bq−1(y) ·a) = B(Bq(y) ·a) with Bq(y) ·a # Bq−1(y).
Because a border is a proper prefix, that is to say, B(y) ▹ y, we have
B2(y) = B(B(y)) ▹ B(y), yielding Bq(y) · a # Bq−1(y) ▹ · · · ▹ B(y) ▹
y. Therefore Bq(y) · a # y, since q > 0, and B(ya) = Bq(y) · a. This
reasoning establishes that

B(ya) =

{

Bq(y) · a, if Bq(y) · a # y;

ε, otherwise;

with the additional constraint that q must be as small as possible. This
form of the definition of B is simpler because it does not contain an
embedded call like B(B(y) · a). We can now take the lengths of each
sides of the equations, leading to

∥B(ya)∥ =
{

∥Bq(y) · a∥ = 1 + ∥Bq(y)∥, if Bq(y) · a # y;

∥ε∥ = 0, otherwise.
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If ya # x, then ∥B(ya)∥ = Fx(∥ya∥) = Fx(∥y∥ + 1). Let i := ∥y∥ > 0.

Fx(i+ 1) =

{

1 + ∥Bq(y)∥, if Bq(y) · a # y;

0, otherwise.

We need to work on ∥Bq(y)∥ now. From the definition of F by equa-
tion (5.3) on page 174, we deduce

Fq
x(∥y∥) = ∥Bq(y)∥, with y # x, (5.4)

which we can prove by complete induction on q. Let us call this property
P(q). Trivially, we have P(0). Let us suppose P(n) for all n " q: this is
the induction hypothesis. Let us suppose y # x and prove now P(q + 1):

Fq+1
x (∥y∥) = Fq

x(Fx(∥y∥)) = Fq
x(∥B(y)∥) .

= ∥Bq(B(y))∥ = ∥Bq+1(y)∥,

where (
.
=) is a valid application of the induction hypothesis because

B(y) ▹ y # x. This proves P(q + 1) and the induction principle entails
that P(n) holds for all n # 0. Therefore, equation (5.4) allows us to refine
our definition of Fx(i+ 1) as follows, with i > 0:

Fx(i+ 1) =

{

1 + Fq
x(i), if Bq(y) · a # y;

0, otherwise.

There is one part of the definition (5.2) on page 174 that we did not use:
B(a) := ε. It implies Fx(1) = Fx(∥a∥) = ∥B(a)∥ = ∥ε∥ = 0 and, since
the definition of F implies Fx(1) = 1 + Fx(0), so Fx(0) = −1. Property
‘Bq(y) · a # y and ya # x and ∥y∥ = i’ implies any of the equalities
y[∥Bq(y)∥] = a ⇔ y[Fq

x(i)] = a ⇔ x[Fq
x(i)] = x[∥y∥] ⇔ x[Fq

x(i)] = x[i].
We now know

Fx(0) = −1 and Fx(i+ 1) =

{

1 + Fq
x(i), if x[Fq

x(i)] = x[i];

0, otherwise;

where q is the smallest nonzero natural satisfying the condition. This can
be further simplified into

Fx(0) = −1 and Fx(i+ 1) = 1 + Fq
x(i),

where i # 0 and q > 0 is the smallest natural such that F
q
x(i) = −1 or

x[Fq
x(i)] = x[i].
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fail0(x, 0)→ −1; fail0(x, i)→ 1 + fp(x, nth(x, i− 1), fail0(x, i− 1)).

nth([a |x], 0) → a; nth([a |x], i) → nth(x, i− 1).

fp(x, a,−1)→ −1;
nth(x, k)! a

fp(x, a, k)! k
; fp(x, a, k)→ fp(x, a, fail0(x, k)).

Figure 5.9: The failure function F as fail0/2

Preprocessing The function call fail0(x, i), defined in figure 5.9, im-
plements Fx(i). The function fp/3 (fixed point) computes Fq

x(i−1), start-
ing with fail0(x, i − 1) and nth(x, i − 1), which denotes x[i− 1] and is
needed to check the condition x[Fq

x(i− 1)] = x[i− 1]. The equality test
F
q
x(i− 1) = −1 is performed by the first rule of fp/3.

The algorithm of Morris and Pratt requires that Fx(i) be computed
for all indexes i of the pattern x and, since it depends on the values of
some calls Fx(j), with j < i, it is more efficient to compute Fx(i) for
increasing values of i and store them, so they can be reused instead of
being recomputed. This technique is called memoisation (not to be con-
fused with memorisation). In this instance, the evaluation of Fx(i) relies
on the memo [⟨x[i− 1],Fx(i− 1)⟩, ⟨x[i − 2],Fx(i− 2)⟩, . . . , ⟨x[0],Fx(0)⟩].
The memoising version of fail0/2 is named fail/2 in figure 5.10. Here,
we work with the memo p, which is a reversed prefix, instead of x, so
we need to know its length i in order to know how many letters must be
discarded by suf/2 (suffix): suf(x, i− k− 1) instead of fail0(x, k). Thanks
to the memo, fp/4 does not need to call fail/2, just to look in p with
suf/2. Note that, as a small improvement, we also moved the increment:
instead of 1 + fp(. . . ) and · · ·! k, we do now fp(. . . ) and · · ·! k + 1.

Let us name pp/1 (preprocessing) the function computing the stack
[⟨x[0],Fx(0)⟩, ⟨x[1],Fx(1)⟩, . . . , ⟨x[m− 1],Fx(m− 1)⟩] for a pattern x of

fail(p, 0)→ −1; fail([⟨a, k⟩ |p], i)→ fp(p, a, k, i − 1).

fp(p, a,−1, i) → 0;
suf(p, i− k − 1)! [⟨a, k′⟩ |p′]

fp(p, a, k, i) ! k + 1
;

suf(p, i− k − 1)! [⟨b, k′⟩ |p′]
fp(p, a, k, i) ! fp(p′, a, k′, k)

.

suf(p, 0)→ p; suf([a |p], i)→ suf(p, i− 1).

Figure 5.10: The failure function with memoisation
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pp(x)→ pp(x, [ ], 0).

pp([ ], p, i) → rev(p);
pp([a |x], p, i) → pp(x, [⟨a, fail(p, i)⟩ |p], i + 1).

Figure 5.11: Preprocessing of a pattern y by pp/1

length m. Its definition is shown in figure 5.11, where rev/1 is the
reversal function (definition (2.2) on page 39), and pp/1 simply calls
the failure function fail/2 for each new index i on the current memo p
and creates a new memo by pairing the failure index with the current
letter and pushing on the current memo ([⟨a, fail(p, i)⟩ | p]). The stack
reversal at the end is necessary because the memo contains the letters in
reversed order with respect to the pattern. For example, the example in
figure 5.8 on page 175 leads to the evaluation

pp(x)! [⟨a,−1⟩, ⟨b, 0⟩, ⟨a, 0⟩, ⟨c, 1⟩, ⟨a, 0⟩, ⟨b, 1⟩, ⟨a, 2⟩, ⟨c, 3⟩],

where x = abacabac. If x = ababaca, then

pp(x)! [⟨a,−1⟩, ⟨b, 0⟩, ⟨a, 0⟩, ⟨b, 1⟩, ⟨a, 2⟩, ⟨c, 3⟩, ⟨a, 0⟩].

Minimum cost It is clear from the definition (5.2) on page 174 that
the determination of the maximum border of a non-empty word requires
finding the maximum borders of some or all proper prefixes, so, if the
word contains n letters, at least n − 1 comparisons are needed, as the
border of the first letter alone needs no comparison. This lower bound is
tight, as the following reasoning shows. Let us call positive comparison
a successful prefix test as found in the definition of B, that is, B(y) ·
a # y. Dually, a negative comparison is a failed prefix test. In order to
minimise the number of calls to evaluate B(ya), we may notice that a
positive comparison only entails the evaluation of B(y), whilst a negative
comparison requires two: B(B(y) · a). Therefore, the first idea may be
to assume that only positive comparisons occur:

B(x)
n−2
= B(x[0, n − 2])·x[n − 1]

n−1
= · · · 0

=B(x[0])·x[1, n − 1]=x[1, n−1],

where (
i
=) implies B(x[0, i]) · x[i+ 1] # x[0, i], for 0 " i " n− 2. Firstly,

i = 0 and the corresponding positive comparison yields x[0] = x[1].
Unfolding the other comparisons yields x[0] = x[1] = · · · = x[n− 1], so
a best case is x = an, for any letter a.
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But there is another case, because the outermost call to B after a
negative comparison does not imply a comparison if its argument is a
single letter:

B(x)
n−2
= B(B(x[0, n − 2]) · x[n− 1])
n−3
= B(B(B(x[0, n − 3]) · x[n− 2]) · x[n− 1])
...
0
= B(B(. . .B(B(x[0]) · x[1]) . . . ) · x[n− 1])
.
= B(B(. . .B(B(x[1]) · x[2]) . . . ) · x[n− 1])
...
.
= B(x[n − 1]) = ε.

where (
i
=) implies B(x[0, i]) · x[i+ 1] $ x[0, i], for 0 " i " n − 2 and

(
.
=) involves no comparisons. Starting with i = 0 yields x[1] ̸= x[0],
then i = 1 leads to x[2] ̸= x[0] etc. so the consequences of all these
negative comparisons are x[0] ̸= x[i], for 1 " i " n − 2. The number
of negative comparisons is n − 1, thus is minimal, but the shape of the
word is different than previously, as the first letter must differ from all
the following. Let Bpp

n be the minimum number of comparisons involved
in the evaluation of pp(x), where the length of the pattern x is n. It is
the same as the number of comparisons to evaluate B(x[0, n − 2]) when
x[0, n − 2] is a best case. Therefore, Bpp

n = n− 2.

Maximum cost The determination of the maximum border of a word
implies finding the maximum borders of some or all proper prefixes, so,
if we want to maximise the number of comparisons, we may want to
compute as many borders as possible. In order to do so, evaluating B(x)
would lead to finding the maximum border of a factor of length n − 1,
where n is the length of x. The best case x = an showed that B(x) =
x[1, n − 1], which fits our purpose, except we would like B(x[1, n − 1]). In
other words, we add the constraint that the first comparison is negative:

B(x)
n−1
= B(B(x[0, n − 2]) · x[n− 1])
n−2
= B(B(x[0, n − 3]) · x[n− 2, n − 1])
...
1
= B(B(x[0]) · x[1, n − 1]) = B(x[1, n − 1]),

where (
n−1
= ) supposes B(x[0, n − 2]) · x[n− 1] $ x[0, n − 2], and (

i
=),

with 1 " i " n − 2, corresponds to B(x[0, i]) · x[i+ 1] # x[0, i]. These
constraints imply x[0] = x[1] = · · · = x[n− 2] ̸= x[n− 1], that is to say,
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x = an−1b, with a ̸= b. Up to now, the number of comparisons is n − 1,
as in the minimal case, but the evaluation continues as follows:

B(aib)
i
= B(B(ai) · b) .

= B(B(ai−1) · ab) .
= · · · .

= B(ai−1b),

for 1 " i " n−2 and (
i
=) entails the negative comparisons B(ai) · b $ ai

and the positive comparisons (
.
=), which we do not count because we

have in mind to find Wpp
n , so repeated evaluations of the same border

do not entail repeated comparisons thanks to memoisation. Thus, we
have n − 2 negative comparisons until B(b) = ε, which, with the n − 1
earlier positive comparisons, sum up 2n− 3. Since Wpp

n is the number of
comparisons to compute B(x[0, n − 2]) without repetitions, we have

Wpp
n = 2(n− 1)− 3 = 2n− 5.

Search We found above that n− 2 " Cpp
n " 2n− 5, where the bounds

are tight if n # 3. To make use of the value of pp(p), we could start by
modifying the linear search in section 5.1, in particular the program in
figure 5.4 on page 170, while keeping an eye on figure 5.5 on page 173.
The result is displayed in figure 5.12. Note how the first argument of
mp/5, p, is the working copy and the third, p′, is the original which
remains invariant (it is used to reset p after a letter mismatch). Indexes i,
j and k are the same as in figure 5.5 on page 173. The latter is none
other than the value computed by the failure function; variables i and j
are incremented each time a letter in the pattern is successfully matched
against a letter in the text (third rule of mp/5) and j is also incremented
each time there is a mismatch of the first letter of the pattern (fourth
rule of mp/5).

pp(p)! p′

mp(p, t)! mp(p′, t, p′, 0, 0)
.

mp([ ], t, p′, i, j) → factor(j − i);
mp(p, [ ], p′, i, j) → absent();

mp([⟨a, k⟩ |p], [a |t], p′, i, j) → mp(p, t, p′, i+ 1, j + 1);
mp([⟨a,−1⟩ |p], [b |t], p′, 0, j) → mp(p′, t, p′, 0, j + 1);

mp([⟨a, k⟩ |p], t, p′, i, j) → mp(suf(p′, k), t, p′, k, j).

Figure 5.12: Morris-Pratt algorithm (search phase)

Minimum cost Let Bmp/5
m,n be the minimum number of comparisons

performed during the evaluation of mp/5, where m is the length of the
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pattern and n is the length of the text. Just as with naïve factoring,

the best case is when the pattern is a prefix of the text, so Bmp/5
m,n = m.

Taking into account the preprocessing stage, the minimum number of
comparisons Bmp

m,n of mp/2 is

Bmp
m,n = Bpp

m + Bmp/5
m,n = (m− 2) +m = 2m− 2.

Maximum cost Since the Morris-Pratt algorithm only reads the text
forwards, the worst case must maximise the number of times the letters
of the text t are compared with a letter in the pattern p. Therefore, the
first letter of the pattern cannot differ from all the letters of the text,
otherwise each letter of the text would be compared exactly once. Let us
assume the exact opposite: p[0] = t[i], with i # 0. But this would also
imply one comparison per letter in the text. The way to force the pattern
to shift as little as possible is to further impose p[1] ̸= t[i], for i > 0. In
short, this means that ab # p, with letters a and b such that a ̸= b and
t = an. A simple drawing is enough to reveal that this configuration leads

to the maximum number of comparisons Wmp/5
m,n = 2n− 1, as each letter

in the text is compared twice, except the first, which is compared once.
Taking into account the preprocessing stage, the maximum number of
comparisons Wmp

m,n of mp/2 satisfies

Wmp
m,n = Wpp

m + Bmp/5
m,n = (2m− 5) + (2n − 1) = 2(n+m− 3).

Metaprogramming The previous study leads to programs for the pre-
processing and search phases that somewhat obscure the main idea sup-
porting the algorithm of Morris and Pratt, to wit, the use of the max-
imum borders of the proper prefixes of the pattern and the forward-only
reading of the text. The reason for that somewhat unfortunate situation
is that, for efficiency imperatives, we have to memoise the values of the
failure function and, instead of working with the original pattern, we
proceed with a version of it augmented with these values. Also, the util-
isation of stacks for modelling the pattern slows down and obfuscates
the reading of the letters and the shifts.

If the pattern is fixed, a more legible approach is available, consisting
in the modification of the preprocessing stage so that a dedicated pro-
gram is output. This kind of taylored method, where a program is the
result of the execution of another, is called metaprogramming . Of course,
it is an option only if the time needed to output, compile and execute
a program is amortised in the long run, which implies for the problem
at hand that the pattern and the text are expected to be significantly



182 CHAPTER 5. WORD FACTORING

long or that the search is likely to be repeated with the same pattern on
other texts (or the remainder of the same text after an occurrence of the
pattern has been found).

mp0(t)→ zero(t, 0).

zero([a() |t], j)→ one(t, j + 1);
zero([a |t], j) → zero(t, j + 1);

zero([ ], j) → absent().

one([b() |t], j)→ two(t, j + 1);
one(t, j)→ zero(t, j).

two([a() |t], j)→ three(t, j + 1);
two(t, j)→ zero(t, j).

three([c() |t], j)→ four(t, j + 1);
three(t, j)→ one(t, j).

four([a() |t], j)→ five(t, j + 1);
four(t, j)→ zero(t, j).

five([b() |t], j)→ six(t, j + 1);
five(t, j)→ one(t, j).

six([a() |t], j)→ seven(t, j + 1);
six(t, j)→ two(t, j).

seven([c() |t], j)→ factor(j − 6);
seven(t, j)→ three(t, j).

Figure 5.13: Factoring abacabac

There is a graphical way to rep-
resent the contents of the table in
figure 5.8 on page 175 called de-
terministic finite automaton and
shown in figure 5.14. We will
here only describe informally auto-
mata; for a full treatment, see Per-
rin (1990), Hopcroft et al. (2003),
Sakarovitch (2003). Consider that
the circles, called states, contain
the values of i from the table. The
edges, called transitions, between
two states are of two kinds: either
solid and carrying a letter, called
label , or dotted and going back-
wards. The succession of states
throughout solid edges make the
word x = abacabac. The rightmost
state is distinguished by a double
circling because it marks the end
of x. There is a back edge between
state i and j only if Fx(i) = j.
The leftmost state has an incom-
ing, solid edge without a source
and a dotted, outgoing edge. The
former simply denotes the begin-
ning of the word and the latter
corresponds to the special value
Fx(0) = −1. What matters for us
is that the intuitive support brought by an automaton also can be im-
plemented intuitively, with each state corresponding to one function and

0 1 2 3 4 5 6 7 8
a b a c a b a c

Figure 5.14: Morris-Pratt automaton for the pattern abacabac
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the outgoing transitions associated with different rules of the definition of
the state function. The example abacabac is shown in figure 5.13. The
automaton states, 0, 1, through 7, correspond to the functions zero/2,
one/2 etc. through seven/2. Notice how mp0/1 sets the index to 0 when
initialising the first state, that is, calling zero/2. The index j plays the
same role as in figure 5.5 on page 173. The first rule of each function
corresponds to a rightwards transition in the automaton in figure 5.14
on the preceding page and the second rule is a backwards transition, that
is, a failure, except in zero/2, where it means that the pattern is shifted
by one letter. The function zero/2 has a third rule handling the case
when the pattern is absent in the text. We could add a similar rule to
the other functions, as an optimisation, but we opt for brevity and let
successive failure rules bring us back to zero/2. The first rule of seven/2
is special as well, because it is used when the pattern has been found.
Note the index j − 6, clearly showing that the length of the pattern is
part of the program, which is hence a metaprogram.

Knuth’s variant In figure 5.5 on page 173, if a = a, then the sliding
would immediately lead to a comparison failure. Hence let us compare
p[Fp(i)] to t[j] only if p[Fp(i)] ̸= p[i]. Else, we consider the maximum
border of the maximum border etc. until we find the smallest q such
that p[Fq

p(i)] ̸= p[i]. This is an improvement by Knuth et al. (1977).
There is an updated reprint by Knuth (2010) and a treatment based
on automata theory by Crochemore et al. (2007), in its section 2.6. See
also an interesting derivation of the program by algebraic refinements
in the book by Bird (2010). In terms of the search automaton, when
a failure occurs at state i on the letter a, we follow the back edge to
state Fx(i), but, if the normal transition is a again, we follow another
back edge etc. until there is a transition different from a or we have
to shift the pattern. The improvement proposed by Knuth consists in
replacing all these successive failure transitions by only one. For example,
the automaton in figure 5.15 is Knuth’s optimisation of the one in
figure 5.14.

0 1 2 3 4 5 6 7 8
a b a c a b a c

Figure 5.15: Knuth-Morris-Pratt automaton for the pattern abacabac
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Exercises

1. Find Aloc
m,n.

2. Prove that pp/1 and mp/2 terminate.

3. Prove loc/2 = mp/2 (correctness of the algorithm of Morris and
Pratt).

4. Find Bpp
m and Wpp

m . (Mind the cost of suf/2.)

5. Find Bmp
m,n and Wmp

m,n.

6. Find a simple modification to avoid calling rev/1 in figure 5.11
on page 178.

7. Modify fail/2 so that mp/2 implements the Knuth-Morris-Pratt
algorithm. Study the best and worst cases of this variant and show
that Wpp

m = 2m− 6, for m # 3.

8. Write the metaprogram corresponding to the automaton in fig-

ure 5.15 on the preceding page.

9. Write a function rlw/2 (remove the last word) such that rlw(w, t)
is rewritten into the text t if the word w is absent, otherwise into t
without the last occurrence of t in it.
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Chapter 6

Catalan Trees

In part I, we dealt with linear structures, like stacks and queues, but, to
really understand programs operating on such structures, we needed the
concept of tree. This is why we introduced very early on abstract syntax
trees, directed acyclic graphs (e.g., figure 1.4 on page 7), comparison
trees (e.g., figure 2.41 on page 87), binary trees (e.g., figure 2.43 on
page 88), proof trees (e.g., figure 3.2a on page 96), evaluation trees (e.g.,
figure 3.6 on page 107) and merge trees (e.g., figure 4.6 on page 124).
Those trees were meta-objects, or concepts, used to understand the linear
structure at hand.

In this chapter, we take a more abstract point of view and we consider
the general class of Catalan trees, or general trees. We will study them
as mathematical objects with the aim to transfer our results to the trees
used as data structures to implement algorithms. In particular, we will be
interested in measuring, counting them, and determining some average
parameters relative to their shape, the reason being that knowing what a
random tree looks like will tell us something about the cost of traversing
it in different ways.

Figure 6.1:
Catalan tree of

height 4

Catalan trees are a special kind of graph, that
is, an object made of nodes (also called vertices)
connected by edges, without orientation (only the
connection matters). What makes Catalan trees is
the distinction of a node, called the root, and the
absence of cycles, that is, closed paths made of
nodes successively connected. Catalan trees are of-
ten called ordered trees, or planted plane trees, in
graph theory, and unranked trees, or n-ary trees in
programming theory. An example is given in figure 6.1. Note how the
root is the topmost node and has four subtrees, whose root are called

187
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children, given in order. The nodes drawn as white disks (◦) make up a
maximal path starting from the root (the number of nodes along it is
maximal). The ending node has no children; there are actually 8 such
nodes in total, called the leaves. The number of edges connecting white
disks is the height of the Catalan tree (there may be several maximal
paths of same length), so the given example has height 4.

Programmers implement Catalan trees as a data structure, e.g., us-
ing XML, in which case some information is stored in the nodes and its
retrieval may – in the worst case – require the reaching of a leaf. The
maximum cost of a search is thus proportional to the height of the tree
and the determination of the average height becomes relevant when per-
forming a series of random searches (Vitter and Flajolet, 1990). For this
kind of analysis, we need first to find the number of Catalan trees with
a given size. There are two common measures for the size: either we
quantify the trees by their number of nodes or we count the edges. In
fact, using one or the other is a matter of convenience or style: there are
n edges if there are n+1 nodes, simply because each node, save the root,
has one parent. It is often the case that formulas about Catalan trees
are a bit simpler when using the number of edges, so this will be our
measure of size in this chapter.

6.1 Enumeration

(a) Dyck path (b) Catalan tree

Figure 6.2: Bijection

In most textbooks (Sedgewick and
Flajolet, 1996, § 5.1 & 5.2) is shown
how to find the number of Catalan
trees with n edges by means of
some quite powerful mathematical
tools known as generating functions
(Graham et al., 1994, chap. 7). In-
stead, for didactical purposes, we
opt for a more intuitive technique
in enumerative combinatorics which
consists in constructing a one-to-one correspondence between two finite
sets, so the cardinal of one set is the cardinal of the other. In other words,
we are going to relate bijectively, on the one hand, Catalan trees, and,
on the other hand, other combinatorial objects which are relatively easy
to count.

The objects most suitable for our purpose are monotonic lattice paths
in a square grid (Mohanty, 1979, Humphreys, 2010). These paths are
made up of steps oriented upwards (↑), called rises, and steps rightwards
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(→), called falls, starting at the bottom left corner (0, 0). Dyck paths
of length 2n are paths ending at (n, n) which stay above the diagonal,
or touch it. We want to show that there exists a bijection between Dyck
paths of length 2n and Catalan trees with n edges.

1

2 3 4

5

6

7

Figure 6.3

To understand that bijection, we need first to present
a particular kind of traversal , or walk , of Catalan trees.
Let us imagine that a tree is a map where nodes represent
towns and edges roads. A complete traversal of the tree
consists then in starting our trip at the root and, following
edges, to visit all the nodes. (It is allowed to visit several
times the same nodes, since there are no cycles.) Of course,
there are many ways to achieve this tour and the one we envisage here is
called a preorder traversal. At every node, we take the leftmost unvisited
edge and visit the subtree in preorder; when back at the node, we repeat
the choice with the remaining unvisited children. For the sake of clarity,
we show in figure 6.3 the preorder numbering of figure 6.2b, where
the order in which a node is visited first is shown instead of a black disk
(•).

Figure 6.4: Reflection of
a prefix w.r.t. y = x− 1

The first part of the bijection is an injec-
tion from Catalan trees with n edges to Dyck
paths of length 2n. By traversing the tree in
preorder, we associate one rise to an edge on
the way down, and a fall to the same edge on
the way up. Obviously, there are 2n steps in
the Dyck path. The surjection simply consists
in reversing the process by reading the Dyck
path step by step, rightwards, and build the
corresponding tree. Now, we need to count the
number of Dyck paths of length 2n, which we
know now is also the number of Catalan trees
with n edges.

The total number of monotonic paths of length 2n is the number
of choices of n rises amongst 2n steps, that is,

(2n
n

)

. We need now to
subtract the number of paths that start with a rise and cross the diagonal.
Such a path is shown in figure 6.4, drawn as a bold continuous line.
The first point reached below the diagonal is used to plot a dotted line
parallel to the diagonal. All the steps from that point back to (0, 0) are
then changed into their counterpart: a rise by a fall and vice-versa. The
resulting segment is drawn as a dashed line. This operation is called a
reflection (Renault, 2008). The crux of the matter is that we can reflect
each monotonic path crossing the diagonal into a distinct path from
(1,−1) to (n, n). Furthermore, all reflected paths can be reflected when
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they reach the dotted line back into their original counterpart. In other
words, the reflection is bijective. (Another intuitive and visual approach
to the same result has been published by Callan (1995).) Consequently,
there are as many monotonic paths from (0, 0) to (n, n) that cross the
diagonal as there are monotonic paths from (1,−1) to (n, n). The latter
are readily enumerated:

( 2n
n−1

)

. As a conclusion, the number of Dyck
paths of length 2n is

Cn =

(
2n

n

)

−
(

2n

n− 1

)

=

(
2n

n

)

− (2n)!

(n− 1)!(n + 1)!

=

(
2n

n

)

− n

n+ 1
· (2n)!
n!n!

=

(
2n

n

)

− n

n+ 1

(
2n

n

)

=
1

n+ 1

(
2n

n

)

.

The numbers Cn are called Catalan numbers. Using Stirling’s formula,
seen in equation (2.14) on page 80, we find that the number of Catalan
trees with n edges is

Cn =
1

n+ 1

(
2n

n

)

∼ 4n

n
√
πn

. (6.1)

6.2 Average path length

The path length of a Catalan tree is the sum of the lengths of the paths
from the root. We have seen this concept in the context of binary trees,
where it was declined in two variants, internal path length (page 110) and
external path length (page 88), depending on the end node being internal
or external. In the case of Catalan trees, the pertinent distinction between
nodes is to be a leaf (that is, a node without subtrees) or not, but some
authors nevertheless speak of external path length when referring to the
distances to the leaves, and of internal path length for the non-leaf nodes,
hence we must bear in mind whether the context is the Catalan trees or
the binary trees.

In order to study the average path length of Catalan trees, and some
related parameters, we may follow Dershowitz and Zaks (1981) by finding
first the average number of nodes of degree d at level l in a Catalan tree
with n edges. The degree of a node is the number of its children and its
level is its distance to the root counted in edges and the root is at level 0.

The first step of our method for finding the average path length
consists in finding an alternative bijection between Catalan trees and
Dyck paths. In figure 6.2b, we see a Catalan tree equivalent to the
Dyck path in figure 6.2a, built from the preorder traversal of that tree.
Figure 6.5b shows the same tree, where the contents of the nodes is
their degree. The preorder traversal (of the degrees) is [3, 0, 0, 2, 1, 0, 0].
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(a) Dyck path

3

0 0 2

1

0

0

(b) Catalan tree

Figure 6.5: Degree-based bijection

Since the last degree is always 0 (a leaf), we remove it and settle for
[3, 0, 0, 2, 1, 0]. Another equivalent Dyck path is obtained by mapping
the degrees of that list into as many occurrences of rises (↑) and one
fall (→), so, for instance, 3 is mapped to (↑, ↑, ↑,→) and 0 to (→). In
the end, [3, 0, 0, 2, 1, 0] is mapped into [↑, ↑, ↑,→,→,→, ↑, ↑,→, ↑,→,→],
which corresponds to the Dyck path in figure 6.5a. It is easy to convince
ourself that we can reconstruct the tree from the Dyck path, so we indeed
have a bijection.

The reason for this new bijection is that we need to find the average
number of Catalan trees whose root has a given degree. This number will
help us in finding the average path length, following an idea of Ruskey
(1983). From the bijection, it is clear that the number of trees whose root
has degree r = 3 is the number of Dyck paths made of the segment from
(0, 0) to (0, r), followed by one fall (see the dot at (1, r) in figure 6.5a),
and then all monotonic paths above the diagonal until the upper right
corner (n, n). Therefore, we need to determine the number of such paths.

We have seen in section 6.4 on page 197 the bijective reflection of
paths and the counting principle of inclusion and exclusion. Let us add
to our tools one more bijection which proves often useful: the reversal.
It simply consists in reversing the order of the steps making up a path.
Consider for example figure 6.6a. Of course, the composition of two
bijections being a bijection, the composition of a reversal and a reflection
is bijective, hence the monotonic paths above the diagonal from (1, r) to
(n, n) are in bijection with the monotonic paths above the diagonal from
(0, 0) to (n − r, n − 1). For example, figure 6.6b shows the reversal
and reflection of the Dyck path of figure 6.5a after the point (1, 3),
distinguished by the black disk (•).

Recalling that Catalan trees with n edges are in bijection with Dyck
paths of length 2n (section 6.1 on page 188), we now know that the
number of Catalan trees with n edges and whose root has degree r is the
number of monotonic paths above the diagonal from the point (0, 0) to
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(a) Reversal of figure 6.4 (b) Reversal and
reflection of

figure 6.5a after (1, 3)

Figure 6.6: Reversals and reflections

(n− r, n−1). We can find this number using the same technique we used
for the total number Cn of Dyck paths. The principle of inclusion and
exclusion says that we should count the total number of paths with same
extremities and retract the number of paths that cross the diagonal. The
former is

(2n−r−1
n−1

)

, which enumerates the ways to interleave n − 1 rises
(↑) and n− r falls (→). The latter number is the same as the number of
monotonic paths from (1,−1) to (n − r, n − 1), as shown by reflecting
the paths up to their first crossing, that is,

(2n−r−1
n

)

; in other words,
that is the number of interleavings of n rises with n− r− 1 falls. Finally,
imitating the derivation of equation (6.1), the number Rn(r) of trees
with n edges and root of degree r is

Rn(r) =

(
2n− r − 1

n− 1

)

−
(
2n− r − 1

n

)

=
r

2n− r

(
2n− r

n

)

.

Let Nn(l, d) be the number of nodes in the set of all Catalan trees
with n edges, which are at level l and have degree d. This number is the
next step in determining the average path length because Ruskey (1983)
found a neat bijection to relate it to Rn(r) by the following equation:

Nn(l, d) = Rn+l(2l + d).

In figure 6.7a is shown the general pattern of a Catalan tree with node
(•) of level d and degree d. The double edges denote a set of edges, so the
Li, Ri and Bi actually represent forests. In figure 6.7b we see a Catalan
tree in bijection with the former, from which it is made by lifting the node
of interest (•) to become the root, the forests Li with their respective
parents are attached below it, then the Bi, and, finally, the Ri for which
new parents are needed (inside a dashed frame in the figure). Clearly, the



6.2. AVERAGE PATH LENGTH 193

L1

L2

Ll

B1 B2 Bd

Rl

R2

R1

(a) n edges, (•) is
of degree d and at

level l

L1 Ll B1 Bd R1 Rl

(b) n+ l edges, root of degree 2l + d

Figure 6.7: Bijection

new root is of degree 2l + d and there are n + l edges. Importantly, the
transformation can be inverted for any tree (it is injective and surjective),
so it is indeed a bijection. We deduce

Nn(l, d) =
2l + d

2n − d

(
2n− d

n+ l

)

=

(
2n− d− 1

n+ l − 1

)

−
(
2n− d− 1

n+ l

)

, (6.2)

where the last step follows from expressing the binomial coefficient in
terms of the factorial function. In particular, this entails that the total
number of nodes at level l in all Catalan trees with n edges is

n
∑

d=0

Nn(l, d) =
n
∑

d=0

(
2n − d− 1

n+ l − 1

)

−
n
∑

d=0

(
2n− d− 1

n+ l

)

.

Let us consider the first sum:
n
∑

d=0

(
2n− d− 1

n+ l − 1

)

=
2n−1
∑

i=n−1

(
i

n+ l − 1

)

=
2n−1
∑

i=n+l−1

(
i

n+ l − 1

)

.

We can now make use of the identity (4.8) on page 122, which is equival-
ent to

∑k
i=j

(i
j

)

=
(k+1
j+1

)

, so j = n+ l − 1 and k = 2n− 1 yields

n
∑

d=0

(
2n− d− 1

n+ l − 1

)

=

(
2n

n+ l

)

.

Furthermore, replacing l by l+1 gives
∑n

d=0

(2n−d−1
n+l

)

=
( 2n
n+l+1

)

, so the
total number of nodes at level l in all Catalan trees with n edges is

n
∑

d=0

Nn(l, d) =

(
2n

n+ l

)

−
(

2n

n+ l + 1

)

=
2l + 1

2n + 1

(
2n+ 1

n− l

)

. (6.3)
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Let E[Pn] be the average path length of a Catalan tree with n edges.
We have

E[Pn] :=
1

Cn
·

n
∑

l=0

l
n
∑

d=0

Nn(l, d),

because there are Cn trees and the double summation is the sum of the
path lengths of all the trees. If we average again by the number of nodes,
i.e., n+1, we obtain the average level of a node in a random Catalan tree
and beware that some authors take this as the definition of the average
path length. Alternatively, if we pick distinct Catalan trees with n edges
at random and then pick random, distinct nodes in them, E[Pn]/(n+ 1)
is the limit of the average cost of reaching the nodes in question from
the root. Using equations (6.3) and (6.1) on page 190, we get

E[Pn] · Cn =
n
∑

l=0

l

[(
2n

n+ l

)

−
(

2n

n+ l + 1

)]

=
n
∑

l=1

l

(
2n

n+ l

)

−
n−1
∑

l=0

l

(
2n

n+ l + 1

)

=
n
∑

l=1

l

(
2n

n+ l

)

−
n
∑

l=1

(l − 1)

(
2n

n+ l

)

=
n
∑

l=1

(
2n

n+ l

)

=
2n
∑

i=n+1

(
2n

i

)

.

The remaining summation is easy to crack because it is the sum of one
half of an even row in Pascal’s triangle. We see in figure 4.5 on page 121
that the first half equals the second half, only the central element remain-
ing (there is an odd number of entries in an even row). This is readily
proven as follows:

∑n−1
j=0

(2n
j

)

=
∑n−1

j=0

( 2n
2n−j

)

=
∑2n

i=n+1

(2n
i

)

. Therefore

2n
∑

i=0

(
2n

i

)

= 2 ·
2n
∑

i=n+1

(
2n

i

)

+

(
2n

n

)

,

and we can continue as follows:

E[Pn]

n+ 1
=

1

2

(
2n

n

)−1
[

2n
∑

i=0

(
2n

i

)

−
(
2n

n

)
]

=
1

2

[
(
2n

n

)−1 2n
∑

i=0

(
2n

i

)

− 1

]

.

The remaining sum is perhaps the most famous combinatorial identity
because it is a corollary of the venerable binomial theorem, which states
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that, for all real numbers x and y, and all positive integers n, we have
the following equality:

(x+ y)n =
n
∑

k=0

(
n

k

)

xn−kyk.

The truth of this statement can be seen by the following reckoning. Since,
by definition, (x+y)n = (x+ y)(x+ y) . . . (x+ y)

n times
, each term in the

expansion of (x + y)n has the form xn−kyk, for some k ranging from 0
to n, included. The coefficient of xn−kyk for a given k is simply the
number of ways to choose k variables y from the n factors of (x + y)n,
the x variables coming from the remaining n− k factors.

Setting x = y = 1 yields the identity 2n =
∑n

k=0

(n
k

)

, which finally
unlocks our last step:

E[Pn] =
n+ 1

2

[

4n
(
2n

n

)−1

− 1

]

. (6.4)

Recalling (6.1) on page 190, we obtain the asymptotic expansion:

E[Pn] ∼
1

2
n
√
πn. (6.5)

Note that this equivalence also holds if n denotes a number of nodes, in-
stead of edges. The exact formula for the average path length of Catalan
trees with n nodes is E[Pn−1] because there are then n− 1 edges.

For some applications, it may be useful to know the external and
internal path lengths, which are, respectively, the path lengths up to
the leaves and to inner nodes (not to be confused with the external and
internal path lengths of binary trees). Let E[En] be the former and E[In]
the latter. We have

E[En] · Cn :=
n
∑

l=0

l · Nn(l, 0) =
n
∑

l=0

l

[(
2n− 1

n+ l − 1

)

−
(
2n− 1

n+ l

)]

=
n−1
∑

l=0

(l + 1)

(
2n− 1

n+ l

)

−
n−1
∑

l=0

l

(
2n − 1

n+ l

)

=
n−1
∑

l=0

(
2n− 1

n+ l

)

,

E[En] · Cn =
2n−1
∑

i=n

(
2n− 1

i

)

=
1

2

2n−1
∑

j=0

(
2n− 1

j

)

= 4n−1,

where the penultimate step follows from the fact that an odd row in
Pascal’s triangle contains an even number of coefficients and the two
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halves have equal sums. We conclude:

E[En] = (n+ 1)4n−1

(
2n

n

)−1

∼ 1

4
n
√
πn. (6.6)

The derivation of E[In] is easy because

E[Pn] = E[En] + E[In]. (6.7)

From (6.4) and (6.6), we express E[Pn] in terms of E[En]:

E[Pn] = 2E[En]−
n+ 1

2
,

then, replacing it in (6.7), we finally draw

E[In] = E[En]−
n+ 1

2
,

and

E[In] = (n+ 1)4n−1

(
2n

n

)−1

− n+ 1

2
∼ 1

4
n
√
πn. (6.8)

Moreover, formulas (6.4), (6.6) and (6.8) entail

E[In] ∼ E[En] ∼
1

2
E[Pn].

6.3 Average number of leaves

The degree-based bijection we introduced in figure 6.5 on page 191
implies that there are (n + 1)/2 leaves in average in a random Catalan
tree with n edges. Indeed, a leaf is a corner in the ordinary lattice path,
and it is not a corner in the degree-based lattice path, that is, an internal
node (non-leaf), therefore, leaves and non-leaves are equinumerous and,
since their total number is n+1, the average number of leaves is (n+1)/2.

This fact has an interesting consequence for the programming of al-
gorithms on Catalan trees, in particular, the data structure. Indeed, a
first idea would be to use a data constructor tree with a pair argument,
whose first component is the data stored at the root and the second com-
ponent is the list of the subtrees, for instance tree(0, [tree(1, [ ]), tree(2, [ ])])
denotes a tree with a root 0, and two leaves, 1 and 2. Note how leaves
are uniquely distinguished by an empty list of subtrees, which makes
function definitions by case easy because only two cases are enough to
cover all configurations. The downside becomes apparent when imple-
menting the algorithms in a real functional language, because storing
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a list means having an indirection to the heap, where the contents of
the list is actually laid out. Therefore, with the previous encoding of
Catalan trees, each leaf means one indirection and no contents, which
may seem wasteful. If we assume that the Catalan trees to be processed
are random, the question boils down to determining the average number
of leaves, which we happily know now to be half of the nodes. In other
words, 50% of the nodes are represented in memory with an indirection
without contents. An alternative encoding consists in using lists only if
they contain at least one subtree, that is, only for inner nodes, and leaves
would be represented by a constructor without list. The previous example
would be thus rewritten: inner(0, [leaf(1), leaf(2)]. This is not quite right,
because we could inadvertently write inner(0, [ ]), which is incorrect. In-
stead, we need to define a data structure for encoding non-empty lists,
like so: single(x), for the singleton list containing x, and many(x, l), for
lists containing at least two items, the first being x and the remaining
ones being found in the sublist l. Consequently, the previous example is
now correctly written as inner(0,many(leaf(1), single(leaf(2)))).

For further reading, we recommend the papers by Dershowitz and
Zaks (1980, 1981, 1990).

6.4 Average height

As mentioned earlier, the height of a tree is the number of edges on a
maximal path from the root to a leaf, that is, a node without subtrees;
for example, we can follow down and count the edges connecting the
nodes (◦) in figure 6.1. A tree reduced to a single leaf has height 0.

We begin with the key observation that a Catalan tree with n edges
and height h is in bijection with a Dyck path of length 2n and height h
(see figure 6.1 on page 187 and figure 6.2). This simple fact allows us
to reckon on the height of the Dyck paths and transfer the result back
to Catalan trees.

We have already seen the correspondence between lattice paths and
Catalan trees, in which a rise reaching the lth diagonal corresponds to
a node at level l in the tree, counting levels from root level 0. A simple
bijection between paths will show that for every node on level l of a
tree of height h and size n, there is a corresponding node on either level
h− l+1 or h− l in another tree of same height and size. (This bijection
was found by Nachum Dershowitz.)

Consider the Dyck path in Figure 6.8, in bijection with a tree
with n = 8 edges and height h = 3. Let us find the last (rightmost)
point on the path where it reaches its full height (the dotted line of equa-
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0 n

n

h

1

a

b

cA B

Figure 6.8: A Dyck path of length 2n and height h

0 n

n

h

1

b

a

cA B

Figure 6.9: Dyck path in bijection with figure 6.8

tion y = x + h), which we call the apex of the path (marked A in the
figure). The immediately following fall leads to B and it is drawn with a
double line. Let us rotate the segment from (0, 0) to A, and the segment
from B to (n, n) by 180◦. The invariant fall (A,B) now connects the
rotated segments. This way, what was the apex becomes the origin and
vice-versa, making this a height-preserving bijection between paths. See
figure 6.9.

The point is that every rise to level l in figure 6.8, representing
a node on level l in the corresponding Catalan tree, ends up reaching
level h − l + 1 or h − l in figure 6.9, depending on whether it was to
the left (segment before A) or right (segment after B) of the apex. In
the example in the figure, the rise a reaches level 1, and its counterpart
after the transformation rises to level 3 − 1 + 1 = 3; the rise b reached
level 2 and still does so because 3 − 2 + 1 = 2; the rise c also reached
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level 2, but because it was to the right of the apex, it reaches now level
3− 2 = 1. It follows from this bijection that the average height is within
one of twice the average level of a node, that is, the average path length.
Equation (6.4) is equivalent to

2
E[Pn]

n+ 1
= 4n

(
2n

n

)−1

− 1.

If E[Hn] is the average height of a Catalan tree with n edges, we then
have, recalling (6.5),

E[Hn] ∼ 2
E[Pn]

n+ 1
∼
√
πn.
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Chapter 7

Binary Trees

In this chapter, we focus on the binary tree as a data structure in itself,
redefining it on the way and introducing related classical algorithms and
measures.

Figure 7.1 displays a binary tree as an example. Nodes are of two
kinds: internal (◦ and •) or external (✷). The characteristic feature of
a binary tree is that internal nodes are downwardly connected to two
nodes, called children, whilst external nodes have no such links. The root
is the topmost internal node, represented with a circle and a diameter.
Leaves are internal nodes whose children are two external nodes; they
are depicted as black discs.

6

2 6

7 1

2

0 3

Figure 7.2: A leaf tree

Internal nodes are usually associated with
some kind of information, whilst external nodes
are not, like the one shown in figure 7.3a on
the following page: this is the default represent-
ation we use in the present book. Sometimes,
in order to draw more attention to the internal
nodes, the external nodes may be omitted, as in
figure 7.3b on the next page. Moreover, only

Figure 7.1: A binary tree
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the leaves might then carry information, in which case the tree is a leaf
tree, as in figure 7.2 on the preceding page. Another variant sees all
nodes carrying some piece of data, as was the case with comparison trees
(refer for example to figure 2.41 on page 87, where external nodes con-
tain permutations and internal nodes hold comparisons of keys).

As seen in the study of sorting algorithms optimal in average, on
page 87, an external path is a path from the root to an external node
and the height of a tree is the length of the maximum external paths.
For example, the height of the binary tree in figure 7.1 on the previous
page is 5 and there are two external paths of maximum length. A path
from the root to an internal node is an internal path. The internal path
length of a tree is the sum of the lengths of all its internal paths. We
already have met the external path length of a tree, on page 106, which
is the sum of the lengths of all its external paths. (The length of a path
is the number of its edges.)

Warning Some authors use a different nomenclature for the definition
of the leaves and height. It is also common to stumble upon the concept of
depth of a tree, which can be mistaken for its height, the former counting
the number of nodes on a maximum path.

Theorem 5. A binary tree with n internal nodes has n + 1 external
nodes.

Proof. Let e be the number of external nodes to be determined. We can
count the edges in two complementary ways. Top-down, we see that each
internal node has exactly two children, so l = 2n, where l is the number of
edges. Bottom-up, we see that each node has exactly one parent, except
the root, which as none. Therefore, l = (n + e)− 1. Identifying the two
values of l yields e = n+ 1.

Data structure There are many ways to represent a binary tree as a
data structure. First, we can remark that, just as a stack can be empty

8

1

3

5

9

3

2

(a) Extended binary tree

8

1

3

5

9

3

2

(b) Pruned binary tree

Figure 7.3: Two representations of a binary tree
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or not, there are two kinds of nodes, internal or external, and the empty
tree can be identified to an external node. Therefore, we only need two
data constructors, say ext/0 for external nodes, and int/3 for internal
nodes. The latter applies to three arguments because two children are
expected, as well as some information. The order of these arguments
may differ. Because we may see an internal node to stand, horizont-
ally, between its subtrees t1 and t2, we may prefer to write int(t1, x, t2).
(Semitic readers might wish to swap t1 and t2.) Alternatively, we may
consider that an internal node lies, vertically, before its subtrees, in
which case we might prefer to write int(x, t1, t2). The latter makes typ-
ing or handwriting small trees easier, in particular for testing purposes.
For example, the binary tree of figure 7.3a on the preceding page
formally corresponds to int(8, t1, int(3, ext(), ext(2, ext(), ext()))), where
t1 = int(1, ext(3, ext(), int(5, ext(), ext())), ext(9, ext(), ext())). We will use
henceforth the convention int(x, t1, t2), sometimes called prefix notation.

The size of a binary tree is the number of its internal nodes. It is the
most common measure used on trees when expressing costs of functions.
As a warm-up exercise, let us write a program computing the size of a
given binary tree:

size(ext())→ 0; size(int(x, t1, t2))→ 1 + size(t1) + size(t2). (7.1)

Notice the similarity with computing the length of a stack:

len(nil())→ 0; len(cons(x, s))→ 1 + len(s).

The difference lies in that two recursive calls are needed to visit all the
nodes of a binary tree, instead of one for a stack. This bidimensional
topology gives rise to many kinds of visits, called walks or traversals.

7.1 Traversals

In this section, we present the classic traversals of binary trees, which
are distinguished by the order in which the data stored in the internal
nodes is pushed onto a stack originally empty.

Preorder A preorder traversal of a non-empty binary tree consists in
having in a stack the root (recursively, it is the current internal node),
followed by the nodes in preorder of the left subtree and, finally, the
nodes in preorder of the right subtree. (For the sake of brevity, we will
identify the contents of the nodes with the nodes themselves, when there
is no ambiguity.) For example, the (contents of the) nodes in preorder



204 CHAPTER 7. BINARY TREES

of the tree in figure 7.3a on page 202 are [8, 1, 3, 5, 9, 3, 2]. Because
this method first visits the children of a node before its sibling (two
internal nodes are siblings if they have the same parent), it is a depth-
first traversal. A simple program is

pre0(ext())
γ−→ [ ]; pre0(int(x, t1, t2))

δ−→ [x |cat(pre0(t1), pre0(t2))]. (7.2)

We used the catenation on stacks provided by cat/2, defined in (1.3)
on page 7, to order the values of the subtrees. We know that the cost of
cat/2 is linear in the size of its first argument: Ccat

p := C!cat(s, t)" = p+1,

where p is the length of s. Let Cpre0
n be the cost of pre0(t), where n is the

number of internal nodes of t. From the definition of pre0/1, we deduce

Cpre0
0 = 1; Cpre0

n+1 = 1 + Cpre0
p + Cpre0

n−p + Ccat
p ,

where p is the size of t1. So Cpre0
n+1 = Cpre0

p + Cpre0
n−p + p+2. This recurrence

belongs to a class called divide and conquer because it springs from
strategies which consists in splitting the input (here, of size n + 1), re-
cursively applying the relevant solving strategy to the smaller parts (here,
of sizes p and n−p) and finally combining the solutions of the parts into
a solution of the partition. The extra cost incurred by combining smaller
solutions (here, p+ 2) is called the toll and the closed form and asymp-
totic behaviour of the solution to the recurrence crucially depends upon
its kind.

In another context (see page 55), we, idiosyncratically, called this
strategy big-step design because we wanted a convenient way to contrast
it with another sort of modelling which we called small-step design. As a
consequence, we already have seen instances of ‘divide and conquer,’ for
example, in the case of merge sort in chapter 4 on page 115, which often
epitomises the concept itself.

The maximum cost Wpre0
k satisfies the extremal recurrence

Wpre0
0 = 1; Wpre0

k+1 = 2 + max
0"p"k

{Wpre0
p +Wpre0

k−p + p}. (7.3)

Instead of attacking frontally these equations, we can guess a possible
solution and check it. Here, we could try to consistently choose p = k,
prompted by the idea that maximising the toll at each node of the tree
will perhaps lead to a total maximum (eager solving). Thus, we envisage

Wpre0
0 = 1; Wpre0

k+1 = Wpre0
k + k + 3. (7.4)

Summing both sides from k = 0 to k = n− 1 and simplifying yields

Wpre0
n = 1

2(n
2 + 5n+ 2) ∼ 1

2n
2.
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At this point, we check whether this closed form satisfies equation (7.3).
We have 2(Wpre0

p +Wpre0
n−p+p+2) = 2p2+2(1−n)p+n2+5n+8. This is

the equation of a parabola whose minimum occurs at p = (n− 1)/2 and
maximum at p = n, over the interval [0, n]. The maximum, whose value
is n2 + 7n+ 8, equals 2 · Wpre0

n+1, so the closed form satisfies the extremal
recurrence.

What does a binary tree maximising the cost of pre0/1 look like? The
toll k+3 in (7.4) is a consequence of taking the maximum cost of cat/2 at
each node, which means that all the internal nodes being catenated come
from the left subtrees, the left subtree of the left subtree etc. so these
nodes are catenated again and again while going up (that is, returning
from the recursive calls), leading to a quadratic cost. The shape of such
a tree is shown in figure 7.4a.

Dually, the minimum cost Bpre0
k satisfies the extremal recurrence

Bpre0
0 = 1; Bpre0

k+1 = 2 + min
0"p"k

{Bpre0
p + Bpre0

k−p + p}.

Along the same line as before, but on the opposite direction, we may try
to minimise the toll by choosing p = 0, which means that all external
nodes, but one, are left subtrees. Consequently, we have

Bpre0
0 = 1; Bpre0

k+1 = Bpre0
k + 3. (7.5)

Summing both sides from k = 0 to k = n− 1 and simplifying yields

Bpre0
n = 3n+ 1 ∼ 3n.

It is easy to check that this is indeed a solution to (7.5). The shape of
the corresponding tree is shown in figure 7.4b. Note that both extremal
trees are isomorphic to a stack (that is, the abstract syntax tree of a stack)
and, as such, are instances of degenerate trees. Also, the maximum cost
of pre0/1 is quadratic, which calls for some improvement.

Another big-step design we may come up with consists in not using
cat/2 and calling instead flat/1, defined in figure 2.12 on page 57, once

(a) Maximum (b) Minimum

Figure 7.4: Extremal trees for Cpre0
n
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pre1(t)→ flat(pre2(t)).

pre2(ext())→ [ ];
pre2(int(x, t1, t2))→ [x, pre2(t1) |pre2(t2)].

Figure 7.5: Preorder traversal using flat/1

at the end. Figure 7.5 shows that new version of the preorder traversal,
named pre1/1. The cost of pre2(t) is now reduced to 2n+1 (see theorem 5
on page 202). On page 57, the cost of flat(s) was 1+n+Ω+Γ+L, where
n is the length of flat(s), Ω is the number of empty stacks in s, Γ is
the number of non-empty stacks and L is the sum of the lengths of the
embedded stacks. The value of Ω is n + 1 because this is the number
of external nodes. The value of Γ is n − 1, because each internal node
yields a non-empty stack by the second rule of pre2/1 and the root is
excluded because we only count embedded stacks. The value of L is
3(n− 1) because those stacks have length 3 by the same rule. In the end,
C!flat(s)" = 6n − 2, where pre2(t) ! s and n is the size of t. Finally,
we must account for the rule defining pre1/1 and assess afresh the cost
incurred by the empty tree:

Cpre1
0 = 3; Cpre1

n = 1 + (2n + 1) + (6n− 2) = 8n, when n > 0.

Despite a significant improvement in the cost and the lack of extreme
cases, we should try a small-step design before giving up. The underlying
principle in this kind of approach is to do as little as possible in each rule.
Looking back at pre0/1, it is clear that the root is correctly placed, but,
without resorting to pre3(t1) and pre3(t2) in the following canvas, what
can be done further?

pre3(ext())→ [ ]; pre3(int(x, t1, t2))→ [x | ].

The way forth is to think in terms of forests, instead of single trees,
because a forest is a stack of trees and, as such, can also be used to
accumulate trees. This is a common technique when processing trees. See
figure 7.6 on the facing page. Empty trees in the forest are skipped in
rule γ. In rule δ, the subtrees t1 and t2 are now simply pushed back onto
the forest f , for later processing. This way, there is no need to compute
pre4(t1) or pre4(t2) immediately. This method is slightly different from
using an accumulator which contains, at every moment, a partial result
or a reversed partial result. Here, no parameter is added but, instead,
a stack replaces the original parameter, and it does not contain partial
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pre3(t)
α−→ pre4([t]).

pre4([ ])
β−→ [ ];

pre4([ext() |f ])
γ−→ pre4(f);

pre4([int(x, t1, t2) |f ])
δ−→ [x |pre4([t1, t2 |f ])].

Figure 7.6: Efficient preorder traversal with a forest

results, but pieces of the original tree from which to pick internal nodes
easily (the root of the first tree) in the expected order. An example is
given in figure 7.7, where the forest is the argument of pre4/1 and the
circle nodes are the current value of x in rule δ of figure 7.6.

The cost of pre3(t), where the size of t is n, is simple:

• rule α is used once;
• rule β is used once;
• rule γ is used once for each external node, that is, n+ 1 times;
• rule δ is used once for each internal node, so n times, by definition.

In total, Cpre3
n = 2n+3 ∼ 2n, which is a notable improvement. The keen

reader may remark that we could further reduce the cost by not visiting
the external nodes, as shown in figure 7.8. We then have

Cpre5
n = Cpre3

n − (n+ 1) = n+ 2.

Despite the gain, the optimised program is significantly longer and the
right-hand sides of the new rules are partial evaluations of rule δ. The

a

c

e

b

d

δ−→ c

e

b

d

δ−→ e b

d

γ−→ e b

d

δ−→ b

d

γ2−→ b

d

δ−→ d
δ−→ γ3−→ []

Figure 7.7: A preorder traversal with pre4/1
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pre5(t)→ pre6([t]).

pre6([ ])→ [ ];
pre6([ext() |f ])→ pre6(f);

pre6([int(x, ext(), ext()) |f ])→ [x |pre6(f)];
pre6([int(x, ext(), t2) |f ])→ [x |pre6([t2 |f ])];
pre6([int(x, t1, ext()) |f ])→ [x |pre6([t1 |f ])];

pre6([int(x, t1, t2) |f ])→ [x |pre6([t1, t2 |f ])].

Figure 7.8: Lengthy definition of a preorder traversal

measure of the input we use for calculating the costs does not include the
abstract time needed to select the rule to apply but it is likely, though,
that the more patterns, the higher this hidden penalty. In this book, we
prefer to visit the external nodes unless there is a logical reason not to
do so, if only for the sake of conciseness.

The total number of cons-nodes created by the rules α and δ is the
total number of nodes, 2n + 1, but if we want to know how many there
can be at any time, we need to consider how the shape of the original
tree influences the rules γ and δ. In the best case, t1 in δ is ext() and
will be eliminated next by rule γ without additional creation of nodes.
In the worst case, t1 maximises the number of internal nodes on its left
branch. Therefore, these two configurations correspond to the extremal
cases for the cost of pre0/1 in figure 7.4 on page 205. In the worst case,
all the 2n+ 1 nodes of the tree will be in the stack at one point, whilst,
in the best case, only two will be. The question of the average stack size
will be considered later in this text in relation with the average height.

The distinction between big-step design (or ‘divide and conquer’) and
small-step design is not always a clear cut and is mainly intended to be
a didactical means. In particular, we should not assume that there are
only two possible kinds of design for every given task. To bring further
clarity to the subject, let us use an heterogeneous approach to design
another version, pre/1, which computes efficiently the preorder traversal
of a given binary tree. Looking back at pre0/1, we can identify the source
of the inefficiency in the fact that, in the worst case,

pre0(t)! [x1 |cat([x2 |cat(. . . cat([xn |cat([ ], [ ])], [ ]) . . . )])]

where t = int(x1, int(x2, . . . , int(xn, ext(), ext()), . . . , ext()), ext()) is the
tree in figure 7.4a on page 205. We met this kind of partial rewrite
in formula (2.4) on page 41 and (3.2) on page 92, and we found that it
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[x |s2] x s

s2 t1 s1 s1 t2 s

(a) Preorder with pre/1

s2 x s

s2 t1 [x |s1] s1 t2 s

(b) Inorder with in/1

s2 x s

s2 t1 s1 s1 t2 [x |s]

(c) Postorder with post/1

Figure 7.9: Efficient classic traversals

leads to a quadratic cost. Whilst the use of cat/2 in itself is not the is-
sue, but rather the accumulation of calls to cat/2 as their first argument,
let us nevertheless seek out a definition not relying on catenation at all.
This means that we want to build the preorder stack by using exclusively
pushes. Therefore, we must add an auxiliary parameter, originally set to
the empty stack, on which the contents of the nodes are pushed in the
proper order: pre(t)→ pre(t, [ ]). Now, we should wonder what the inter-
pretation of this accumulator is when considering the pattern pre(t, s).
Let us have a look at the internal node t = int(x, t1, t2) in figure 7.9a.
The arrows evince the traversal in the tree and connect different stages
of the preorder stack: a downwards arrow points to the argument of a
recursive call on the corresponding child; an upward arrow points to the
result of the call on the parent. For instance, the subtree t2 corresponds
to the recursive call pre(t2, s) whose value is named s1. Likewise, we have
pre(t1, s1) ! s2, which is therefore equivalent to pre(t1, pre(t2, s)) ! s2.
Finally, the root is associated with the evaluation pre(t, s) ! [x | s2],
that is, pre(t, s) ≡ [x | pre(t1, pre(t2, s))]. The rule for external nodes is
not shown and simply consists in letting the stack invariant. We can fi-
nally write the functional program in figure 7.10. We now understand
that, given pre(t, s), the nodes in the stack s are the nodes that follow,
in preorder, the nodes in the subtree t. The cost is extremely simple:

Cpre
n = 1 + (n+ 1) + n = 2n+ 2. (7.6)

(Keep in mind that there are n + 1 external nodes when there are n
internal nodes.)

pre(t)
θ−→ pre(t, [ ]).

pre(ext(), s)
ι−→ s;

pre(int(x, t1, t2), s)
κ−→ [x |pre(t1, pre(t2, s))].

Figure 7.10: Cost and memory efficient preorder
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(d) Level order

Figure 7.11: Classic numberings of a pruned binary tree

This variant is to be preferred over pre3/1 because its memory usage
is lower: rule δ in figure 7.6 on page 207 pushes t1 and t2, thus alloc-
ates two cons-nodes per internal node, totalling 2n supplementary nodes.
By contrast, pre/1 creates none, but allocates n call-nodes pre (one per
internal node), so the advantage stands, albeit moot. Note that pre3/1
is in tail form, but not pre/2.

Preorder numbering Figure 7.11a shows a binary tree whose in-
ternal nodes have been replaced by their rank in preorder, with the smal-
lest number, 0, at the root. In particular, the preorder traversal of that
tree yields [0, 1, 2, 3, 4, 5, 6]. Producing such a tree from some initial tree
is a preorder numbering . A complete example is shown in figure 7.12,
where the preorder numbers are exponents to the internal nodes. Note
how these numbers increase along downwards paths.

Their generation can be tackled in two phases: first, we need to un-
derstand how to produce the right number for a given node; second, we
need to use these numbers to build a tree. The scheme for the former
is shown on internal nodes in figure 7.13a on the next page. A num-
ber on the left side of a node indexes it, for example node x is indexed
with i: these numbers descend in the tree. A number on the right side of
a node is the smallest number not used in the numbering of the subtrees
attached to that node: these numbers ascend and may be used for the
numbering of another subtree. For instance, j is the smallest integer not
numbering the nodes of the subtree t1. External nodes do not change

08
11

23
35

49

53
62

Figure 7.12: Preorder numbers as exponents
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i x k

i+ 1 t1 j j t2 k

(a) Numbers only

i x ⟨k, int(i, t′1, t′2)⟩

i+ 1 t1 ⟨j, t′1⟩ j t2 ⟨k, t′2⟩

(b) Numbers and tree

Figure 7.13: Preorder numbering in two phases

npre(0, t)! ⟨i, t′⟩
npre(t)! t′

. npre(i, ext())→ ⟨i, ext()⟩;

npre(i+ 1, t1)! ⟨j, t′1⟩ npre(j, t2)! ⟨k, t′2⟩
npre(i, int(x, t1, t2))! ⟨k, int(i, t′1, t

′
2)⟩

.

Figure 7.14: Preorder numbering

their incoming number and are not depicted.
The second and final design phase consists in the construction of the

tree made of these numbers and it is pictured in figure 7.13b. Concep-
tually, it is the completion of the first phase in the sense that upwards
arrows, which denote values of recursive calls on subtrees, now point
at pairs whose first component is the number we found earlier and the
second component is a numbered tree. As usual with recursive definitions,
we assume that the recursive calls on substructures are correct (that is,
they yield the expected values) and we infer the value of the call on the
whole structure at hand, here ⟨k, int(i, t′1, t

′
2)⟩.

The function npre/1 (number in preorder) in figure 7.14 implements
this algorithm. We use an auxiliary function npre/2 such that npre(i, t)!
⟨j, t′⟩, where t′ is the preorder numbering of t, with root i, and j is the
smallest integer not found in t′ (in other words, j − i is the size of t
and t′). This function is the one illustrated in figure 7.13b.

By the way, we should perhaps recall that inference systems, first seen
on page 67, can be eliminated by the introduction of auxiliary functions
(one for each premise). In this instance, we could equivalently write the
program in figure 7.15 on the following page.

Termination It is easy to prove the termination of pre/2 because the
technique used for proving the termination of Ackermann’s function on
page 13 is pertinent in the current context as well. We define a lexico-
graphic order on the calls to pre/2 (dependency pairs) as follows:

pre(t, s) ≻ pre(t′, s′) :⇔ t ≻B t′ or (t = t′ and s ≻S s′), (7.7)
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npre(t)→ snd(npre(0, t)).

snd(⟨x, y⟩)→ y.

npre(i, ext())→ ⟨i, ext()⟩;
npre(i, int(x, t1, t2))→ t1(npre(i+ 1, t1), i, t2).

t1(⟨j, t′1⟩, i, t2)→ t2(npre(j, t2), i, t′1).

t2(⟨k, t′2⟩, i, t′1)→ ⟨k, int(i, t′1, t
′
2)⟩.

Figure 7.15: Version of npre/1 without inference rules

where B is the set of all binary trees, S is the set of all stacks, t ≻B t′

means that the tree t′ is an immediate subtree of t, and s ≻S s′ means
that the stack s′ is an immediate substack of s (page 12). From the defini-
tion in figure 7.10 on page 209, we see that rule θ maintains termination
if pre/2 terminates; rule ι terminates; finally, rule κ rewrites a call into
smaller calls: pre(int(x, t1, t2), s) ≻ pre(t2, s) and pre(int(x, t1, t2), s) ≻
pre(t1, u), for all u, in particular if pre(t2, s) ! u. As a consequence,
pre/1 terminates on all inputs. ✷

Equivalence To see how structural induction can be used to prove
properties on binary trees, we will consider a simple statement we made
earlier, formally expressed as Pre(t) : pre0(t) ≡ pre(t). We need to prove

• the basis Pre(ext());

• the inductive step ∀t1.Pre(t1)⇒ ∀t2.Pre(t2)⇒∀x.Pre(int(x, t1, t2)).

The basis is easy because pre0(ext())
γ−→ [ ]

ι←− pre(ext(), [ ])
θ←− pre(ext()).

See definition of pre0/1 at equation (7.2) on page 204. It is useful here
to recall the definition of cat/2:

cat([ ], t)
α−→ t; cat([x |s], t) β−→ [x |cat(s, t)].

In order to discover how to use the two induction hypotheses Pre(t1) and
Pre(t2), let us start from one side of the equivalence we wish to establish,
for example, the left-hand side, and rewrite it until we reach the other
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side or get stuck. Let t := int(x, t1, t2), then

pre0(t) = pre0(int(x, t1, t2))
δ−→ [x |cat(pre0(t1), pre0(t2))]
≡ [x |cat(pre(t1), pre0(t2))] (Pre(t1))
≡ [x |cat(pre(t1), pre(t2))] (Pre(t2))
θ−→ [x |cat(pre(t1, [ ]), pre(t2))]
θ−→ [x |cat(pre(t1, [ ]), pre(t2, [ ]))].

At this point, we start rewriting the other side, until we get stuck as well:
pre(t) = pre(int(x, t1, t2))

θ−→ pre(int(x, t1, t2), [ ])
κ−→ [x |pre(t1, pre(t2, [ ]))].

Comparing the two stuck expressions suggests a subgoal to reach.
Let CatPre(t, s) : cat(pre(t, [ ]), s) ≡ pre(t, s). When a predicate de-

pends upon two parameters, we have different options to ponder: either
we need lexicographic induction, or simple induction on one of the vari-
ables. It is best to use a lexicographic ordering on pairs and, if we realise
afterwards that only one component was needed, we can rewrite the proof
with a simple induction on that component. Let us then define

(t, s) ≻B×S (t′, s′) :⇔ t ≻B t′ or (t = t′ and s ≻S s′).

This is conceptually the same order as the one on the calls to pre/1, in
definition (7.7). If we find out later that immediate subterm relations are
too restrictive, we would choose here general subterm relations, which
means, in the case of binary trees, that a tree is a subtree of another. The
minimum element for the lexicographic order we just defined is (ext(), [ ]).
The well-founded induction principle then requires that we establish

• the basis CatPre(ext(), [ ]);
• ∀t, s.(∀t′, s′.(t, s) ≻B×S (t′, s′)⇒ CatPre(t′, s′))⇒ CatPre(t, s).

The basis is easy: cat(pre(ext(), [ ]), [ ])
ι−→ cat([ ], [ ])

α−→ [ ]
ι←− pre(ext(), [ ]).

We then assume ∀t′, s′.(t, s) ≻B×S (t′, s′) ⇒ CatPre(t′, s′), which is the
induction hypothesis, and proceed to rewrite the left-hand side after
letting t := int(x, t1, t2). The result is shown in figure 7.16 on the next
page, where

• (≡0) is the instance CatPre(t1, pre(t2, [ ])) of the induction hypo-
thesis because (t, s) ≻B×S (t1, s′), for all stacks s′, in particular
when pre(t2, [ ])! s′;

• (≡1) is an application of the lemma on the associativity of stack
catenation (page 12), namely CatAssoc(pre(t1, [ ]), pre(t2, [ ]), s);

• (≡2) is the instance CatPre(t2, s) of the induction hypothesis be-
cause (t, s) ≻B×S (t2, s);
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cat(pre(t, [ ]), s) = cat(pre(int(x, t1, t2), [ ]), s)
κ−→ cat([x |pre(t1, pre(t2, [ ]))], s)
β−→ [x |cat(pre(t1, pre(t2, [ ])), s)]
≡0 [x |cat(cat(pre(t1, [ ]), pre(t2, [ ])), s)]
≡1 [x |cat(pre(t1, [ ]), cat(pre(t2, [ ]), s))]
≡2 [x |cat(pre(t1, [ ]), pre(t2, s))]
≡3 [x |pre(t1, pre(t2, s))]
κ←− pre(int(x, t1, t2), s)
= pre(t, s). ✷

Figure 7.16: Proof of CatPre(t) : cat(pre(t, [ ]), s) ≡ pre(t, s)

pre0(t) = pre0(int(x, t1, t2))
δ−→ [x |cat(pre0(t1), pre0(t2))]
≡ [x |cat(pre(t1), pre0(t2))] (Pre(t1))
≡ [x |cat(pre(t1), pre(t2))] (Pre(t2))
θ−→ [x |cat(pre(t1, [ ]), pre(t2))]
θ−→ [x |cat(pre(t1, [ ]), pre(t2, [ ]))]
≡ [x |pre(t1, pre(t2, [ ]))] (CatPre(t1, pre(t2, [ ])))
κ←− pre(int(x, t1, t2), [ ])
θ←− pre(int(x, t1, t2))
= pre(t). ✷

Figure 7.17: Proof of Pre(t) : pre0(t) ≡ pre(t)

• (≡3) is the instance CatPre(t1, pre(t2, s)) of the induction hypo-
thesis because (t, s) ≻B×S (t1, s′), for all stacks s′, in particular
when s′ = pre(t2, s).

We can resume conclusively in figure 7.17. ✷

Flattening revisited In section 2.4 on page 53, we defined two func-
tions for flattening stacks (see figure 2.8 on page 55 and figure 2.12
on page 57). With the understanding of preorder traversals, it may occur
to us that the flattening of a stack is equivalent to the preorder traversal
of a binary leaf tree (see figure 7.2 on page 201 for an example) which
ignores empty stacks. The key is to see a stack, possibly containing other
stacks, as a leaf tree, as shown for example in figure 7.18 on the next
page, where the internal nodes (|) are cons-nodes.
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|

|

|

6 |

2 []

|

7 []

|

2 |

0 []

Figure 7.18: Embedded stacks as a leaf tree

lpre(t)→ lpre(t, [ ]).

lpre(leaf(x), s)→ [x |s];
lpre(fork(t1, t2), s)→ lpre(t1, lpre(t2, s)).

Figure 7.19: Preorder on binary leaf trees

The first step consists in defining inductively the set of the binary
leaf trees as the smallest set L generated by the deductive (downwards)
reading of the inference system

leaf(x) ∈ L
t1 ∈ L t2 ∈ L

fork(t1, t2) ∈ L
.

In other words, a leaf containing the piece of data x is noted leaf(x) and
the other internal nodes are forks, written fork(t1, t2), with t1 and t2 be-
ing binary leaf trees themselves. The second step requires a modification
of pre/1, defined in figure 7.10 on page 209, so it processes binary leaf
trees. The new function, lpre/1, is shown in figure 7.19. The final step is
the translation of lpre/1 and lpre/2 into flat2/1 and flat2/2, respectively,
in figure 7.20 on the following page. The key is to see that fork(t1, t2)
becomes [t1 | t2], and leaf(x), when x is not an empty stack, becomes x
as the last pattern. The case leaf([ ]) becomes [ ] as the first pattern.

The cost of pre/1 was found to be Cpre
n = 2n+2 in equation (7.6) on

page 209, where n was the number of internal nodes. Here, n is the length
of flat2(t), namely, the number of non-stack leaves in the leaf tree. With
this definition, the number of cons-nodes is n + Ω + Γ, where Ω is the
number of embedded empty stacks and Γ is the number of embedded
non-empty stacks, so S := 1 + Ω + Γ is the total number of stacks.
Consequently, Cflat2

n = 2(n + S). For example,

flat2([1, [[ ], [2, 3]], [[4]], 5])
22−→ [1, 2, 3, 4, 5],
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because n = 5 and S = 6. (The latter is the number of opening square
brackets.) When S = 1, that is, the stack is flat, then Cpre

n = Cflat2
n ,

otherwise Cpre
n < Cflat2

n .

flat2(t)→ flat2(t, [ ]).

flat2([ ], s)→ s;
flat2([t1 |t2], s)→ flat2(t1, flat2(t2, s));

flat2(x, s)→ [x |s].

Figure 7.20: Flattening like lpre/1

Inorder The inorder (or symmetric) traversal of a non-empty binary
tree consists in having in a stack the nodes of the left subtree in inorder,
followed by the root and then the nodes of the right subtree in inorder.
For example, the nodes in inorder of the tree in figure 7.3a on page 202
are [3, 5, 1, 9, 8, 3, 2]. Clearly, it is a depth-first traversal, like a preorder,
because children are visited before siblings. According to our findings
about pre/1 in figure 7.10 on page 209, we understand that we should
structure our program to follow the strategy depicted in figure 7.9b
on page 209, where the only difference with figure 7.9a is the moment
when the root x is pushed on the accumulator: between the inorder tra-
versals of the subtrees t1 and t2. The implicit rewrites in figure 7.9b
are in(t2, s) ! s1, then in(t1, [x | s1]) ! s2 and in(t, s) ! s2, where
t = int(x, t1, t2). By eliminating the intermediary variables s1 and s2
we obtain the equivalence in(t1, [x | in(t2, s)]) ≡ in(t, s). The case of the
external node is the same as for preorder. This reasoning yields the func-
tion defined in figure 7.21, whose cost is the same as for preorder:
C in
n = Cpre

n = 2n+ 2.
Figure 7.11c on page 210 gives the example of a binary tree which

is the result of an inorder numbering . The inorder traversal of that tree
yields [0, 1, 2, 3, 4, 5, 6]. Inorder numberings have an interesting property:

in(t)
ξ−→ in(t, [ ]).

in(ext(), s)
π−→ s;

in(int(x, t1, t2), s)
ρ−→ in(t1, [x | in(t2, s)]).

Figure 7.21: Inorder traversal
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nin(0, t)! ⟨i, t′⟩
nin(t)! t′

. nin(i, ext())→ ⟨i, ext()⟩;

nin(i, t1)! ⟨j, t′1⟩ nin(j + 1, t2)! ⟨k, t′2⟩
nin(i, int(x, t1, t2))! ⟨k, int(j, t′1, t

′
2)⟩

.

Figure 7.22: Inorder numbering

given any internal node, all the nodes in its left subtree have smaller
numbers, and all nodes in its right subtree have greater numbers. Let
nin/1 be a function computing the inorder numbering of a given tree in
figure 7.22, where j, at the root, is the smallest number greater than
any number in t1.

Flattening revisited The design of flat/1 in figure 2.12 on page 57
may suggest a new approach to inorder traversals. By composing right
rotations as defined in figures 2.11b to 2.11c on page 57 (the converse
is, of course, a left rotation), the node to be visited first in inorder can be
brought to be the root of a tree whose left subtree is empty. Recursively,
the right subtree is then processed, in a top-down fashion. This algorithm
is sound because inorder traversals are invariant through rotations, which
is formally expressed as follows.

Rot(x, y, t1, t2, t3) : in(int(y, int(x, t1, t2), t3)) ≡ in(int(x, t1, int(y, t2, t3))).

In figure 7.23, we show how a binary tree becomes a right-leaning,
degenerate tree, isomorphic to a stack, by repeatedly applying right ro-
tations, top-down. Dually, we could compose left rotations and obtain a
left-leaning, degenerate tree, whose inorder traversal is also equal to the
inorder traversal of the original tree. The function in1/1 based on right

e

a

c

b d

g

f h

→ a

e

c

b d

g

f h

→ a

c

b e

d g

f h

→ a

b

c

e

d g

f h

etc.

Figure 7.23: Composing right-rotations, top-down
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in1(ext())
α−→ [ ];

in1(int(y, int(x, t1, t2), t3))
β−→ in1(int(x, t1, int(y, t2, t3)));

in1(int(y, ext(), t3))
γ−→ [y | in1(t3)].

Figure 7.24: Inorder traversal by right rotations

rotations is given in figure 7.24. Note how, in rule γ, we push the root y
in the result as soon as we can, which would not be possible had we used
left rotations instead, and thus we do not build the whole rotated tree,
as in figure 7.23 on the previous page.

The cost C in1
n depends on the topology of the tree at hand. Firstly,

let us note that rule α is used only once, on the rightmost external node.
Secondly, if the tree to be traversed is already a right-leaning degenerate
tree, rule β is not used and rule γ is used n times. Clearly, this is the best
case and Bin1

n = n + 1. Thirdly, we should remark that a right rotation
brings exactly one more node (named x in Rot(x, y, t1, t2, t3)) into the
rightmost branch, that is, the series of nodes starting with the root and
reached using repeatedly right edges (for instance, in the initial tree in
figure 7.23 on the preceding page, the rightmost branch is [e, g, h]).
Therefore, if we want to maximise the use of rule β, we must have an
initial tree whose right subtree is empty, so the left subtree contains
n − 1 nodes (the root belongs, by definition, to the rightmost branch):
this yields W in1

n = (n− 1) + (n+ 1) = 2n.

Exercise Prove ∀x, y, t1, t2, t3.Rot(x, y, t1, t2, t3).

Mirroring Let us define a function mir/1 (mirror) such that mir(t) is
the symmetric of the binary tree t with respect to an exterior vertical line.
An example is given in figure 7.25. It is easy to define this function:

mir(ext())
σ−→ ext(); mir(int(x, t1, t2))

τ−→ int(x,mir(t2),mir(t1)).

8

1

3

5

9

3

2

(a) t

8

3

2

1

9 3

5
(b) mir(t)

Figure 7.25: Mirroring a binary tree



7.1. TRAVERSALS 219

From the previous example, it is quite simple to postulate the property

InMir(t) : in(mir(t)) ≡ rev(in(t)),

where rev/1 reverses its stack argument (see definition (2.2) on page 39).
This property is useful because the left-hand side of the equivalence
is more costly than the right-hand side: C!in(mir(t))" = Cmir

n + C in
n =

(2n + 1) + (2n + 2) = 4n + 3, to be compared with C!rev(in(t))" =
C in
n + Crev

n = (2n + 2) + (n+ 2) = 3n+ 4.

Structural induction on the immediate subtrees requires that we establish

• the basis InMir(ext());

• the step ∀t1.InMir(t1)⇒ ∀t2.InMir(t2)⇒ ∀x.InMir(int(x, t1, t2)).

The former results from in(mir(ext()))
σ−→ in(ext())

ξ−→ in(ext(), [ ])
π−→ [ ]

ζ←−
rcat([ ], [ ])

ϵ←− rev([ ])
π←− rev(in(ext(), [ ]))

ξ←− rev(in(ext())). Let us assume
InMir(t1) and InMir(t2) and let t := int(x, t1, t2), for any x. We rewrite
the left-hand side of the equivalence to be proved until we reach the
right-hand side or we get stuck:

in(mir(t)) = in(mir(int(x, t1, t2)))
τ−→ in(int(x,mir(t2),mir(t1)))
ξ−→ in(int(x,mir(t2),mir(t1)), [ ])
%ρ in(mir(t2), [x | in(mir(t1), [ ])])
&ξ in(mir(t2), [x | in(mir(t1))])
≡ in(mir(t2), [x | rev(in(t1))]) (InMir(t1))
ξ−→ in(mir(t2), [x | rev(in(t1, [ ]))])
%ϵ in(mir(t2), [x | rcat(in(t1, [ ]), [ ])]).

We cannot use the induction hypothesis InMir(t2) to get rid of mir(t2).
Close examination of the terms suggests to weaken the property and
overload InMir with a new definition:

InMir(t, s) : in(mir(t), s) ≡ rcat(in(t, [ ]), s).

We have InMir(t, [ ])⇔ InMir(t). Now, we rewrite as follows:

in(mir(t), s) = in(mir(int(x, t1, t2)), s)
τ−→ in(int(x,mir(t2),mir(t1)), s)
%ρ in(mir(t2), [x | in(mir(t1), s)])
≡ in(mir(t2), [x | rcat(in(t1, [ ]), s)]) (InMir(t1, s))
≡0 rcat(in(t2, [ ]), [x | rcat(in(t1, [ ]), s)])
&η rcat([x | in(t2, [ ])], rcat(in(t1, [ ]), s)),
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where (≡0) is InMir(t2, [x | rcat(in(t1, [ ]), s)]). The right-hand side now:

rcat(in(t, [ ]), s)= rcat(in(int(x, t1, t2), [ ]), s)
ρ−→ rcat(in(t1, [x | in(t2, [ ])]), s).

The two stuck expressions share the subterm [x | in(t2, [ ])]. The main
difference is that the former expression contains two calls to rcat/2, in-
stead of one in the latter. Can we find a way to have only one call in the
former too? We need to find an expression equivalent to rcat(s, rcat(t, u)),
whose shape is rcat(v,w), where v and w contain no call to rcat/2. Some
examples quickly suggest

Rcat(s, t, u) : rcat(s, rcat(t, u)) ≡ rcat(cat(t, s), u).

We actually do not need induction to prove this theorem if we recall what
we already proved:

• CatRev(s, t) : cat(rev0(t), rev0(s)) ≡ rev0(cat(s, t));
• EqRev(s) : rev0(s) ≡ rev(s);
• CatAssoc(s, t, u) : cat(s, cat(t, u)) ≡ cat(cat(s, t), u);
• RevCat(s, t) : rcat(s, t) ≡ cat(rev(s), t).

Then, we have the equivalences

rcat(s, rcat(t, u))≡ rcat(s, cat(rev(t), u)) (RevCat(t, u))
≡ rcat(s, cat(rev0(t), u)) (EqRev(t))
≡ cat(rev(s), cat(rev0(t), u)) (RevCat(s, cat(rev0(t), u)))
≡ cat(rev0(s), cat(rev0(t), u)) (EqRev(s))
≡ cat(cat(rev0(s), rev0(t)), u) (CatAssoc(rev(s), rev(t), u))
≡ cat(rev0(cat(t, s)), u) (CatRev(s, t))
≡ cat(rev(cat(t, s)), u) (EqRev(cat(t, s)))
≡ rcat(cat(t, s), u) (RevCat(cat(t, s), u))

Let us resume rewriting the first stuck expression:

in(mir(t), s) ≡0 rcat([x | in(t2, [ ])], rcat(in(t1, [ ]), s))
≡1 rcat(cat(in(t1, [ ]), [x | in(t2, [ ])]), s),

where (≡0) is a short-hand for the previous derivation and (≡1) is the
instance Rcat([x | in(t2, [ ])], in(t1, [ ]), s). Another comparison of the stuck
expressions reveals that we need to prove cat(in(t, [ ]), s) ≡ in(t, s). This
equivalence is likely to be true, as it is similar to CatPre(t, s). Assuming
this lemma, we achieve the proof. ✷



7.1. TRAVERSALS 221

post(t)
λ−→ post(t, [ ]).

post(ext(), s)
µ−→ s;

post(int(x, t1, t2), s)
ν−→ post(t1, post(t2, [x |s])).

Figure 7.26: Postorder traversal

Exercises

1. Prove the missing lemma CatIn(t, s) : cat(in(t, [ ]), s) ≡ in(t, s).
2. Define a function which builds a binary tree from its preorder and

inorder traversals, assuming that its internal nodes are all distinct.
Make sure its cost is linear in the number of internal nodes. Com-
pare your solution with that of Mu and Bird (2003).

Postorder A postorder traversal of a non-empty binary tree consists
in storing in a stack the nodes of the right subtree in postorder, fol-
lowed by the nodes of the left subtree in postorder, and, in turn, by the
root. For example, the nodes in postorder of the tree in figure 7.3a on
page 202 are [5, 3, 9, 1, 2, 3, 8]. Clearly, it is a depth-first traversal, like a
preorder, but, unlike a preorder, it saves the root last in the resulting
stack. This approach is summarised for internal nodes in figure 7.9c on
page 209. The difference with pre/1 and in/1 lies in the moment when
the root is pushed in the accumulator. The function definition is given in
figure 7.26. The meaning of the stack s in the call post(t, s) is the same
as in pre(t, s), modulo ordering: s is made of the contents, in postorder,
of the nodes that follow, in postorder, the nodes of the subtree t. The
cost is familiar as well: Cpost

n = C in
n = Cpre

n = 2n+ 2.
An example of postorder numbering is shown in figure 7.11b on

page 210, so the postorder traversal of that tree yields [0, 1, 2, 3, 4, 5, 6].
Notice how the numbers increase along upwards paths. Figure 7.27 on
the next page shows the program to number a binary tree in postorder.
The root is numbered with the number coming up from the right subtree,
following the pattern of a postorder traversal.

A proof Let PreMir(t) : pre(mir(t)) ≡ rev(post(t)). Previous experience
with proving InMir(t) leads us to weaken (generalise) the property in or-
der to facilitate the proof: PreMir(t, s) : pre(mir(t), s) ≡ rcat(post(t, [ ]), s).
Clearly, PreMir(t, [ ])⇔ PreMir(t). Let us then define

(t, s) ≻B×S (t′, s′) :⇔ t ≻B t′ or (t = t′ and s ≻S s′).
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npost(0, t)! ⟨i, t′⟩
npost(t)→ t′

. npost(i, ext())→ ⟨i, ext()⟩;

npost(i, t1)! ⟨j, t′1⟩ npost(j, t2)! ⟨k, t′2⟩
npost(i, int(x, t1, t2))→ ⟨k + 1, int(k, t′1, t

′
2)⟩

.

Figure 7.27: Postorder numbering

pre(mir(t), s) = pre(mir(int(x, t1, t2)), s)
τ−→ pre(int(x,mir(t2),mir(t1)), s)
%κ [x |pre(mir(t2), pre(mir(t1), s))]
≡0 [x |pre(mir(t2), rcat(post(t1, [ ]), s))]
≡1 [x | rcat(post(t2, [ ]), rcat(post(t1, [ ]), s))]
≡2 [x | rcat(cat(post(t1, [ ]), post(t2, [ ])), s)]
&ζ rcat([ ], [x | rcat(cat(post(t1, [ ]), post(t2, [ ])), s)])
&η rcat([x], rcat(cat(post(t1, [ ]), post(t2, [ ])), s))
≡3 rcat(cat(cat(post(t1, [ ]), post(t2, [ ])), [x]), s)
≡4 rcat(cat(post(t1, [ ]), cat(post(t2, [ ]), [x])), s)
≡5 rcat(cat(post(t1, [ ]), post(t2, [x])), s)
≡6 rcat(post(t1, post(t2, [x])), s)
ν←− rcat(post(int(x, t1, t2), [ ]), s)
= rcat(post(t, [ ]), s). ✷

Figure 7.28: Proof of pre(mir(t), s) ≡ rcat(post(t, [ ]), s)

This is conceptually the same order as the one on the calls to pre/1, in
definition (7.7) on page 211. The minimum element for this lexicographic
order is (ext(), [ ]). Well-founded induction then requires that we prove

• the basis PreMir(ext(), [ ]);

• ∀t, s.(∀t′, s′.(t, s) ≻B×S (t′, s′)⇒ PreMir(t′, s′))⇒ PreMir(t, s).

The basis: pre(mir(ext()), [ ])
σ−→ pre(ext(), [ ])

ι−→ [ ]
ζ←− rcat([ ], [ ])

µ←−
rcat(post(ext(), [ ]), [ ]). Let t := int(x, t1, t2). In figure 7.28, we have
the rewrites of the left-hand side, where

• (≡0) is PreMir(t1, s), an instance of the induction hypothesis;
• (≡1) is PreMir(t2, rcat(post(t1, [ ]), s)), as inductive hypothesis;
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• (≡2) is Rcat(post(t2, [ ]), post(t1, [ ]), s);
• (≡3) is Rcat([x], cat(post(t1, [ ]), post(t2, [ ])), s);
• (≡4) is CatAssoc(post(t1, [ ]), post(t2, [ ]), [x]);
• (≡5) is CatPost(t2, [x]) if CatPost(t, s) : cat(post(t), s) ≡ post(t, s);
• (≡6) is CatPost(t1, post(t2, [x])).

Then CatPost(t, s)⇒ PreMir(t, s)⇒ pre(mir(t)) ≡ rev(post(t)). ✷

Duality The dual theorem PostMir(t) : post(mir(t)) ≡ rev(pre(t)) can
be proved in at least two ways: either we design a new proof in the spirit of
the proof of PreMir(t), or we take advantage of the fact that the theorem
is an equivalence and we produce equivalent but simpler theorems. Let
us do the latter and start by considering PreMir(mir(t)) and proceed by
finding equivalent expressions on both sides of the equivalence, until we
reach PostMir(t):

pre(mir(mir(t))) ≡ rev(post(mir(t))) (PreMir(mir(t)))
pre(t) ≡ rev(post(mir(t))) (InvMir(t))

rev(pre(t)) ≡ rev(rev(post(mir(t))))
rev(pre(t)) ≡ post(mir(t)) (InvRev(post(mir(t)))),

where InvMir(t) : mir(mir(t)) ≡ t and InvRev(s) :⇔ Inv(s) ∧ EqRev(s). ✷

Exercises

1. Prove the lemma CatPost(t, s) : cat(post(t, [ ]), s) ≡ post(t, s).
2. Use rev0/1 instead of rev/1 in InMir(t) and PreMir(t). Are the proofs

easier?
3. Prove the missing lemma InvMir(t) : mir(mir(t)) ≡ t.
4. Can you build a binary tree from its postorder and inorder tra-

versals, assuming that its internal nodes are all distinct?

Level order The level l in a tree is a stack of nodes in preorder whose
internal path lengths are l. In particular, the root is the only node at
level 0. In the tree of figure 7.3a on page 202, [3, 9, 2] is level 2. To
understand the preorder condition, we need to consider the preorder
numbering of the tree, shown in figure 7.12 on page 210 with preorder
numbers as left exponents to the contents. This way, there is no more
ambiguity when referring to nodes. For instance, [3, 9, 2] was in fact am-
biguous because there are two nodes whose associated data is 3. We
meant that [23, 49, 62] is the level 2 because these nodes all have internal
path lengths 2 and have increasing preorders (2, 4, 6).
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bf0(t)→ bf1([t]). bf1([ ])→ [ ];
def(f)! ⟨r, f ′⟩

bf1(f)! cat(r, bf1(f
′))

.

Figure 7.29: Level order bf0/1

def([ ])→ ⟨[ ], [ ]⟩; def([ext() |f ])→ def(f);

def(f)! ⟨r, f ′⟩
def([int(x, t1, t2) |f ])! ⟨[x |r], [t1, t2 |f ′]⟩

.

Figure 7.30: Deforestation

A level-order traversal consists in making a stack with the nodes of all
the levels by increasing path lengths. For instance, the level order of the
tree in figure 7.3a on page 202 is [8, 1, 3, 3, 9, 2, 5]. Because this method
visits the sibling of a node before its children, it is said breadth-first .

In figure 7.11d on page 210 is shown the level-order numbering of
the tree in figure 7.12 on page 210, more often called breadth numbering.
(Mind the common misspellings ‘bread numbering’ and ‘breath number-
ing.’) Notice how the numbers increase along downwards path between
nodes, as in a preorder numbering.

We may now realise that the notion of level in a tree is not straightfor-
ward. The reason is simple: the nodes in a level are not siblings, except
in level 1, so, in general, we cannot expect to build a level of a tree
int(x, t1, t2) by means of levels in t1 and t2 alone, that is, with a big-step
design. As a consequence, a small-step approach is called for, standing
in contrast, for example, with size/1 in (7.1) on page 203.

Let bf0/1 (breadth-first) be the function such that bf0(t) is the stack
of nodes of t in level order. It is partially defined in figure 7.29. If we
imagine that we cut off the root of a binary tree, we obtain the immediate
subtrees. If, in turn, we cut down these trees, we obtain more subtrees.
This suggests that we should better work on general forests instead of
trees, one or two at a time.

The cutting function is def/1 (deforest), defined in figure 7.30, such
that def(f), where f represents a forest, evaluates in a pair ⟨r, f ′⟩, where
r are the roots in preorder of the trees in f , and f ′ is the immediate
subforest of f . (Beware, the word deforestation is used by scholars of
functional languages with a different meaning, but it will do for us, as
we already encountered a function cut/2.) Note how, in figure 7.30,
the inference rule augments the partial level r with the root x, and
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how t2 is pushed before t1 onto the rest of the immediate forest of f ,
to be processed later by bf0/1. Instead of building the stack of levels
[[8], [1, 3], [3, 9, 2], [5]], we actually flatten step by step simply by calling
cat/2 in rule µ. If we really want the levels, we would write [r | bf1(f ′)]
instead of cat(r, bf1(f ′)), which, by the way, reduces the cost.

The underlying concept here is that of the traversal of a forest. Except
in inorder, all the traversals we have discussed naturally carry over to
binary forests: the preorder traversal of a forest consists in the preorder
traversal of the first tree in the forest, followed by the preorder traversal
of the rest of the forest. Same logic for postorder and level order. This
uniformity stems from the fact that all these traversals are performed
rightwards, to wit, a left child is visited just before its sibling. The notion
of height of a tree also extends naturally to a forest: the height of a
forest is the maximum height of each individual tree. The reason why
this is simple is because height is a purely vertical view of a tree, thus
independent of the siblings’ order.

To assess now the cost Cbf0
n,h of the call bf0(t), where n is the size

of the binary tree t and h is its height, it is convenient to work with
extended levels. An extended level is a level where external nodes are
included (they are not implicitly numbered in preorder because external
nodes are indistinguishable). For example, the extended level 2 of the
tree in figure 7.12 on page 210 is [23, 49,✷, 62]. If it is needed to draw a
contrast with the other kind of level, we may call the latter pruned levels,
which is consistent with our terminology in figure 7.3 on page 202. Note
that there is always one more extended level than pruned levels, made
entirely of external nodes. (We avoided writing that these are the highest
nodes, as the trouble with the term ‘height’ is that it really makes sense
if the trees are laid out with the root at the bottom of the page. That
is perhaps why some authors prefer the less confusing concept of depth,
in use in graph theory. For a survey of the different manners of drawing
trees, see Knuth (1997) in its section 2.3.) In other words, lh = 0, where
li is the number of internal nodes on the extended level i.

• Rule ι is used once;
• rule κ is used once;
• rules λ and µ are used once for each extended level of the original

tree; these amount to 2(h + 1) calls;
• the cost of cat(r, loc1(f ′)) is the length of the level r, plus one, thus

the cumulative cost of catenation is
∑h

i=0 Ccat
li

= n+ h+ 1;
• rule ϵ is used once per extended level, that is, h+ 1 times;
• rule ζ is used once per external node, that is, n+ 1 times;
• rules η and θ are used once per internal node, that is 2n times.
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Gathering these enumerations, we find that

Cbf0
n,h = 4n+ 4h+ 7.

By definition, the minimum cost is Bbf0
n = minh Cbf0

n,h. The height is min-
imum when the binary tree is perfect , that is, when all levels are full (see
figure 2.43 on page 88). In this case, li = 2i, for 0 " i " h− 1, and, by
extension, there are 2h external nodes. Theorem 5 on page 202 yields the
equation n+1 = 2h, so h = lg(n+1), and Bbf0

n = 4n+4 lg(n+1)+7 ∼ 4n.

Figure 7.31

The maximum cost is obtained by maximising the
height, while keeping the size constant. This happens for
degenerate trees, as the ones shown in figure 7.4 on
page 205 and figure 7.31. Here, h = n and the cost is
Wbf0

n = 8n+ 7 ∼ 8n.
By contrast, we found programs that perform preorder,

postorder and inorder traversals in 2n+2 function calls. It
is possible to reduce the cost by using a different design, based on pre3/1
in figure 7.6 on page 207. The difference is that, instead of using a
stack to store subtrees to be traversed later, we use a queue, a linear
data structure introduced in section 2.5. Consider in figure 7.32 the
algorithm at work on the same example found in figure 7.7 on page 207.
Keep in mind that trees are dequeued on the right side of the forest and
enqueued on the left. (Some authors prefer the other way.) The root of
the next tree to be dequeued is circled.

In order to compare with pre4/1 in figure 7.6 on page 207, we write
x % q instead of enq(x, q), and q & x instead of ⟨q, x⟩. The empty queue
is noted ⊖. More importantly, we will allow these expressions in the pat-
terns of bf2/1, which performs a level-order traversal in figure 7.33. The
difference in data structure (accumulator) has already been mentioned:

a

c

e

b

d

→ b

d

c

e

→ e b

d

→

d e → d e → d → ! ⊖

Figure 7.32: A level-order traversal with a queue
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bf1(t)→ bf2(t %⊖).

bf2(⊖)→ [ ];
bf2(q & ext())→ bf2(q);

bf2(q & int(x, t1, t2))→ [x |bf2(t2 % t1 % q)].

Figure 7.33: Abstract level-order traversal with a queue

bf3(t)→ bf4(enq(t, q([ ], [ ]))). bf4(q([ ], [ ])) → [ ];

deq(q)! ⟨q′, ext()⟩
bf4(q)! bf4(q

′)
;

deq(q)! ⟨q′, int(x, t1, t2)⟩
bf4(q)! [x |bf4(enq(t2, enq(t1, q

′)))]
.

Figure 7.34: Refinement of figure 7.33

pre4/1 uses a stack and bf2/1 a queue, but, as far as algorithms are con-
cerned, they differ only in the relative order in which t1 and t2 are added
to the accumulator.

In section 2.5, we saw how to implement a queue with two stacks as
q(r, f): the rear stack r, where items are pushed (logically enqueued), and
the front stack f , from whence items are popped (logically dequeued).
Also, we defined enqueueing by enq/2 in (2.9), on page 60, and dequeue-
ing with deq/1 in (2.10). This allows us to refine the definition of bf2/1
into bf3/1 in figure 7.34.

We can specialise the program further, so we save some memory by
not using the constructor q/2 and remembering that its first argument
is the rear and the second is the front. Moreover, instead of calling deq/1
and enq/2, we can expand their definitions and merge them with the
definition at hand. The result is shown in figure 7.35. Recall that rcat/2
(reverse and catenate) is defined in equation (2.2) on page 39. Note that

bf(t)
ν−→ bf([ ], [t]).

bf([ ], [ ])
ξ−→ [ ];

bf([t |r], [ ]) π−→ bf([ ], rcat(r, [t]));
bf(r, [ext() |f ]) ρ−→ bf(r, f);

bf(r, [int(x, t1, t2) |f ])
σ−→ [x |bf([t2, t1 |r], f)].

Figure 7.35: Refinement of figure 7.34
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bf4(enq(t, q([ ], [ ]))) has been optimised in bf([ ], [t]) in order to save a
stack reversal. The definition of bf/1 can be considered the most con-
crete of the refinements, the more abstract program being the original
definition of bf1/1. The former is shorter than bf0/1, but the real gain
is the cost. Let n be the size of the binary tree at hand and h its height.
Rules are applied as follows:

• rule ν is used once;
• rule ξ is used once;
• rule π is used once per level, except the first one (the root), hence,

in total h times;
• all levels but the first (the root) are reversed by rev/1, accounting
∑h

i=1 Crev
ei =

∑h
i=1(ei+2) = (n−1)+(n+1)+2h = 2n+2h, where

ei is the number of nodes on the extended level i;
• rule ρ is used once per external node, that is, n+ 1;
• rule σ is used once per internal node, so n times.

Gathering all these enumerations yields the formula

Cbf
n,h = 4n+ 3h+ 3.

As with bf0/1, the minimum cost happens here when h = lg(n + 1), so
Bbf
n = 4n+ 3 lg(n+ 1) + 3 ∼ 4n. The maximum cost occurs when h = n,

so Wbf
n = 7n+3 ∼ 7n. We can now compare bf0/1 and bf/1: Cbf

n,h < Cbf0
n,h

and the difference in cost is most observable in their worst cases, which
are both degenerate trees. Therefore bf/1 is preferable in any case.

Termination With the aim to prove the termination of bf/2, we re-
use the lexicographic order on pairs of stacks, based on the immediate
substack order (≻S) that proved the termination of mrg/2 on page 123:

(s, t) ≻S2 (s′, t′) :⇔ s ≻S s′ or (s = s′ and t ≻S t′).

Unfortunately, (≻S2) fails to monotonically order (with respect to the
rewrite relation) the left-hand side and right-hand side of rule σ, because
of (r, [int(x, t1, t2) | f ]) "S2 ([t2, t1 | r], f). Another approach consists in
defining a well-founded order on the number of nodes in a pair of forests:

(r, f) ≻S2 (r′, f ′) :⇔ dim(r) + dim(f) > dim(r′) + dim(f ′),

with
dim([ ])→ [ ]; dim([t |f ])→ size(t) + dim(f).

where size/1 is defined in (7.1) on page 203. This is a kind of polynomial
measure on dependency pairs, as exemplified with flat/1 on page 58. Here,
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(a) Non-deterministic (NFA)
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[],| [],?ν ξρ

σ
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ρ

σ

(b) Deterministic (DFA)

Figure 7.36: Traces of bf/2 as finite automata

M!bf(s, t)" := dim(s) + dim(t). Unfortunately, this order monotonically
fails on rule π, because (r, [ ]) "S2 ([ ], rev(r)).

The conundrum can be lifted if we visualise the complete set of traces
of bf/2 in a compact manner. If we assume that rev/1 is a constructor,
the right-hand sides either contain no call or exactly one recursive call.
The traces of calls to such definitions are nicely represented as finite
automata. An example of a deterministic finite automaton (DFA) was
given in figure 5.14 on page 182. Here, a transition is a rewrite rule
and a state corresponds to an abstraction of the input. In the case of
bf/2, the input is a pair of stacks. Let us decide for the moment that
we will only take into account whether a stack is empty or not, yielding
four states. Let ‘|’ denote an arbitrary non-empty stack. Examining the
definitions of bf/1 and bf/2 in figure 7.35 on page 227, we see that

• rule ξ applies to the state ([ ], [ ]) only;
• rule π applies to the state (|, [ ]), and leads to a state ([ ], |);
• rule ρ applies to the states ([ ], |) and (|, |), and leads to any state;
• rule σ applies to the states ([ ], |) and (|, |), and leads to the states
(|, [ ]) and (|, |).

In figure 7.36a, we gather all this connectivity into a finite automaton.
Note that, by definition, the initial state has an incoming edge ν without
source and the final state has an outgoing edge ξ without destination.
A trace is any sequence of transitions from the initial state ([ ], |) to the
final state ([ ], [ ]), for example, νρpσqπρξ, with p # 0 and q # 2. This
automaton is called a non-deterministic finite automaton (NFA) because
a state may have more than one outgoing transition with the same label
(consider the initial state and the two transitions labelled σ, for example).
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It is always possible to construct a deterministic finite automaton
(DFA) equivalent to a given non-deterministic finite automaton (Perrin,
1990, Hopcroft et al., 2003). The outgoing transitions of each state of the
former have a unique label. Equivalence means that the sets of traces
of each automaton are the same. If ‘?’ denotes a stack, empty or not,
figure 7.36b on the preceding page shows an equivalent DFA for the
traces of bf/1 and bf/2.

As we observed earlier, using the well-founded order (≻S2) based on
the sizes of the stacks, all transitions x→ y in the DFA satisfy x ≻S2 y,
except π, for which x =S2 y holds (the total number of nodes is invariant).
We can nevertheless conclude that bf/2 terminates because the only way
to have non-termination would be the existence of a π-circuit, that is, a
series of successive transitions from a state to itself all labelled with π,
along which the number of nodes remains identical. In fact, all traces
have π followed by ρ or σ.

Yet another spin on this matter would be to prove, by examining all
rules in isolation and all compositions of two rules, that

x→ y ⇒ x *S2 y and x
2−→ y ⇒ x ≻S2 y.

Consequently, if n > 0, then x
2n−→ y entails x ≻S2 y, because (≻S2)

is transitive. Furthermore, if x
2n−→ y → z, then x ≻S2 y *S2 z, hence

x ≻S2 z. In the end, x
n−→ y implies x ≻S2 y, for all n > 1. ✷

Breadth-first numbering As mentioned earlier, figure 7.11d on
page 210 shows an example of breadth-first numbering. This problem
has received notable attention (Jones and Gibbons, 1993, Gibbons and
Jones, 1998, Okasaki, 2000) because functional programmers usually feel
a bit challenged by this problem. A good approach consists in modifying
the function bf1/2 in figure 7.33 on page 227 so that it builds a tree
instead of a stack. We do so by enqueueing immediate subtrees, so they
are recursively numbered when they are dequeued, and by increment-
ing a counter, initialised with 0, every time a non-empty tree has been
dequeued.

Consider bfn1/1 and bfn2/2 (breadth-first numbering) in figure 7.37
on the next page, and compare them with the definitions in figure 7.33
on page 227. In particular, notice how, in contrast with bf1/2, external
nodes are enqueued instead of being discarded, because they are later
needed to make the numbered tree.

In figure 7.38 on the next page is shown an example, where the num-
bers on the left represent the values of i (the first argument of bf2/2), the
downward rewrites define the successive states of the working queue (the
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bfn2(0, t %⊖)! ⊖ & t′

bfn1(t)! t′
.

bfn2(i,⊖)→ ⊖; bfn2(i, q & ext())→ ext() % bfn2(i, q);

bfn2(i+ 1, t2 % t1 % q)! q′ & t′1 & t′2
bfn2(i, q & int(x, t1, t2))! int(i, t′1, t

′
2) % q′

.

Figure 7.37: Abstract breadth-first numbering

second argument of bf2/2), and the upward rewrites show the success-
ive states of the resulting queue (right-hand side of bf2/2). Recall that
trees are enqueued on the left and dequeued on the right (other authors
may use the opposite convention, as Okasaki (2000)) and pay attention
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Figure 7.38: Example of breadth-first numbering
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deq(bfn(0, q([ ], [t]))) ! ⟨q([ ], [ ]), t′⟩
bfn3(t)! t′

.

bfn4(i, q([ ], [ ])) → q([ ], [ ]);
deq(q)! ⟨q′, ext()⟩

bfn4(i, q)! enq(ext(), bfn4(i, q
′))

;

deq(q)! ⟨q1, int(x, t1, t2)⟩
deq(bfn4(i+ 1, enq(t2, enq(t1, q1))))! ⟨q2, t′2⟩ deq(q2)! ⟨q′, t′1⟩

bfn4(i, q)! enq(int(i, t′1, t
′
2), q

′)

Figure 7.39: Refinement of figure 7.37 on the preceding page

to the fact that, in the vertical rewrites on the left, t1 is enqueued first
whilst, on the right, t′2 is dequeued first, which appears when contrasting
t2 % t1 % q = t2 % (t1 % q) and q′ & t′1 & t′2 = (q′ & t′1) & t′2.

We can refine bfn1/1 and bfn2/2 by introducing explicitly the function
calls for enqueueing and dequeueing, as shown in figure 7.39, which
could be contrasted with figure 7.34 on page 227.

Exercises

1. How would you proceed to prove the correctness of bfn/1?
2. Find the cost Cbfn

n of bfn(t), where n is the size of t.

7.2 Classic shapes

In this section, we briefly review some particular binary trees which are
useful in assessing the extremal costs of many algorithms.

Perfection We already mentioned what a perfect binary tree is in the
context of optimal sorting (see figure 2.43 on page 88). One way to
define such trees is to say that all their external nodes belong to the
same level or, equivalently, the immediate subtrees of any node have
same height. (The height of an external node is 0.) In figure 7.40 on
the next page is shown the definition of per/1 (perfection). If the tree t
is perfect, we also know its height h: per(t) ! true(h). Note that the
rules are ordered, so the last one may only apply when the previous ones
have not been matched. A refinement without inference rules is shown
in figure 7.41 on the facing page, where per0(t1) is evaluated before
per0(t2) since t(per0(t1), per0(t2)) is inefficient if per0(t1)! false().
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per(ext())→ true(0);
per(t1)! true(h) per(t2)! true(h)

per(int(x, t1, t2))→ true(h+ 1)
;

per(t)→ false().

Figure 7.40: Abstract checking of perfection

per0(ext())→ true(0);
per0(int(x, t1, t2))→ t1(per0(t1), t2).

t1(false(), t2)→ false();
t1(h, t2)→ t2(h, per0(t2)).

t2(true(h), true(h))→ true(h+ 1);
t2(h, x)→ false().

Figure 7.41: Refinement of figure 7.40

Figure 7.42

Completeness A binary tree is complete if the chil-
dren of every internal node are either two external
nodes or two internal nodes themselves. An example
is provided in figure 7.42. Recursively, a given tree
is complete if, and only if, its immediate subtrees are
complete. This is the same rule we used for perfec-
tion. In other words, perfection and completeness are
propagated bottom-up. Therefore, we need to decide what to say about
the external nodes, in particular, the empty tree. If we decide that the lat-
ter is complete, then int(x, ext(), int(y, ext(), ext())) would, incorrectly, be
deemed complete. If not, leaves int(x, ext(), ext()) would, incorrectly, be
found to be incomplete. Thus, we can choose either option and handle
the problematic case separately; for example, we may choose that ex-
ternal nodes are incomplete trees, but leaves are complete trees. The
program is shown in figure 7.43. The last rule applies either if t = ext()
or t = int(x, t1, t2), with t1 or t2 incomplete.

comp(int(x, ext(), ext()))→ true();

comp(t1)! true() comp(t2)! true()

comp(int(x, t1, t2))! true()
; comp(t)→ false().

Figure 7.43: Checking completeness
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Figure 7.44

Balance The last interesting kind of binary trees
is the balanced trees. There are two sorts of criteria to
define balance: either height or size (Nievergelt and
Reingold, 1972, Hirai and Yamamoto, 2011). In the
latter case, siblings are roots of trees with similar
sizes; in the former case, they have similar height.
The usual criterion being height, we will use it in the
following. Depending on the algorithm, what ‘similar’ means may vary.
For example, we may decide that two trees whose heights differ at most
by 1 have similar heights. See figure 7.44 for an instance. Let us start
with a definition of the height of a binary tree and then modify it to
obtain a function checking the balance:

height(ext())→ 0; height(int(x, t1, t2))→ 1+max{height(t1), height(t2)}.

The modification is shown in figure 7.45, where the inference rule
of bal0/1 is needed to check the condition |h1 − h2| " 1. Note that a
perfect tree is balanced (h1 = h2).

bal0(ext())→ true(0);

bal0(t1)! true(h1) bal0(t2)! true(h2) |h1 − h2| " 1

bal0(int(x, t1, t2))! true(1 + max{h1, h2})
;

bal0(t)→ false().

Figure 7.45: Checking balance

7.3 Tree encodings

In general, many binary trees yield the same preorder, postorder or in-
order traversal, so it is not possible to rebuild the original tree from one
traversal alone. The problem of uniquely representing a binary tree by a
linear structure is called tree encoding (Mäkinen, 1991) and is related to
the problem of generating all binary trees of a given size (Knuth, 2011,
7.2.1.6). One simple approach consists in extending a traversal with the
external nodes; this way, enough information from the binary tree is re-
tained in the encoding, allowing us to unambiguously go back to the
original tree.

The encoding function epost/1 (extended postorder) in figure 7.46
on the next page, is a simple modification of post/1 in figure 7.26 on
page 221. For example, the tree in figure 7.11b on page 210 yields
[✷,✷,✷, 0, 1,✷,✷, 2, 3,✷,✷,✷, 4, 5, 6], where ✷ stands for ext(). Since a
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epost(t)→ epost(t, [ ]).

epost(ext(), s)→ [ext() |s];
epost(int(x, t1, t2), s)→ epost(t1, epost(t2, [x |s])).

Figure 7.46: Postorder encoding

binary tree with n internal nodes has n+1 external nodes (see theorem 5
on page 202), the cost is straightforward to find: Cepost

n = 2n+ 2.
We already noticed that the postorder of the nodes increases along

upwards paths, which corresponds to the order in which a tree is built:
from the external nodes up to the root. Therefore, all we have to do
is to identify the growing subtrees by putting the unused numbers and
subtrees in an auxiliary stack: when the contents of a root (anything dif-
ferent from ext()) appears in the original stack, we can make an internal
node with the two first subtrees in the auxiliary stack.

The definition of post2b/1 (extended postorder to binary tree) is given
in figure 7.47. Variable f stands for forest , which is how stacks of trees
are usually called in computing science. Note that a problem would arise
if the original tree contains trees because, in that case, an external node
contained in an internal node would confuse post2b/1. The cost is easy
to assess because a postorder encoding must have length 2n+1, which is
the total number of nodes of a binary with n internal nodes. Therefore,
Cpost2b
n = 2n + 3. The expected theorem is, of course,

post2b(epost(t)) ≡ t. (7.8)

Considering preorder now, the encoding function epre/1 (extended
preorder) in figure 7.48 on the following page is a simple modification
of pre/1 in figure 7.10 on page 209. The cost is as simple as for a
postorder encoding: Cepre

n = 2n+ 2.

post2b(s)→ post2b([ ], s).

post2b([t], [ ])→ t;
post2b(f, [ext() |s])→ post2b([ext() |f ], s);

post2b([t2, t1 |f ], [x |s])→ post2b([int(x, t1, t2) |f ], s).

Figure 7.47: Postorder decoding
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epre(t)→ epre(t, [ ]).

epre(ext(), s)→ [ext() |s];
epre(int(x, t1, t2), s)→ [x |epre(t1, epre(t2, s))].

Figure 7.48: Preorder encoding

Working out the inverse function, from preorder encodings back to
binary trees, is a little trickier than for postorder traversals, because the
preorder numbers increase downwards in the trees, which is the opposite
direction in which trees grow (programmers have trees grow from the
leaves to the root). One solution consists in recalling the relationship
PreMir(t) between preorder and postorder we proved earlier on page 221:

pre(mir(t)) ≡ rev(post(t)).

We should extend the proof of this theorem so we have

epre(mir(t)) ≡ rev(epost(t)). (7.9)

In section 2.2, we proved Inv(s) and EqRev(s), that is to say, the involu-
tion of rev/1:

rev(rev(s)) ≡ t. (7.10)

Property (7.10) and (7.9) yield

rev(epre(mir(t))) ≡ rev(rev(epost(t))) ≡ epost(t).

Applying (7.8), we obtain

post2b(rev(epre(mir(t)))) ≡ post2b(epost(t)) ≡ t.

From exercise 3 on page 223, we have mir(mir(t)) ≡ t, therefore

post2b(rev(epre(t))) ≡ mir(t) hence mir(post2b(rev(epre(t)))) ≡ t.

Because we want the encoding followed by the decoding to be the identity,
pre2b(epre(t)) ≡ t, we have pre2b(epre(t)) ≡ mir(post2b(rev(epre(t)))),
that is, setting the stack s := epre(t),

pre2b(s) ≡ mir(post2b(rev(s))),

We obtain pre2b/1 by modifying post2b/1 in figure 7.49 on the facing
page. The difference between pre2b/2 and post2b/2 lies in their last pat-
tern, that is, post2b([t2, t1 |f ], [x |s]) versus pre2b([t1, t2 |f ], [x |s]), which
implements the fusion of mir/1 and post2b/1. Unfortunately, the cost of
pre2b(t) is greater than the cost of post2b(t) because of the stack reversal
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pre2b(s)→ pre2b([ ], rev(s)).

pre2b([t], [ ])→ t;
pre2b(f, [ext() |s])→ pre2b([ext() |f ], s);

pre2b([t1, t2 |f ], [x |s])→ pre2b([int(x, t1, t2) |f ], s).

Figure 7.49: Preorder decoding

rev(s) at the start: Cpre2b
n = 2n+ 3 + Crev

n = 3n+ 5.
The design of pre2b/1 is based on small steps with an accumulator.

A more direct approach would extract the left subtree and then the
right subtree from the rest of the encoding. In other words, the new
version pre2b1(s) would return a tree build from a prefix of the encod-
ing s, paired with the rest of the encoding. The definition is displayed in
figure 7.50. Notice the absence of any adventitious concept, contrary
to pre2b/1, which relies on the reversal of a stack and a theorem about
mirror trees and postorders. To wit, pre2b0/1 is conceptually simpler,
although its cost is greater than that of pre2b/1 because we count the
number of function calls after the inference rules are translated into the
core functional language (so two more calls matching ⟨t1, s1⟩ and ⟨t2, s2⟩
are implicit).

Tree encodings show that it is possible to compactly represent binary
trees, as long as we do not care for the contents of the internal nodes. For
instance, we mentioned that the tree in figure 7.11b on page 210 yields
the extended postorder traversal [✷,✷,✷, 0, 1,✷,✷, 2, 3,✷,✷,✷, 4, 5, 6].
If we only want to retain the shape of the tree, we could replace the con-
tents of the internal nodes by 0 and the external nodes by 1, yielding the
encoding [1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0]. A binary tree of size n can
be uniquely represented by a binary number of 2n + 1 bits. In fact, we
can discard the first bit because the first two bits are always 1, so 2n bits
are actually enough. For an extended preorder traversal, we choose to
map external nodes to 0 and internal nodes to 1, so, the tree in fig-

pre2b1(s)! ⟨t, [ ]⟩
pre2b0(s)! t

. pre2b1([ext() |s])→ ⟨ext(), s⟩;

pre2b1(s)! ⟨t1, s1⟩ pre2b1(s1)! ⟨t2, s2⟩
pre2b1([x |s])! ⟨int(x, t1, t2), s2⟩

.

Figure 7.50: Another preorder decoding
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ure 7.11a on page 210 yields [0, 1, 2,✷, 3,✷,✷, 4,✷,✷, 5,✷, 6,✷,✷] and
(111010010010100)2 . We can also discard the rightmost bit, since the last
two bits are always 0.

7.4 Random traversals

Some applications require a tree traversal to depend on the interaction
with a user or another piece of software, that is, the tree is supplemented
with the notion of a current node so the next node to be visited can
be chosen amongst any of the children, the parent or even the siblings.
This interactivity stands in contrast with preorder, inorder and postorder,
where the visit order is predetermined and cannot be changed during the
traversal.

Normally, the visit of a functional data structure starts always at the
same location, for example, in the case of a stack, it is the top item and,
in the case of a tree, the access point is the root. Sometimes, updating
a data structure with an on-line algorithm (see page 9 and section 4.6
on page 161) requires to keep a direct access ‘inside’ the data structure,
usually where the last update was performed, or nearby, in view of a
better amortised (see page 9) or average cost (see 2-way insertion in
section 3.2 on page 101).

a

b

c d

e f

g

Figure 7.51

Let us call the current node the slider , also called the
focus. A zipper on a binary tree is made of a subtree, whose
root is the slider, and a path from it up to the root. That
path is the reification, in reverse order, of the recursive calls
that led to the subtree (the call stack), together with the
subtrees left unvisited on the way down. Put in more ab-
stract terms, a zipper is made of a linear context (a rooted
path) and a substructure (at the end of that path), whose handle is the
focus. In one move, it is possible to visit the children in any order, the
parent or the sibling. Consider figure 7.51 where the slider is the node d.
The substructure is s := int(d(), int(e(), ext(), ext()), int(f(), ext(), ext())).
To define rooted paths for the zipper, we need three data constructors:
one denoting the empty path, top(), one denoting a turn to the left,
left(x, t, p), where x is a node on the path, t is the right subtree of x,
and p is the rest of the path up to the root, and one constructor denot-
ing a turn to the right, right(x, t, p), where t is the left subtree of x.

Resuming our example above, the zipper is then the pair ⟨p, s⟩, with
the path p being right(b(), int(c(), ext(), ext()), p1), meaning that the node
b has an unvisited left child c (or, equivalently, we turned right when go-
ing down), and where p1 := left(a(), int(g(), ext(), ext()), top()), meaning
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up(⟨left(x, t2, p), t1⟩)→ ⟨p, int(x, t1, t2)⟩;
up(⟨right(x, t1, p), t2⟩)→ ⟨p, int(x, t1, t2)⟩.

left(⟨p, int(x, t1, t2)⟩)→ ⟨left(x, t2, p), t1⟩.

right(⟨p, int(x, t1, t2)⟩)→ ⟨right(x, t1, p), t2⟩.

sibling(⟨left(x, t2, p), t1⟩)→ ⟨right(x, t1, p), t2⟩;
sibling(⟨right(x, t1, p), t2⟩)→ ⟨left(x, t2, p), t1⟩.

Figure 7.52: Basic steps in a binary tree

that the node a has an unvisited right child g, and that it is the root of
the whole tree, due to top(). Note that since b is the first in the path up,
it is the parent of the slider d.

At the beginning, the original tree t is injected into a zipper ⟨top(), t⟩.
Then, the operations we want for traversing a binary tree on demand are
up/1 (go to the parent), left/1 (go to the left child), right/1 (go to the
right child) and sibling/1 (go to the sibling). All take a zipper as input
and all calls evaluate into a zipper. After any of these steps is performed,
a new zipper is assembled as the value of the call. See figure 7.52 for
the program. Beyond random traversals of a binary tree, this technique,
which is an instance of Huet’s zipper (Huet, 1997, 2003), also allows local
editing. This simply translates as the replacement of the current tree by
another:

graft(t′, ⟨p, t⟩)→ ⟨p, t′⟩.

If we only want to change the slider, we would use

slider(x′, ⟨p, int(x, t1, t2)⟩)→ ⟨p, int(x′, t1, t2)⟩.

If we want to go up to the root and extract the new tree:

zip(⟨top(), t⟩)→ t; zip(z)→ zip(up(z)).

We do not need a zipper to perform a preorder, inorder or postorder
traversal, because it is primarily designed to open down and close up
paths from the root of a tree, in the manner of a zipper in a cloth. Nev-
ertheless, if we retain one aspect of its design, namely, the accumulation
of unvisited nodes and subtrees, we can define the classic traversals in
tail form, that is, by means of a definition where the right-hand sides
either are a value or a function call whose arguments are not function



240 CHAPTER 7. BINARY TREES

pre7(t)→ pre8([ ], [ ], t).

pre8(s, [ ], ext())→ s;
pre8(s, [int(x, t1, ext()) |f ], ext())→ pre8(s, [x |f ], t1);

pre8(s, [x |f ], ext())→ pre8([x |s], f, ext());
pre8(s, f, int(x, t1, t2))→ pre8(s, [int(x, t1, ext()) |f ], t2).

Figure 7.53: Preorder in tail form

calls themselves. Such definitions are equivalent to loops in imperative
languages and may be a target for some compilers (Appel, 1992).

We show a preorder traversal following this design in figure 7.53,
where, in pre8(s, f, t), the stack s is expected to collect the visited nodes
in preorder, the stack f (forest) is the accumulator of unvisited parts of
the original tree and t is the current subtree to be traversed. The cost is
simple: Cpre7

n = 3n+ 2.

7.5 Enumeration

Many publications (Knuth, 1997, § 2.3.4.4) (Sedgewick and Flajolet,
1996, § 5.1) show how to find the number of binary trees of size n us-
ing an advanced mathematical tool called generating functions (Graham
et al., 1994, chap. 7). Instead, for didactical purposes, we opt for a more
intuitive technique in enumerative combinatorics which consists in con-
structing a one-to-one correspondence between two finite sets, so the
cardinal of one is the cardinal of the other. In other words, we are going
to relate bijectively, on the one hand, binary trees, and, on the other
hand, other combinatorial objects which are relatively easy to count, for
a given size.

We actually know the appropriate objects in the instance of Dyck
paths, introduced in section 2.5 about queueing. A Dyck path is a broken
line in a grid from the point (0, 0) to (2n, 0), made up of the two kinds of
segments shown in figure 7.54 on the facing page, such that it remains
above the abscissa axis or reaches it. Consider again the example given in
figure 2.16 on page 62, without taking into account the individual costs
associated to each step. Following the same convention as in chapter 5, we
would say here that a Dyck word is a finite word over the alphabet made
of the letters r (rise) and f (fall), such that all its prefixes contain more
letters r than f, or an equal number. This condition is equivalent to the
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(a) Rise (b) Fall

Figure 7.54: Basic steps in a grid

geometrical characterisation ‘above the abscissa axis or reaches it.’ For
instance, rff is not a Dyck word because the prefix rff (actually, the whole
word) contains more falls than rises, so the associated path ends below
the axis. The Dyck word corresponding to the Dyck path in figure 2.16
on page 62 is rrrfrfrrfffrff. Conceptually, there is no difference between
a Dyck path and a Dyck word, we use the former when a geometrical
framework is more intuitive and the latter when symbolic reasoning and
programming are expected.

First, let us map injectively binary trees to Dyck words, in other
words, we want to traverse any tree and produce a Dyck word which is
not the mapping of another tree. Since, by definition, non-empty binary
trees are made of an internal node connected to two binary subtrees,
we may wonder how to split a Dyck word into three parts: one corres-
ponding to the root of the tree and two corresponding to the immediate
subtrees. Since any Dyck word starts with a rise and ends with a fall, we
may ask what is the word in-between. In general, it is not a Dyck word;
for example, chopping off the ends of rfrrff yields frrf. Instead, we seek
a decomposition of Dyck words into Dyck words. If the Dyck word has
exactly one return, that is, one fall leading to the abscissa axis, then cut-
ting out the first rise and that unique return (which must be the last fall)
yields another Dyck word. For instance, rrfrrfff = r · rfrrff · f. Such words
are called prime, because any Dyck word can be uniquely decomposed as
the catenation of such words (whence the reference to prime factorisation
in elementary number theory): for all non-empty Dyck words d, there ex-
ists n > 0 unique prime Dyck words pi such that d = p1 · p2 · · · pn. This
naturally yields the arch decomposition, whose name stems from an ar-
chitectural analogy: for all Dyck words d, there exists n > 0 Dyck words
di and returns fi such that

d = (r · d1 · f1) · · · (r · dn · fn).

See Panayotopoulos and Sapounakis (1995), Lothaire (2005), Flajolet
and Sedgewick (2009). Unfortunately, this analysis is not suitable as it
stands, because n may be greater than 2, precluding any analogy with
binary trees. The solution is simple enough: let us keep the first prime
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Figure 7.55: Quadratic decomposition of a Dyck path
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(a) Binary tree

r0 r1 f r2 f f r3 f

(b) Dyck path corresponding to preorder encoding
[0, 1,✷, 2,✷,✷, 3,✷,✷]

Figure 7.56: Bijection between a binary tree and a Dyck path

factor r ·d1 · f1 and not factorise the suffix, which is a Dyck word. To wit,
for all non-empty Dyck words d, there exists one return f1 and two Dyck
subwords d1 and d2 (possibly empty) such that

d = (r · d1 · f1) · d2.

This is the first return decomposition, also known as quadratic decom-
position – also possible is d = d1 · (r · d2 · f1). For example, the Dyck
word rrfrffrrrffrff, shown in figure 7.55 admits the quadratic decompos-
ition r · rfrf · f · rrrffrff. This decomposition is unique because the prime
factorisation is unique.

Given a tree int(x, t1, t2), the rise and fall explicitly distinguished in
the quadratic decomposition are to be conceived as a pair which is the
mapping of x, while d1 is the mapping of t1 and d2 is the mapping of t2.
More precisely, the value of x is not relevant here, only the existence of
an internal node, and a fork in a leaf tree would be mapped just as well.
Formally, if δ(t) is the Dyck word mapped from the binary tree t, then
we expect the following equations to hold:

δ(ext()) = ε; δ(int(x, t1, t2)) = rx · δ(t1) · f · δ(t2). (7.11)

Note that we attached the node contents x to the rise, so we do not lose
information. For example, the tree in figure 7.56a would formally be
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dpre(t)→ dpre(t, [ ]).

dpre(ext(), s)→ s;
dpre(int(x, t1, t2), s)→ [r(x) |dpre(t1, [f() |dpre(t2, s)])].

Figure 7.57: Mapping in preorder a binary tree to a Dyck path

t := int(0, int(1, ext(), int(2, ext(), ext())), int(3, ext(), ext()) and mapped
into the Dyck path in figure 7.56b on the facing page as follows:

δ(t) = r0 · δ(int(1, ext(), int(2, ext(), ext()))) · f · δ(int(3, ext(), ext()))

= r0 · (r1 · δ(ext()) · f · δ(int(2, ext(), ext()))) · f · δ(int(3, ext(), ext()))

= r0r1ε · f · (r2 · δ(ext()) · f · δ(ext())) · f · (r3 · δ(ext()) · f · δ(ext()))
= r0r1f · (r2 · ε · f · ε) · f · (r3 · ε · f · ε) = r0r1fr2ffr3f.

Notice that if we replace the rises by their associated contents (in sub-
script) and the falls by ✷, we obtain [0, 1,✷, 2,✷,✷, 3,✷], which is the
preorder encoding of the tree without its last ✷. We could then modify
epre/2 in figure 7.48 on page 236 to map a binary tree to a Dyck path,
but we would have to remove the last item from the resulting stack, so
it is more efficient to directly implement δ as function dpre/1 (Dyck path
as preorder) in figure 7.57. If the size of the binary tree is n, then

Cdpre
n = 2n+ 2 and the length of the Dyck path is 2n.

This mapping is clearly reversible, as we already solved the problem
of decoding a tree in preorder in figures 7.49 and 7.50 on page 237, and
we understand now that the reversed mapping is based on the quadratic
(‘first return’) decomposition of the path.

If we are concerned about efficiency, though, we may recall that us-
ing a postorder encoding yields a more efficient decoding, as we saw in
figures 7.46 and 7.47 on page 235, therefore a faster reverse mapping.
To create a Dyck path based on a postorder, we map external nodes to
rises and internal nodes to falls (with associated contents), and then re-
move the first rise. See figure 7.58b on the following page for the Dyck
path obtained from the postorder traversal of the same previous tree. Of
course, just as we did with the preorder mapping, we are not going to
make the postorder encoding, but instead go directly from the binary
tree to the Dyck path, as shown in figure 7.59 on the next page. Note
that we push r() and f(x) in the same rule, so we do not have to remove
the first rise at the end. (We use a similar optimisation with dpre/2 in
figure 7.57.) In structural terms, the inverse of this postorder mapping
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(a) Binary tree

r r f2 f1 r r f3 f0
(b) Dyck path corresponding to postorder encoding

[✷,✷,✷, 2, 1,✷,✷, 3, 0]

Figure 7.58: Bijection between a binary tree and a Dyck path

dpost(t)→ dpost(t, [ ]).

dpost(ext(), s)→ s;
dpost(int(x, t1, t2), s)→ dpost(t1, [r() |dpost(t2, [f(x) |s])]).

Figure 7.59: Mapping in postorder a binary tree to a Dyck path

corresponds to a decomposition d = d1 · (r · d2 · f1), which we mentioned
earlier in passing as an alternative to the ‘first return’ decomposition.

The mapping from Dyck paths encoded in postorder to binary trees is
a simple variation on post2b/1 and post2b/2 in figure 7.47 on page 235:
simply make the auxiliary stack be [ext()] at the beginning. The definition
is named d2b/1 and shown in figure 7.60. The cost is Cd2b

n = 2n+ 2.
Whether we choose a preorder or a postorder mapping, as a con-

sequence of the established bijections, we know that there are as many
binary trees of size n as Dyck paths of length 2n. We already know,
from chapter 6, and equation (6.1) on page 190, that there are Cn =
1

n+1

(2n
n

)

∼ 4n

n
√
πn

of such paths.

Other encodings of binary trees can be found in (Knuth, 1997, 2.3.3)
and (Sedgewick and Flajolet, 1996, 5.11).

d2b(s)→ d2b([ext()], s).

d2b([t], [ ]) → t;
d2b(f, [r() |s])→ d2b([ext() |f ], s);

d2b([t2, t1 |f ], [f(x) |s])→ d2b([int(x, t1, t2) |f ], s).

Figure 7.60: Mapping a Dyck path to a binary tree in postorder
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Average path length Most of the usual average parameters of binary
trees, like average internal path length, average height and width, are
quite difficult to derive and require mathematical tools which are beyond
the scope of this book.

The internal path length I(t) of a binary tree t is the sum of the path
lengths from the root to every internal node. We already saw the concept
of external path length E(t), that is, the sum of the path lengths from
the root to every internal node, in section 2.8 on page 79 about optimal
sorting, where we showed that the binary tree with minimum average
external path length has all its external nodes on two successive levels.
The relation between these two path lengths is quite simple because the
binary structure yields an equation depending only on the size n:

En = In + 2n. (7.12)

Indeed, let int(x, t1, t2) be a tree with n internal nodes. Then we have

I(ext()) = 0, I(int(x, t1, t2)) = I(t1) + I(t2) + n− 1, (7.13)

because each path in t1 and t2 is extended with one more edge back to
the root x, and there are n − 1 such paths by definition. On the other
hand,

E(ext()) = 0, E(int(x, t1, t2)) = E(t1) + E(t2) + n+ 1, (7.14)

because the paths in t1 and t2 are extended by one more step to the
root x and there are n + 1 such paths, from theorem 5 on page 202.
Subtracting equation (7.13) from (7.14) yields

E(ext())− I(ext()) = 0,

E(int(x, t1, t2))− I(int(x, t1, t2)) = (E(t1)− I(t1)) + (E(t2)− I(t2)) + 2.

In other words, each internal node adds 2 to the difference between the
external and internal path lengths from it. Since the difference is 0 at
the external nodes, we get equation (7.12) for the tree of size n. Unfor-
tunately, almost anything else is quite hard to prove. For instance, the
average internal path length E[In] has been shown to be

E[In] =
4n

Cn
− 3n− 1 ∼ n

√
πn

by Knuth (1997), in exercise 5 of section 2.3.4.5, and Sedgewick and
Flajolet (1996), in Theorem 5.3 of section 5.6. Using equation (7.12),
we deduce E[En] = E[In] + 2n, implying that the cost for traversing a
random binary tree of size n from the root to a random external node is
E[En]/(n + 1) ∼

√
πn. Moreover, the value E[In]/n can be understood

as the average level of a random internal node.



246 CHAPTER 7. BINARY TREES

Average height The average height hn of a binary tree of size n is
even more difficult to obtain and was studied by Flajolet and Odlyzko
(1981), Brown and Shubert (1984), Flajolet and Odlyzko (1984), Odlyzko
(1984):

hn ∼ 2
√
πn.

In the case for Catalan trees, to wit, trees whose internal nodes may
have any number of children, the analysis of the average height has been
carried out by Dasarathy and Yang (1980), Dershowitz and Zaks (1981),
Kemp (1984) in section 5.1.1, Dershowitz and Zaks (1990), Knuth et al.
(2000) and Sedgewick and Flajolet (1996), in section 5.9.

Average width The width of a binary tree is the length of its largest
extended level. It can be shown that the average width wn of a binary
tree of size n satisfies

wn ∼
√
πn ∼ 1

2hn.

In particular, this result implies that the average size of the stack needed
to perform the preorder traversal with pre4/2 in figure 7.6 on page 207
is twice the average size of the queue needed to perform a level-order
traversal with bf/1 in figure 7.35 on page 227. This is not obvious, as
the two stacks used to simulate the queue do not always hold a complete
level.

For general trees, a bijective correspondence with binary trees and
the transfer of some average parameters has been nicely presented by
Dasarathy and Yang (1980).

Exercises

1. Prove post2b(epost(t)) ≡ t.

2. Prove pre2b(epre(t)) ≡ t.

3. Prove epre(mir(t)) ≡ rev(epost(t)).

4. Define the encoding of a tree based on its inorder traversal.



Chapter 8

Binary Search Trees

Searching for an internal node in a binary tree can be costly because, in
the worst case, the whole tree must be traversed, for example, in preorder
or level-order. To improve upon this, two situations are desirable: the
binary tree should be as balanced as possible and the choice of visiting

17

5

3 11

13

29

Figure 8.1

the left or right subtree should be taken only upon examining
the contents in the root, called key .

The simplest solution consists in satisfying the latter con-
dition and later see how it fits the former. A binary search
tree (Mahmoud, 1992) bst(x, t1, t2) is a binary tree such that
the key x is greater than the keys in t1 and smaller than the
keys in t2. (The external node ext() is a trivial search tree.)
The comparison function depends on the nature of the keys, but has to
be total, that is, any key can be compared to any other key. An example
is given in figure 8.1. An immediate consequence of the definition is
that the inorder traversal of a binary search tree yields an increasingly
sorted stack, for example, [3, 5, 11, 13, 17, 29] from the tree in figure 8.1.

This property enables checking simply that a binary tree is a search
tree: perform an inorder traversal and then check the order of the result-
ing stack. The corresponding function, bst0/1, is legible in figure 8.2
on the following page, where in2/2 is just a redefinition of in/2 in fig-

ure 7.21 on page 216. Thus, the cost of in2(t), when t has size n, is
C in2
n = C in

n = 2n + 2. The worst case for ord/1 occurs when the stack is
sorted increasingly, so the maximum cost is Word

n = n, if n > 0. The
best case is manifest when the first key is greater than the second, so the
minimum cost is Bord

n = 1. Summing up: Bbst0
n = 1+(2n+2)+1 = 2n+4

and Wbst0
n = 1 + (2n+ 2) + n = 3n+ 3.

A better design consists in not constructing the inorder stack and
only keeping the smallest key so far, assuming the traversal is from right

247
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bst0(t)→ ord(in2(t, [ ])).

in2(ext(), s)→ s;
in2(bst(x, t1, t2), s)→ in2(t1, [x | in2(t2, s)]).

ord([x, y |s])→ ord([y |s]), if y ≻ x;
ord([x, y |s])→ false();

ord(s)→ true().

Figure 8.2: Naïvely checking a binary search tree

bst(t)→ norm(bst1(t, infty())).

bst1(ext(),m)→ m;
bst1(bst(x, t1, t2),m)→ cmp(x, t1, bst1(t2,m)).

cmp(x, t1, infty())→ bst1(t1, x);
cmp(x, t1,m)→ bst1(t1, x), if m ≻ x;
cmp(x, t1,m)→ false().

norm(false())→ false();
norm(m)→ true().

Figure 8.3: Checking a binary search tree

to left, and compare it with the current key. But this is a problem at the
beginning, as we have not visited any node yet. A common trick to deal
with exceptional values is to use a sentinel , which is a dummy. Here, we
would like to set the sentinel to +∞, as any key would be smaller, in
particular the largest key, which is unknown. (Would it be known, we
could use it as a sentinel.) It is actually easy to model this infinite value
in our functional language: let us simply use a constant data constructor
infty/0 (infinity) and make sure that we handle its comparison separately
from the others. Actually, infty() is compared only once, with the largest
key, but we will not try to optimise this, lest the design is obscured.

The program is displayed in figure 8.3. The parameter m stands for
the minimum key so far. The sole purpose of norm/1 is to get rid of the
smallest key m in the tree and instead terminate with true(), but, if the
tree is not empty, we could as well end with true(m), or even false(x), if
more information were deemed useful.
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In the worst case, the original tree is a binary search tree, hence it has
to be traversed in its entirety. If there are n internal nodes, the maximum
cost is Wbst

n = 1+ 2n+ (n+1) + 1 = 3n+ 3 because each internal node
triggers one call to bst1/2 and, in turn, one call to cmp/3; also, all the
n + 1 external nodes are visited. Consequently, Wbst0

n = Wbst
n , if n > 0,

which is not an improvement. Nevertheless, here, we do not build a stack
with all the keys, which is a definite gain in terms of memory allocation.

Memory is not the only advantage, though, as the minimum cost of
bst/1 is lower than for bst0/1. Indeed, the best case for both occurs when
the tree is not a binary search tree, but this is discovered the sooner in
bst/1 at the second comparison, because the first one always succeeds by
design (+∞ ≻ x). Obviously, for the second comparison to occur as soon
as possible, we need the first comparison to happen as soon as possible
too. Two configurations work:

bst(bst(x, t1, bst(y, ext(), ext())))
8−→ false(),

bst(bst(y, bst(x, t1, ext()), ext()))
8−→ false(),

where x * y. (The second tree is the left rotation of the first. We have
seen on page 217 that inorder traversals are invariant through rotations.)
The minimum cost in both cases is Bbst

n = 8, to be contrasted with the
linear cost Bbst0

n = 2n+4 due to the inevitable complete inorder traversal.

8.1 Search

We now must find out whether searching for a key is faster than with an
ordinary binary tree, which was our initial motivation. Given the search
tree bst(x, t1, t2), if the key y we are searching for is such that y ≻ x,
then we search recursively for it in t2; otherwise, if x ≻ y, we look in t1;
finally, if y = x, we just found it at the root of the given tree. The
definition of mem/2 (membership) is shown in figure 8.4. The crucial
point is that we may not need to visit all the nodes. More precisely, if
all nodes are visited, then the tree is degenerate, to wit, it is isomorphic

mem(y, ext())→ false();
mem(x, bst(x, t1, t2))→ true();
mem(y, bst(x, t1, t2))→ mem(y, t1), if x ≻ y;
mem(y, bst(x, t1, t2))→ mem(y, t2).

Figure 8.4: Searching in a binary search tree
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to a stack, like the trees in figure 7.4 on page 205 and figure 7.31
on page 226. Clearly, the minimum cost of a successful search occurs
when the key is at the root, so Bmem

n(+) = 1, and the minimum cost of an
unsuccessful search happens when the root has an external node as a
child and mem/2 visits it: Bmem

n(−) = 2. The maximum cost of a successful
search occurs when the tree is degenerate and the key we are looking
for is at the only leaf, so Wmem

n(+) = n, and the maximum cost of an
unsuccessful search happens when visiting one of the children of the leaf
of a degenerate tree: Wmem

n(−) = n+ 1. Therefore,

Bmem
n = 1 and Wmem

n = n+ 1.

These extremal costs are the same as for a linear search by ls/2:

ls(x, [ ])→ false(); ls(x, [x |s])→ true(); ls(x, [y |s])→ ls(x, s).

The cost of a successful linear search is C ls
n,k = k, if the sought key is at

position k, where the first key is at position 1. Therefore, the average cost
of a successful linear search, assuming that each distinct key is equally
likely to be sought is Als

n = 1
n

∑n
k=1 C ls

n,k = 1
2 (n + 1). This raises the

question of the average cost of mem/2.

Average cost It is clear from the definition that a search path starts
at the root and either ends at an internal node in case of success, or at
an external node in case of failure; moreover, each node on these paths
corresponds to one function call. Therefore, the average cost of mem/2
is directly related to the average internal and external path lengths. To
clearly see how, let us consider a binary search tree of size n containing
distinct keys. The total cost of searching all of these keys is n+In, where
In is the internal path length (we add n to In because we count the nodes
on the paths, not the edges, as one internal node is associated with one
function call). In other words, a random key chosen amongst those in a
given tree of size n is found by mem/2 with an average cost of 1 + In/n.
Dually, the total cost of reaching all the external nodes of a given binary
search tree is (n + 1) + En, where En is the external path length (there
are n+1 external nodes in a tree with n internal nodes; see theorem 5 on
page 202). In other words, the average cost of a failed search by mem/2
is 1 +En/(n+ 1).

At this point, we should realise that we are dealing with a double
randomness, or, equivalently, an average of averages. Indeed, the previous
discussion assumed the search tree was given, but the key was random.
The general case is when both are chosen randomly, that is, when the
previous results are averaged over all possible trees of the same size n.



8.1. SEARCH 251

Let Amem
n(+) be the average cost of the successful search of a random key

in a random tree of size n (any of the n keys being sought with same
probability); moreover, let Amem

n(−) be the average cost of the unsuccessful
search of a random key in a random tree (any of the n+1 intervals whose
end points are the n keys being equally likely to be searched). Then

Amem
n(+) = 1 +

1

n
E[In] and Amem

n(−) = 1 +
1

n+ 1
E[En], (8.1)

where E[In] and E[En] are, respectively, the average (or expected) in-
ternal path length and the average external path length. Reusing equa-
tion (7.12), page 245 (En = In + 2n), we deduce E[En] = E[In] + 2n
and we can now relate the average costs of searching by eliminating the
average path lengths:

Amem
n(+) =

(

1 +
1

n

)

Amem
n(−) −

1

n
− 2. (8.2)

Importantly, this equation holds for all binary search trees, independently
of how they are built. In the next section, we shall envisage two methods
for making search trees and we will be able to determine Amem

n(+) and Amem
n(−)

with the help of equation (8.2).
But before that, we could perhaps notice that in figure 8.4 on

page 249 we did not follow the order of the comparisons as we wrote
it down. In the case of a successful search, the comparison y = x holds
exactly once, at the very end; therefore, checking it before the others,
as we did in the second rule in figure 8.4 on page 249, means that it
fails for every key on the search path, except for the last. If we measure
the cost as the number of function calls, we would not care, but, if we
are interested in minimising the number of comparisons involved in a
search, it is best to move that rule after the other inequality tests, as
in figure 8.5. (We assume that an equality is checked as fast as an
inequality.) With mem0/2, the number of comparisons for each search
path is different because of the asymmetry between left and right: visit-
ing t1 yields one comparison (x ≻ y), whilst t2 begets two comparisons

mem0(y, bst(x, t1, t2))→ mem0(y, t1), if x ≻ y;
mem0(y, bst(x, t1, t2))→ mem0(y, t2), if y ≻ x;

mem0(y, ext())→ false();
mem0(y, t)→ true().

Figure 8.5: Searching with fewer 2-way comparisons



252 CHAPTER 8. BINARY SEARCH TREES

(x " y and y ≻ x). Moreover, we also moved the pattern for the external
node after the rules with comparisons, because each search path con-
tains exactly one external node at the end, so it is likely more efficient
to check it last. By the way, all textbooks we are aware of suppose that
exactly one atomic comparison with three possible outcomes (3-way com-
parison) occurs, despite the programs they provide clearly employing the
2-way comparisons (=) and (≻). This widespread blind spot renders the
theoretical analysis based on the number of comparisons less pertinent,
because most high-level programming languages simply do not feature
native 3-way comparisons.

Andersson’s variant Andersson (1991) proposed a variant for search-
ing which fully acknowledges the use of 2-way comparisons and reduces
their number to a minimum, at the expense of more function calls. The
design consists in threading a candidate key while descending in the tree
and always ending a search at an external node: if the candidate then
equals the sought key, the search is successful, otherwise it is not. There-
fore, the cost in terms of function calls of an unsuccessful search is the
same as with mem/2 or mem0/2, and the ending external node is the
same, but the cost for a successful search is higher. Nevertheless, the
advantage is that equality is not tested on the way down, only when the
external node is reached, so only one comparison per node is required.
The program is shown in figure 8.6. The candidate is the third argu-
ment to mem2/2 and its first instance is the root of the tree itself, as
seen in the first rule of mem1/2. The only conceptual difference with
mem0/2 is how a successful search is acknowledged: if, somewhere along
the search path, x = y, then x becomes the candidate and it will be
threaded down to an external node where x = x is checked.

The worst case happens when the tree is degenerate and mem1/2
performs n + 1 2-way comparisons, which we write as Wmem1

n = n + 1,

mem1(y, bst(x, t1, t2))→ mem2(y, bst(x, t1, t2), x);
mem1(y, ext())→ false().

mem2(y, bst(x, t1, t2), c)→ mem2(y, t1, c), if x ≻ y;
mem2(y, bst(x, t1, t2), c)→ mem2(y, t2, x);

mem2(y, ext(), y)→ true();
mem2(y, ext(), c)→ false().

Figure 8.6: Andersson’s search (key candidate)
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after the notations we used in the analysis of merge sort, back in chapter 4
on page 115.

In the case of mem0/2, the recursive call to the right subtree incurs
twice as much comparisons as in the left subtree, thus the worst case is
a right-leaning degenerate tree, like in figure 7.4b on page 205, and all
internal nodes are visited: Wmem0

n = 2n.
In the case of mem/2, the number of comparisons is symmetric be-

cause equality is tested first, so the worst case is a degenerate tree in
which an unsuccessful search leads to the visit of all internal nodes and
one external node: Wmem

n = 2n + 1. Asymptotically, we have

Wmem
n ∼Wmem0

n ∼ 2 · Wmem1
n .

In the case of Andersson’s search, there is no difference between the
cost, in terms of function calls, of a successful search and an unsuccessful
one, so, for n > 0, we have

Amem3
n = 1 +Amem2

n and Amem2
n = Amem

n(−) . (8.3)

Choosing between mem0/2 and mem1/2 depends on the compiler or in-
terpreter of the programming language chosen for the implementation. If
a 2-way comparison is slower than an indirection (following a pointer, or,
at the assembly level, jumping unconditionally), it is probably best to opt
for Andersson’s variant. But the final judgement requires a benchmark.

As a last note, we may simplify Andersson’s program by getting rid of
the initial emptiness test in mem1/2. What we need to do is simply have
a candidate be the subtree whose root is the candidate in the original
program. See figure 8.7 where we have Wmem3

n = Wmem1
n = n+1. This

version may be preferred only if the programming language used for the
implementation features aliases in patterns or, equivalently, if the com-
piler can detect that the term bst(x, t1, t2) can be shared instead of being
duplicated in the second rule of mem4/3 (here, we assume that sharing
is implicit and maximum within a rule). For additional information on
Andersson’s variant, read Spuler (1992).

mem3(y, t)→ mem4(y, t, t).

mem4(y, bst(x, t1, t2), t)→ mem4(y, t1, t), if x ≻ y;
mem4(y, bst(x, t1, t2), t)→ mem4(y, t2, bst(x, t1, t2));

mem4(y, ext(), bst(y, t1, t2))→ true();
mem4(y, ext(), t)→ false().

Figure 8.7: Andersson’s search (tree candidate)
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8.2 Insertion

Leaf insertion Since all unsuccessful searches end at an external node,
it is extremely tempting to start the insertion of a unique key by a
(failing) search and then grow a leaf with the new key at the external
node we reached. Figure 8.8 displays the program for insl/2 (insert a
leaf ). Note that it allows duplicates in the binary search tree, which
hinders the cost analysis (Burge, 1976, Archibald and Clément, 2006,
Pasanen, 2010). Figure 8.9 shows a variant which maintains the unicity
of the keys, based on the definition of mem0/2 in figure 8.5 on page 251.
Alternatively, we can reuse Andersson’s lookup, as shown in figure 8.10.

insl(y, bst(x, t1, t2))
τ−→ bst(x, insl(y, t1), t2), if x ≻ y;

insl(y, bst(x, t1, t2))
υ−→ bst(x, t1, insl(y, t2));

insl(y, ext())
φ−→ bst(y, ext(), ext()).

Figure 8.8: Leaf insertion with possible duplicates

insl0(y, bst(x, t1, t2))→ bst(x, insl0(y, t1), t2), if x ≻ y;
insl0(y, bst(x, t1, t2))→ bst(x, t1, insl0(y, t2)), if y ≻ x;

insl0(y, ext())→ bst(y, ext(), ext());
insl0(y, t)→ t.

Figure 8.9: Leaf insertion without duplicates

insl1(y, t)→ insl2(y, t, t).

insl2(y, bst(x, t1, t2), t)→ bst(x, insl2(y, t1, t), t2), if x ≻ y;
insl2(y, bst(x, t1, t2), t)→ bst(x, t1, insl2(y, t2, bst(x, t1, t2)));

insl2(y, ext(), bst(y, t1, t2))→ ext();
insl2(y, ext(), t)→ bst(y, ext(), ext()).

Figure 8.10: Andersson’s insertion

Average cost In order to carry out the average case analysis of leaf
insertion, we must assume that all inserted keys are distinct; equivalently,
we consider all the search trees resulting from the insertion into originally
empty trees of all the keys of each permutation of (1, 2, . . . , n). Because
the number of permutations is greater than the number of binary trees
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mkl(s)
ξ−→ mkl(s, ext()). mkl([ ], t)

ψ−→ t;
mkl([x |s], t) ω−→ mkl(s, insl(x, t)).

Figure 8.11: Making a binary search tree with leaf insertions

of same size, to wit, n! > Cn if n > 2 (see equation (6.1) on page 190),
we expect some tree shapes to correspond to many permutations. As we
will see in the section about the average height, degenerate and wildly
unbalanced trees are rare in average (Fill, 1996), making binary search
trees a good random data structure as long as only leaf insertions are
performed. Because we assume the unicity of the inserted keys, we shall
only consider insl/2 in the following. (Andersson’s insertion is only worth
using if duplicate keys are possible inputs that must be detected, leaving
the search tree invariant.)

Let us define a function mkl/1 (make leaves) in figure 8.11 which
builds a binary search tree by inserting as leaves all the keys in a given
stack. Note that we could also define a function mklR/1 (make leaves in
reverse order) such that mklR(s) ≡ mkl(rev(s)) in a compact manner:

mklR([ ])→ ext(); mklR([x |s])→ insl(x,mklR(s)). (8.4)

The cost of insl(x, t) depends on x and the shape of t, but, because all
shapes are obtained by mkl(s)! t for a given length of s, and all external
nodes of t are equally likely to grow a leaf containing x, the average cost
Ainsl

k of insl(x, t) only depends on the size k of the trees:

Amkl
n = 2 +

n−1
∑

k=0

Ainsl
k . (8.5)

One salient feature of leaf insertion is that internal nodes do not move,
hence the internal path length of the nodes is invariant and the cost
of searching all keys in a tree of size n is the cost of inserting them in
the first place. We already noticed that the former cost is, in average,
n+ E[In]; the latter cost is

∑n−1
k=0 Ainsl

k . From equation (8.5) then comes

n+ E[In] = Amkl
n − 2 (8.6)

(The subtraction of 2 is to account for rules ξ and ψ, which perform no
insertion.) The cost of a leaf insertion is that of an unsuccessful search:

Ainsl
k = Amem

k(−) . (8.7)

Recalling equation (8.1) on page 251, equations (8.5), (8.6) and (8.7):

Amem
n(+) = 1 +

1

n
E[In] =

1

n
(Amkl

n − 2) =
1

n

n−1
∑

k=0

Ainsl
k =

1

n

n−1
∑

k=0

Amem
k(−) .
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Finally, using equation (8.2) on page 251, we deduce

1

n

n−1
∑

k=0

Amem
k(−) =

(

1 +
1

n

)

Amem
n(−) −

1

n
− 2.

Equivalently,

2n+ 1 +
n−1
∑

k=0

Amem
k(−) = (n+ 1)Amem

n(−) .

This recurrence is easy to solve if we subtract its instance when n− 1:

2 +Amem
n−1(−) = (n+ 1)Amem

n(−) − nAmem
n−1(−).

Noting that Amem
0(−) = 1, the equation becomes

Amem
0(−) = 1, Amem

n(−) = Amem
n−1(−) +

2

n+ 1
,

thus

Amem
n(−) = 1 + 2

n+1
∑

k=2

1

k
= 2Hn+1 − 1, (8.8)

where Hn :=
∑n

k=1 1/k is the nth harmonic number. Replacing Amem
n(−)

back into equation (8.2) and using Hn+1 = Hn + 1/(n + 1) yields

Amem
n(+) = 2

(

1 +
1

n

)

Hn − 3. (8.9)

From inequations (3.11) on page 113 and equations (8.8) and (8.9):

Ainsl
n ∼ Amem

n(−) ∼ Amem
n(+) ∼ 2 lnn.

We obtain more information about the relative asymptotic behaviours of
Amem

n(−) and Amem
n(+) by looking at their difference instead of their ratio:

Amem
n(−) −Amem

n(+) =
2

n
(n+ 1−Hn+1) ∼ 2 and 1 " Amem

n(−) −Amem
n(+) < 2.

The average difference between an unsuccessful search and a successful
one tends slowly to 2 for large values of n, which may not be intuitive.
We can use this result to compare the average difference of the costs
of a successful search with mem/2 and mem3/2 (Andersson). Recalling
equation (8.3) on page 253, we draw 1 + Amem

n(−) = Amem3
n(+) . The previous

result now yields
Amem3

n(+) −Amem
n(+) ∼ 3.

Therefore, the extra cost of Andersson’s variant in case of a successful
search is asymptotically 3, in average.

Furthermore, replacing Amem
n(−) and Amem

n(+) into equations (8.1) leads to

E[In] = 2(n + 1)Hn − 4n and E[En] = 2(n + 1)Hn − 2n. (8.10)
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Thus E[In] ∼ E[En] ∼ 2n lnn. Note how easier it is to find E[In] for
binary search trees, compared to simple binary trees.

If we are interested in slightly more theoretical results, we may like
to know the average number of comparisons involved in a search and an
insertion. A glance back at figure 8.4 on page 249 uncovers that two
2-way comparisons are done when going down and one 2-way comparison
(equality) is checked when finding the key, otherwise none:

Amem
n(+) = 1 +

2

n
E[In] and Amem

n(−) =
2

n+ 1
E[En]. (8.11)

Reusing equations (8.10), we conclude that

Amem
n(+) = 4

(

1 +
1

n

)

Hn − 7 and Amem
n(−) = 4Hn +

4

n+ 1
− 4. (8.12)

Clearly, we have Amem
n(+) ∼ Amem

n(−) ∼ 4 lnn. Furthermore,

Amem
n(−) −Amem

n(+) =
4

n+ 1
− 4

n
Hn + 3 ∼ 3 and 1 " Amem

n(−) −Amem
n(+) < 3.

The average costs for Andersson’s search and insertions are easy to
deduce as well, from equation (8.3) on page 253 and (8.8) on page 256:
Amem3

n = 2Hn+1 ∼ 2 lnn. A glimpse back at figure 8.7 on page 253
brings to the fore that one 2-way comparison (x ≻ y) is performed when
descending in the tree and one more when stopping at an external node,
whether the search is successful or not:

Amem3
n =

1

n+ 1
E[En] = 2Hn +

2

n+ 1
− 2 ∼ 2 ln n.

We can now finally compare the average number of comparisons between
mem/2 and mem3/2 (Andersson):

Amem
n(+) −Amem3

n = 2

(

1 +
2

n

)

Hn −
2

n+ 1
− 5 ∼ 2 lnn,

Amem
n(−) −Amem3

n = 2Hn +
2

n+ 1
− 2 ∼ 2 lnn.

As far as leaf insertion itself is concerned, insl/2 behaves as mem3/2, ex-
cept that no comparison occurs at the external nodes. Also, from equa-
tions (8.7) and (8.8), we finish the average case analysis of insl/2:

Ainsl
n = Amem3

n − 1 = 2Hn +
2

n+ 1
− 3 and Ainsl

n = 2Hn+1 − 1.

Finally, from equation (8.6) and (8.10), we deduce

Amkl
n = n+ E[In] + 2 = 2(n+ 1)Hn − n+ 2 ∼ 2n lnn. (8.13)
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Amortised cost The worst case for leaf insertion occurs when the
search tree is degenerate and the key to be inserted becomes the deepest
leaf. If the tree has size n, then n + 1 calls are performed, as seen in
figure 8.8 on page 254, so W insl

n = n + 1 and W insl
n = n. In the case

of Andersson’s insertion in figure 8.10 on page 254, the worst case is
identical but there is a supplementary call to set the candidate key, so
W insl1

n = n + 2. Moreover, the number of comparisons is symmetric and
equals 1 per internal node, so W insl1

n = n and any degenerate tree is the
worst configuration.

The best case for leaf insertion with insl/2 and insl1/2 happens when
the key has to be inserted as the left or right child of the root, to wit,
the root is the minimum or maximum key in inorder, so Binsl

n = 2 and
Binsl1
n = 3. As far as comparisons are concerned: Binsl

n = 1 and Binsl1
n = 2.

While turning our attention to the extremal costs of mkl/1 and mkr/1,
we need to realise that we cannot simply sum minimum or maximum
costs of insl/2 because, as mentioned earlier, the call insl(x, t) depends
on x and the shape of t. For instance, after three keys have been inserted
into an empty tree, the root has no more empty children, so the best
case we determined previously is not pertinent anymore.

Let Bmkl
n be the minimum number of comparisons needed to construct

a binary search tree of size n using leaf insertions. If we want to minimise
the cost at each insertion, then the path length for each new node must be
as small as possible and this is achieved if the tree continuously grows as
a perfect or almost perfect tree. The former is a tree whose external nodes
all belong to the same level, a configuration we have seen on page 232
(the tree fits tightly inside an isosceles triangle); the latter is a tree whose
external nodes lie on two consecutive levels and we have seen this kind
of tree in the paragraph devoted to comparison trees and the minimean
of sorting on page 88.

Let us assume first that the tree is perfect, with size n and height h.
The height is the length, counted in number of edges, of the longest path
from the root to an external node. The total path length for a level k
made only of internal nodes is k2k. Therefore, summing all levels yields

Bmkl
n =

h−1
∑

k=1

k2k = (h− 2)2h + 2, (8.14)

by reusing equation (4.48) on page 141. Moreover, summing the number
of internal nodes by levels: n =

∑h−1
k=0 2

k = 2h − 1, hence h = lg(n + 1),
which we can replace in equation (8.14) to obtain

Bmkl
n = (n+ 1) lg(n+ 1)− 2n.
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We proved 1 + ⌊lg n⌋ = ⌈lg(n+ 1)⌉ when establishing the maximum
number of comparisons of top-down merge sort in equation (4.33) on
page 133, so we can proceed conclusively:

Bmkl
n = (n+ 1)⌊lg n⌋ − n+ 1. (8.15)

Let us assume now that the tree is almost perfect, with the penultim-
ate level h− 1 containing q ̸= 0 internal nodes, so

Bmkl
n =

h−2
∑

k=1

k2k + (h− 1)q = (h− 3)2h−1 + 2 + (h− 1)q. (8.16)

Moreover, the total number n of internal nodes, when summed level by
level, satisfies n =

∑h−2
k=0 2

k + q = 2h−1 − 1 + q, hence q = n− 2h−1 + 1.
By definition, we have 0 < q " 2h−1, hence 0 < n − 2h−1 + 1 " 2h−1,
which yields h − 1 < lg(n + 1) " h, then h = ⌈lg(n+ 1)⌉ = ⌊lg n⌋ + 1,
whence q = n−2⌊lgn⌋+1. We can now substitute h and q by their newly
found values in terms of n back into equation (8.16):

Bmkl
n = (n+ 1)⌊lg n⌋ − 2⌊lg n⌋ + 2. (8.17)

Comparing equations (8.15) and (8.17), we see that the number of com-
parisons is minimised when the tree is perfect, so n = 2p−1. The asymp-
totic approximation of Bmkl

n is not difficult to find, as long as we avoid the
pitfall 2⌊lg n⌋ ∼ n. Indeed, consider the function x(p) := 2p − 1 ranging
over the positive integers. First, let us notice that, for all p > 0,

2p−1 " 2p − 1 < 2p ⇒ p− 1 " lg(2p − 1) < p⇒ ⌊lg(2p − 1)⌋ = p− 1.

Therefore, 2⌊lg(x(p))⌋ = 2p−1 = (x(p) + 1)/2 ∼ x(p)/2 % x(p), which
proves that 2⌊lg(n)⌋ % n when n = 2p − 1 → ∞. Instead, in the case of
equation (8.15), let us use the standard inequalities x− 1 < ⌊x⌋ " x:

(n+ 1) lg n− 2n < Bmkl
n " (n+ 1) lg n− n+ 1.

In the case of equation (8.17), let us use the definition of the fractional
part {x} := x− ⌊x⌋. Obviously, 0 " {x} < 1. Then

Bmkl
n = (n+ 1) lg n− n · θ({lg n}) + 2− {lg n},

where θ(x) := 1 + 2−x. Let us minimise and maximise the linear term:
we have min0"x<1 θ(x) = θ(1) = 3/2 and max0"x<1 θ(x) = θ(0) = 2.
Keeping in mind that x = {lg n}, we have

(n+ 1) lg n− 2n+ 2 < Bmkl
n < (n+ 1) lg n− 3

2n+ 1.



260 CHAPTER 8. BINARY SEARCH TREES

In any case, it is now clearly established that Bmkl
n ∼ n lg n.

Let Wmkl
n be the maximum number of comparisons to build a binary

search tree of size n by leaf insertions. If we maximise each insertion,
we need to grow a degenerate tree and insert at one external node of
maximal path length: Wmkl

n =
∑n−1

k=1 k = 1
2n(n− 1) ∼ 1

2n
2.

Root insertion If recently inserted keys are looked up, the cost is
relatively high because these keys are leaves or close to a leaf. In this
scenario, instead of inserting a key as a leaf, it is better to insert it as
a root (Stephenson, 1980). The idea is to perform a leaf insertion and,
on the way back to the root (that is to say, after the recursive calls
are evaluated, one after the other), we perform rotations to bring the
inserted node up to the root. More precisely, if the node was inserted
in a left subtree, then a right rotation brings it one level up, otherwise
a left rotation has the same effect. The composition of these rotations
brings the leaf to the root. Right rotation, rotr/1 (rotate right) and left
rotation, rotl/1 (rotate left), were discussed in section 7.1 on page 217 and
are defined in figure 8.12. Obviously, they commute and are inverses
of each other:

rotl(rotr(t)) ≡ rotr(rotl(t)) ≡ t.

Moreover, and less trivially, they preserve inorder traversals:

in3(rotl(t)) ≡ in3(rotr(t)) ≡ in3(t),

where in3/1 computes the inorder traversal of a tree: in3(t) → in2(t, [ ]),
with in2/2 being defined in figure 8.2 on page 248. This theorem is
inherently connected to Rot(x, y, t1, t2, t3), on page 217, and it is easy
to prove, without recourse to induction. First, we could remark that
if in3(t) ≡ in3(rotl(t)), then, replacing t by rotr(t) yields the equival-
ence in3(rotr(t)) ≡ in3(rotl(rotr(t))) ≡ in3(t), so we only need to prove
in3(rotl(t)) ≡ in3(t). Since the left-hand side is larger, we should try to
rewrite it into the right-hand side. Because a left rotation requires the
tree to have the shape t = bst(x, t1, bst(y, t2, t3)), we have the rewrites
of figure 8.13 on the facing page. If we rotate subtrees, as we did, for
example, in figure 7.23 on page 217, the same theorem implies that the
inorder traversal of the whole tree is invariant.

rotr(bst(y, bst(x, t1, t2), t3))
ϵ−→ bst(x, t1, bst(y, t2, t3)).

rotl(bst(x, t1, bst(y, t2, t3)))
ζ−→ bst(y, bst(x, t1, t2), t3).

Figure 8.12: Right (ϵ) and left (ζ) rotations
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in3(rotl(t))→ in2(rotl(t), [ ])
= in2(rotl(bst(x, t1, bst(y, t2, t3))), [ ])
ϵ−→ in2(bst(y, bst(x, t1, t2), t3), [ ])
→ in2(bst(x, t1, t2), [y | in2(t3, [ ])])
% in2(t1, [x | in2(t2, [y | in2(t3, [ ])])])
← in2(t1, [x | in2(bst(y, t2, t3), [ ])])
← in2(bst(x, t1, bst(y, t2, t3)), [ ])
= in2(t, [ ])
← in3(t). ✷

Figure 8.13: Proof of in3(rotl(t)) ≡ in3(t)

A corollary is that rotations keep invariant the property of being a
binary search tree (figure 8.3 on page 248):

bst(rotl(t)) ≡ bst(rotr(t)) ≡ bst(t).

Indeed, assuming that bst/1 is the specification of bst0/1 in figure 8.2
on page 248, and that the latter is correct, that is, bst(t) ≡ bst0(t), it is
quite easy to prove our theorem, with the help of the previous theorem
in3(rotl(t)) ≡ in3(t), which is equivalent to in2(rotl(t), [ ]) ≡ in2(t, [ ]), and
noticing that it is sufficient to prove bst0(rotl(t)) ≡ bst0(t). We conclude:

bst0(rotl(t))% ord(in2(rotl(t), [ ])) ≡ ord(in2(t, [ ]))← bst0(t).

Let us consider now an example of root insertion in figure 8.14,
where the tree of figure 8.1 on page 247 is augmented with 7. Remark
that the transitive closure (!) captures the preliminary leaf insertion,
(
ϵ−→) is a right rotation and (

ζ−→) is a left rotation. It is now a simple
matter to modify the definition of insl/2 so it becomes root insertion
as insr/2, in figure 8.15 on the following page. Note that we can avoid
creating the temporary internal nodes bst(x, . . . , t2) and bst(x, t1, . . . ) by
modifying rotl/1 and rotr/1 so that they take three arguments (rotl0/3
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Figure 8.14: Root insertion of 7 into figure 8.1 on page 247
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insr(y, bst(x, t1, t2))
η−→ rotr(bst(x, insr(y, t1), t2)), if x ≻ y;

insr(y, bst(x, t1, t2))
θ−→ rotl(bst(x, t1, insr(y, t2)));

insr(y, ext())
ι−→ bst(y, ext(), ext()).

Figure 8.15: Root insertion with possible duplicates

and rotr0/3), as shown along the new version insr0/2 in figure 8.16.
A comparison between leaf and root insertions reveals interesting

facts. For instance, because leaf insertion does not displace any node,
making the same tree from two permutations of the keys bears the same
cost, for example, (1, 3, 2, 4) and (1, 3, 4, 2). On the other hand, as noted
by Geldenhuys and der Merwe (2009), making the same search tree us-
ing different root insertions may yield different costs, like (1, 2, 4, 3) and
(1, 4, 2, 3). They also prove that all the trees of a given size can either be
created by leaf or root insertions because

RootLeaf(s) : mkr(s) ≡ mkl(rev(s)), (8.18)

where mkr/1 (make roots) is easily defined in figure 8.17 on the next
page. Notice that this is equivalent to claim mkr(s) ≡ mklR(s), where
mklR/1 is defined in equation (8.4) on page 255. It is worth proving
RootLeaf(s) here because, contrary to Geldenhuys and der Merwe (2009),
we want to use structural induction to exactly follow the syntax of
the function definitions, instead of induction on sizes, an adventitious
concept, and we want to avoid using ellipses when describing the data.
Furthermore, our logical framework is not separated from our actual func-
tion definitions (the abstract program): the rewrites themselves, that is,
the computational steps, give birth to a logical interpretation as classes
of equivalent terms.

We start by remarking that RootLeaf(s) is equivalent to

RootLeaf0(s) : mkr(s) ≡ mkl(rev0(s)),

insr0(y, bst(x, t1, t2))→ rotr0(x, insr0(y, t1), t2), if x ≻ y;
insr0(y, bst(x, t1, t2))→ rotl0(x, t1, insr0(y, t2));

insr0(y, ext())→ bst(y, ext(), ext()).

rotr0(y, bst(x, t1, t2), t3)→ bst(x, t1, bst(y, t2, t3)).
rotl0(x, t1, bst(y, t2, t3))→ bst(y, bst(x, t1, t2), t3).

Figure 8.16: Root insertion with possible duplicates (bis)
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mkr(s)
κ−→ mkr(s, ext()). mkr([ ], t)

λ−→ t;
mkr([x |s], t) µ−→ mkr(s, insr(x, t)).

Figure 8.17: Making a binary search tree with root insertions

where rev0/1 is defined at the start of section 2.2 on page 37, where we
prove EqRev(s) : rev0(s) ≡ rev(s). It is often a good idea to use rev0/1 in
inductive proofs because of rule δ defining rev0([x | s]) directly in terms
of rev0(s). Let us recall the relevant definitions:

cat([ ], t)
α−→ t; rev0([ ])

γ−→ [ ];
cat([x |s], t) β−→ [x |cat(s, t)]. rev0([x |s])

δ−→ cat(rev0(s), [x]).

Of course, rev0/1 is worthless as a program because of its quadratic
cost, which cannot compete with the linear cost of rev/1, but, as far as
theorem proving is concerned, it is a valuable specification and lemma
EqRev(s) allows us to transfer any equivalence depending upon rev0/1
into an equivalence employing rev/1.

Let us proceed by induction on the structure of the stack s. First, we
need to prove directly (without induction) RootLeaf0([ ]). We have

mkr([ ])
κ−→mkr([ ], ext())

λ−→ext()
ψ←−mkl([ ], ext())

ξ←−mkl([ ])
γ←−mkl(rev0([ ])).

Second, we set the inductive hypothesis to be RootLeaf0(s) and we pro-
ceed to prove RootLeaf0([x |s]), for any x. Since the right-hand side is
larger, we start rewriting it and whenever we feel astray, we rewrite the
other side, aiming at their convergence. On the way, there will be steps,
in the form of equivalences, which constitute lemmas (subgoals) that will
need demonstration later.

mkl(rev0([x |s]))
δ−→ mkl(cat(rev0(s), [x]))
%ξ mkl(cat(rev0(s), [x]), ext())
≡0 mkl([x],mkl(rev0(s), ext())) (Lemma)
%ω mkl([ ], insl(x,mkl(rev0(s), ext())))
%ψ insl(x,mkl(rev0(s), ext()))
&ξ insl(x,mkl(rev0(s)))
≡ insl(x,mkr(s)) (RootLeaf0(s))
ξ−→ insl(x,mkr(s, ext()))
≡1 mkr(s, insl(x, ext())) (Lemma)
φ−→ mkr(s, bst(x, ext(), ext()))
ι←− mkr(s, insr(x, ext()))
µ←− mkr([x |s], ext())
κ←− mkr([x |s]). ✷
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Now, we have to prove the two lemmas that we identified with our
proof sketch. The first one, in the instance of (≡0), looks like a corollary
of MklCat(u, v, t) : mkl(cat(u, v), t) ≡0 mkl(v,mkl(u, t)). The first action
to be undertaken when facing a new proposition is to try to disprove
it by some pertinent or tricky choice of variables. In this case, though,
the truth of this lemma can be intuitively ascertained without effort,
which gives us more confidence for working out a formal proof, instead of
dispensing with one. It is enough to reason by induction on the structure
of the stack u. First, we verify MklCat([ ], v, t):

mkl(cat([ ], v), t)
α−→ mkl(v, t)

ψ←− mkl(v,mkl([ ], t)).

Second, we assume MklCat(u, v, t), for all v and t, which is thus the
inductive hypothesis, and we prove MklCat([x |u], v, t):

mkl(cat([x |u], v), t) β−→ mkl([x |cat(u, v)], t)
%ω mkl(cat(u, v), insl(x, t))
≡0 mkl(v,mkl(u, insl(x, t))) (MklCat(u, v, inst(x, t)))
ω←− mkl(v,mkl([x |u], t)). ✷

Let us formally define the second lemma whose instance we identified
as (≡1) in the proof of RootLeaf0(s). Let

MkrInsr(x, s, t) : insl(x,mkr(s, t)) ≡1 mkr(s, insl(x, t)).

This proposition, despite its pleasurable symbolic symmetry, is not trivial
and may require some examples to be better grasped. It means that a
leaf insertion can be performed before or after a series of root insertions,
yielding in both cases the same tree. We approach the proof by induction
on the structure of the stack s only. (The other parameters are unlikely
to be inductively relevant because x is a key, so we can assume nothing
about its internal structure, if any, and t is the second parameter of
both mkr/2 and insl/2, so we do not know anything about its shape
nor contents.) We start, as usual, with a verification (A verification, by
definition, does not involve the use of any inductive argument.) of the
basis MkInsr(x, [ ], t):

insl(x,mkr([ ], t))
λ−→ insl(x, t)&λ mkr([ ], insl(x, t)).

We now assume MkrInsr(x, s, t) for all x and t, and we try to prove
MkrInsr(x, [y |s], t), for all keys y, by rewriting both sides of the equival-
ence and aiming at the same term:

insl(x,mkr([y |s], t)) µ−→ insl(x,mkr(s, insr(y, t)))
≡1 mkr(s, insl(x, insr(y, t))) (MkrInsr(x, s, insr(y, t)))
≡2 mkr(s, insr(y, insl(x, t))) (Lemma)
&µ mkr([y |s], insl(x, t)). ✷
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Note that we have found that we need a lemma in the guise of its instance
(≡2), which states that a root insertion commutes with a leaf insertion.
This is not obvious and probably needs to be seen on some examples to
be believed. The process of inductive demonstration itself has brought
us to the important concept on which our initial proposition hinges. Let
the lemma in question be formally defined as follows:

Ins(x, y, t) : insl(x, insr(y, t)) ≡2 insr(y, insl(x, t)).

We will use induction on the structure of the tree t, because the other vari-
ables are keys, hence are atomic. The verification of Ins(x, y, ext()), the
basis, happens to be rather lengthy, compared to earlier related proofs:

insl(x, insr(y, ext()))
ι−→ insl(x, bst(y, ext(), ext())) ⊗

The symbol ⊗ is a tag from which different rewrites are possible, depend-
ing on some condition, and we will need to resume from that mark. Here,
two cases present themselves to us: either x ≻ y or y ≻ x. We have

• If x ≻ y, then

⊗ υ−→ bst(y, ext(), insl(x, ext())) (x ≻ y)
φ−→ bst(y, ext(), bst(x, ext(), ext()))
ϵ←− rotr(bst(x, bst(y, ext(), ext()), ext()))
ι←− rotr(bst(x, insr(y, ext()), ext()))
η←− insr(y, bst(x, ext(), ext())) (x ≻ y)
φ←− insr(y, insl(x, ext())).

• If y ≻ x, then

⊗ τ−→ bst(y, insl(x, ext()), ext()) (y ≻ x)
φ−→ bst(y, bst(x, ext(), ext()), ext())
ξ←− rotl(bst(x, ext(), bst(y, ext(), ext())))
ι←− rotl(bst(x, ext(), insr(y, ext())))
θ←− insr(y, bst(x, ext(), ext())) (y ≻ x)
φ←− insr(y, insl(x, ext())).

Now, let us assume Ins(x, y, t1) and Ins(x, y, t2) and proceed to prove
Ins(x, y, t), with t = bst(a, t1, t2), for all keys a. We start arbitrarily with
the right-hand side as follows:

insr(y, insl(x, t)) = insr(y, insl(x, bst(a, t1, t2))) ⊗

Two cases arise: either a ≻ x or x ≻ a.
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• If a ≻ x, then ⊗ τ−→ insr(y, bst(a, insl(x, t1), t2)) ⊗. Two subcases
reveal themselves: either a ≻ y or y ≻ a.

– If a ≻ y, then

⊗%η rotr(bst(a, insr(y, insl(x, t1)), t2)) (a ≻ y)
≡2 rotr(bst(a, insl(x, insr(y, t1)), t2)) (Ins(x, y, t1))
&τ rotr(insl(x, bst(a, insr(y, t1), t2)))
≡ rotr(insl(x, rotl(rotr(bst(a, insr(y, t1), t2)))))
η←− rotr(insl(x, rotl(insr(y, bst(a, t1, t2)))))
= rotr(insl(x, rotl(insr(y, t)))) (t = bst(a, t1, t2))
≡3 rotr(rotl(insl(x, insr(y, t)))) (Lemma)
≡ insl(x, insr(y, t)). (rotr(rotl(z)) ≡ z)

What makes this case of the proof work is that a ≻ x and
a ≻ y allow us to move the calls to the rotations down into
the term so that they are composed on the subtree t1, enabling
the application of the inductive hypothesis Ins(x, y, t1). Then
we bring back up the commuted calls, using the fact that
composing a left and right rotation, and vice-versa, is the
identity. Note how, in the process, we found a new lemma we
need to prove later in the instance of (≡3). The interpretation
of this subgoal is that left rotation and leaf insertion commute,
shedding more light on the matter.

– If y ≻ a, then

⊗ θ−→ rotl(bst(a, insl(x, t1), insr(y, t2))) (y ≻ a)
&τ rotl(insl(x, bst(a, t1, insr(y, t2))))
≡ rotl(insl(x, rotr(rotl(bst(a, t1, insr(y, t2))))))
θ←− rotl(insl(x, rotr(insr(y, bst(a, t1, t2)))))
= rotl(insl(x, rotr(insr(y, t)))) (t = bst(a, t1, t2))
≡4 rotl(rotr(insl(x, insr(y, t)))) (Lemma)
≡ insl(x, insr(y, t)). (rotl(rotr(z)) ≡ z)

Here, there was no need for the inductive hypothesis, because
a ≻ x and y ≻ a imply y ≻ x, hence the leaf and root inser-
tions are not composed and apply to two different subtrees, t1
and t2. All we have to do then is to get them up in the same
order we got them down (as in a queue). We discovered an-
other subgoal that needs proving later, in the instance of (≡4),
and which is the dual of (≡3) because it states that right ro-
tation and leaf insertion commute. Together, they mean that
rotations commute with leaf insertion.
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• If x ≻ a, then ⊗ υ−→ insr(y, bst(a, t1, insl(y, t2))) ⊗. Two subcases
become apparent: either a ≻ y or y ≻ a.

– If a ≻ y, then

⊗%η rotr(bst(a, bst(a, insr(y, t1), insl(x, t2)))) (a ≻ y)
&υ rotr(insl(x, bst(a, insr(y, t1), t2)))
≡ rotr(insl(x, rotl(rotr(bst(a, insr(y, t1), t2)))))
η←− rotr(insl(x, rotl(insr(y, bst(a, t1, t2)))))
= rotr(insl(x, rotl(insr(y, t)))) (t = bst(a, t1, t2))
≡3 rotr(rotl(insl(x, insr(y, t))))
≡ insl(x, insr(y, t)). (rotr(rotl(z)) ≡ z)

This subcase is similar to the previous one in the sense that
the insertions apply to different subtrees, thus there is no need
for the inductive hypothesis. The difference is that, here, (≡3)
is required in stead of (≡4).

– If y ≻ a, then

⊗%θ rotl(bst(a, t1, insr(y, insl(x, t2))))
≡2 rotl(bst(a, t1, insl(x, insr(y, t2)))) (Ins(x, y, t2))
&υ rotl(insl(x, bst(a, t1, insr(y, t2))))
≡3 insl(x, rotl(bst(a, t1, insr(y, t2))))
θ←− insl(x, insr(y, bst(a, t1, t2)))
= insl(x, insr(y, t)). (t = bst(a, t1, t2))

This is the last subcase. It is similar to the first one, because
the insertions are composed, albeit on t2 instead of t1, there-
fore calling for the inductive hypothesis to be applied. Then,
insertions are brought up in the same order they were moved
down, e.g., insl/2 was pushed down before insr/2 and is lifted
up before insr/2. ✷

We now have to prove two remaining lemmas, dual of each other and
meaning together that rotations commute with leaf insertions. Let us
consider the first:

insl(x, rotl(t)) ≡3 rotl(insl(x, t)).

Implicitly, this proposition makes sense only if t = bst(a, t1, bst(b, t2, t3))
is a binary search tree, which implies b ≻ a. The proof is technical in
nature, which means that it requires many cases and does not bring new
insights, which the lack of induction underlies. We start as follows:

insl(x, rotl(t)) = insl(x, rotl(bst(a, t1, bst(b, t2, t3))))
ζ−→ insl(x, bst(b, bst(a, t1, t2), t3)) ⊗
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Two cases arise: either b ≻ x or x ≻ b.

• If b ≻ x, then ⊗ τ−→ bst(b, insl(x, bst(a, t1, t2)), t3) ⊗. Two subcases
surface: either a ≻ x or x ≻ a.

– If a ≻ x, then ⊗ τ−→ bst(b, bst(a, insl(x, t1), t2), t3)
&ζ rotl(bst(a, insl(x, t1), bst(b, t2, t3)))
τ←− rotl(insl(x, bst(a, t1, bst(b, t2, t3))))
= rotl(insl(x, t)).

– If x ≻ a, then ⊗ υ−→ bst(b, bst(a, t1, insl(x, t2)), t3)
&ζ rotl(bst(a, t1, bst(b, insl(x, t2), t3)))
τ←− rotl(bst(a, t1, insl(x, bst(b, t2, t3))))
υ←− rotl(insl(x, bst(a, t1, bst(b, t2, t3))))
= rotl(insl(x, t)).

• If x ≻ b, then the assumption b ≻ a implies x ≻ a. We have

⊗ υ−→ bst(b, bst(a, t1, t2), insl(x, t3))
&ζ rotl(bst(a, t1, bst(b, t2, insl(x, t3))))
υ←− rotl(bst(a, t1, insl(x, bst(b, t2, t3)))) (x ≻ b)
υ←− rotl(insl(x, bst(a, t1, bst(b, t2, t3)))) (x ≻ a)
= rotl(insl(x, t)). ✷

The last remaining lemma is insl(x, rotr(t)) ≡4 rotr(insl(x, t)). In
fact, it is a simple algebraic matter to show that it is equivalent to
insl(x, rotl(t)) ≡3 rotl(insl(x, t)). Indeed, we have the following equivalent
equations:

insl(x, rotl(t)) ≡3 rotl(insl(x, t))
insl(x, rotl(rotr(t))) ≡ rotl(insl(x, rotr(t)))

insl(x, t) ≡ rotl(insl(x, rotr(t)))
rotr(insl(x, t)) ≡ rotr(rotl(insl(x, rotr(t))))
rotr(insl(x, t)) ≡4 insl(x, rotr(t)). ✷

Average cost The average number of comparisons of root insertion
is the same as with leaf insertion, because rotations do not involve any
comparison:

Ainsr
n = Ainsr0

n = Ainsl
n = 2Hn +

2

n+ 1
− 3 ∼ 2 lnn.

Rotations double the cost of a step down in the tree, though, and we
have, recalling equations (8.11) and (8.12) on page 257,

Ainsr
n = 1 +

2

n+ 1
E[En] = 1 +Amem

n(−) = 4Hn +
4

n+ 1
− 3 ∼ 4 lnn.
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As a consequence of theorem (8.18) on page 262, all permutations of a
given size yield the same set of binary search trees under mkl/1 and mkr/1.
Therefore, inserting another key will incur the same average number of
comparisons by insl/1 and insr/1 since Ainsr

n = Ainsr0
n = Ainsl

n . By induc-
tion on the size, we conclude that the average number of comparisons
for mkl/1 and mkr/1 is the same:

Amkr
n = Amkl

n = E[In] = 2(n+ 1)Hn − 4n.

Considering that the only difference between insl/1 and insr/1 is the
additional cost of one rotation per edge down, we quickly realise, by
recalling equations (8.13) and (8.10), that

Amkr
n = Amkl

n + E[In] = n+ 2 · E[In] + 2 = 4(n+ 1)Hn − 7n+ 2.

Amortised cost Since the first phase of root insertion is a leaf inser-
tion, the previous analyses of the extremal costs of insl/2 and insl1/2
apply as well to insr/2. Let us consider now the amortised costs of insr/2,
namely, the extremal costs of mkr/1.

Let Bmkr
n the minimum number of comparisons to build a binary

search tree of size n using root insertions. We saw that the best case
with leaf insertion (insl/2) happens when the key is inserted as a child
of the root. While this cannot lead to the best amortised cost (mkl/1),
it yields the best amortised cost when using root insertions (mkr/1) be-
cause the newly inserted key becomes the root with exactly one rotation
(a left rotation if it was the right child, and a right rotation if it was
the left child of the root), leaving the spot empty again for another ef-
ficient insertion (insr/2). In the end, the search tree is degenerate, in
fact, there are exactly two minimum-cost trees, whose shapes are those
of figure 7.4 on page 205. Interestingly, these trees correspond to max-
imum-cost trees built using leaf insertions. The first key is not compared,
so we have Bmkr

n = n− 1 ∼ Bmkl
n / lg n.

Perhaps surprisingly, it turns out that finding the maximum number
of comparisons Wmkr

n to make a search tree of size n with mkr/1, that is
to say, the maximum amortised number of comparisons of insr/2, hap-
pens to be substantially more challenging than making out its average
or minimum cost. Geldenhuys and der Merwe (2009) show that

Wmkr
n = 1

4n
2 + n− 2− c,

where c = 0 for n even, and c = 1/4 for n odd. This implies

Wmkr
n = 1

2W
mkl
n + 5

4n− 2− c ∼ 1
2W

mkl
n .
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Exercises

1. Prove bst0(t) ≡ bst(t). See definitions of bst0/1 and bst/1, respect-
ively, in figure 8.2 on page 248 and figure 8.3 on page 248.

2. Prove mem(y, t) ≡ mem3(y, t), that is to say, the correctness of
Andersson’s search. See definitions of mem/2 and mem3/2, respect-
ively, in figure 8.4 on page 249 and figure 8.7 on page 253.

3. Prove insr(x, t) ≡ bst(x, t1, t2). In other words, root insertion is
really doing what it says it does.

4. Prove mklR(s) ≡ mkl(rev(s)).

5. Prove bst(t) ≡ true() ⇒ mkl(pre(t)) ≡ t. See definition of pre/1 in
figure 7.10 on page 209. Is the converse true as well?

8.3 Deletion

The removal of a key in a binary search tree is a bit tricky, in contrast
with leaf insertion. Of course, ‘removal’ is a convenient figure of speech
in the context of functional programming, where data structures are
persistent, hence removal means that we have to rebuild a new search
tree without the key in question. As with insertion, we could simply
start with a search for the key: if absent, there is nothing else to be done,
otherwise we replace the key with its immediate successor or predecessor
in inorder, that is, the minimum of the right subtree or the maximum of
the left subtree.

The definitions for these two phases are found in figure 8.18 on
the facing page. We have min(t2) ! ⟨m, t′2⟩, where m is the minimum
key of the tree t2 and t′2 is the reconstruction of t2 without m; in other
words, the leftmost internal node of t2 contains the key m and that
node has been replaced by an external node. The call to aux0/3 simply
substitutes the key x to be deleted by its immediate successor m. The
purpose of the auxiliary function aux1/3 is to rebuild the tree in which
the minimum has been removed. Note that the pattern of the third rule
is not del(y, bst(y, t1, t2)), because we already know that x = y and we
want to avoid a useless equality test.

Of course, we could also have taken the maximum of the left subtree
and this arbitrary asymmetry actually leads deletions followed by at least
two insertions to trees which are less balanced, in average, than if they
had been constructed directly only with insertions. This phenomenon
is difficult to understand and examples are needed to see it at work
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del(y, bst(x, t1, t2))→ bst(x, del(y, t1), t2), if x ≻ y;
del(y, bst(x, t1, t2))→ bst(x, t1, del(y, t2)), if y ≻ x;
del(y, bst(x, t1, t2))→ aux0(x, t1,min(t2));

del(y, ext())→ ext().

min(bst(x, ext(), t2))→ ⟨x, t2⟩;
min(bst(x, t1, t2))→ aux1(x,min(t1), t2).

aux1(x, ⟨m, t′1⟩, t2)→ ⟨m, bst(x, t′1, t2)⟩.

aux0(x, t1, ⟨m, t′2⟩)→ bst(m, t1, t′2).

Figure 8.18: Deletion of a key in a binary search tree

(Eppinger, 1983, Culberson and Munro, 1989, Culberson and Evans, 1994,
Knuth, 1998b, Heyer, 2009).

Another kind of asymmetry is that deletion is much more complicated
to program than insertion. This fact has lead some researchers to propose
a common framework for insertion and deletion (Andersson, 1991, Hinze,
2002). In particular, when Andersson’s search with a tree candidate is
modified into deletion, the program is quite short if the programming
language is imperative.

Another approach to deletion consists in marking the targeted nodes
as deleted without actually removing them. They are still needed for fu-
ture comparisons but they are not to be considered part of the collection
of keys implemented by the search tree. As such they are alike zombies,
neither alive nor dead, or we could talk of lazy deletion. More seriously,
this requires two kinds of internal nodes, bst/3 and del/3. This altern-
ative design is shown in figure 8.19. Note that the insertion of a key
which happens to have been lazily deleted does not need to be performed

del0(y, bst(x, t1, t2))→ bst(x, del0(y, t1), t2), if x ≻ y;
del0(y, bst(x, t1, t2))→ bst(x, t1, del0(y, t2)), if y ≻ x;
del0(y, bst(x, t1, t2))→ del(x, t1, t2);
del0(y, del(x, t1, t2))→ del(x, del0(y, t1), t2), if x ≻ y;
del0(y, del(x, t1, t2))→ del(x, t1, del0(y, t2)), if y ≻ x;

del0(y, t)→ t.

Figure 8.19: Lazy deletion of a key in a binary search tree
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at an external node: the constructor del/3 would simply be changed into
bst/3, the mark of normal internal nodes.

Exercise Define the usual insertions on this new kind of search tree.

8.4 Average parameters

The average height hn of a binary search tree of size n has been intensively
studied (Devroye, 1986, 1987, Mahmoud, 1992, Knessl and Szpankowski,
2002), but the methods, mostly of analytic nature, are beyond the scope
of this book. Reed (2003) proved that

hn = α lnn− 3α

2α− 2
ln lnn+O(1),

where α is the unique solution on [2,+∞[ to the equation α ln(2e/α) = 1,
an approximation being α ≃ 4.31107, and O(1) is an unknown function
whose absolute value is bounded from above by an unknown constant.
Particularly noteworthy is a rough logarithmic upper bound by Aslam
(2001), expressed in a probabilistic model and republished by Cormen
et al. (2009) in section 12.4.

Chauvin et al. (2001) studied the average width of binary search
trees.
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Chapter 9

Translation to Erlang

Translating our toy functional language to Erlang happens to be very easy
a task. Section 1.6 in the introduction already provided an example. Be-
sides the need for module headers, some lexical conventions are needed,
as well as a knowledge about how the compiler handles data sharing.
Furthermore, we explain in terms of the memory model in section 9.1
how the concepts of control stack and heap emerge, as well as an import-
ant optimisation technique implemented by most compilers of functional
languages: tail call optimisation (also known as last call optimisation).

Lexis and syntax In Erlang, stacks are called lists. Nevertheless, we
shall keep using ‘stack’ to retain a uniform reading throughout this book.

The first letter of variables is set in uppercase, for instance, data is
translated as Data, and x becomes X.

Constant data constructors are set without their pair of parentheses,
for example, absent() is translated as absent. If arguments are present,
a tuple must be used. Tuples in Erlang are written with curly brackets,
to distinguish them from the parentheses of function calls, so ⟨x, y⟩ is
translated as {X,Y}. Then, one(s) becomes {one,S} in Erlang if one/1
is a constructor, otherwise one(S), if one/1 is a function. In Erlang, a
constant constructor is called an atom.

When a variable in a pattern is unused in the right-hand side, it may
be replaced by an underscore, so

len([ ])→ 0; len([x |s])→ 1 + len(s).

may be translated in Erlang as

len( []) -> 0;

len([_|S]) -> 1 + len(S).

275
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clause
︷ ︸︸ ︷

fact(N)
︸ ︷︷ ︸

head

when N > 1
︸ ︷︷ ︸

guard

-> N * fact(N-1)
︸ ︷︷ ︸

body

Figure 9.1: Structure of a clause in Erlang

Insofar syntax is concerned, we must translate the conditional rewrite
rules using the keyword when and lay the condition on the left-hand side.
For instance, consider again straight insertion in section 3.1:

ins([y |s], x)→ [y | ins(s, x)], if x ≻ y; ins(s, x)→ [x |s].

This definition is translated in Erlang as

ins([Y|S],X) when X > Y -> [Y|ins(S,X)];

ins( S,X) -> [X|S].

Note that, in Erlang, X > Y implies that X and Y are integers or atoms
(which are ordered alphabetically). In Erlang, a rewrite rule is called
a clause. Its left-hand side is called the head and the right-hand side
the body. A condition on a clause is called a guard. As a side note, the
lexical conventions, syntax and vocabulary of Erlang have been drawn
indirectly from the Prolog programming language (Sterling and Shapiro,
1994, Bratko, 2000). The structure of a clause in Erlang is summed up in
figure 9.1.

A comment is introduced by % and extends till the end of the line.

Inference systems The translation of programs defined by means of
an inference system consists either in refining it so the new version does
not contain any inference rule (see for example figure 7.40 on page 233
and figure 7.41), and then translate into Erlang, or else in using directly
an Erlang construct called case, which is a general conditional expression.
Consider again figure 7.40 on page 233. A direct translation to Erlang
yields

per(ext) -> 0;

per({int,_,T1,T2}) -> case per(T1) of

false -> false;

H -> case per(T2) of

H -> H + 1;
_ -> false

end

end.
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Notice that we translated the inference rule in two cases, not one, because
it would be inefficient to compute both per(T1) and per(T2) if per(T1)

evaluates in false. Moreover, a variable in a pattern in a case can be
bound to a value defined before (in OCaml, for example, it cannot), so
case per(T2) of H -> ... implicitly implies that H has the same value
as the H of case per(T1) of ...; H -> ...

Consider another example in figure 7.43 on page 233. It is translated
as follows:

comp({int,_,ext,ext}) -> true;

comp({int,_,T1,T2}) -> case comp(T1) of

false -> false;
_ -> comp(T2)

end;

comp(ext) -> false.

The call comp(t2) could evaluate in false(), leading to select the rule
comp(t) → false(). This backtracking is not possible in Erlang: once the
head of a clause has been successfully matched, the remaining heads
will not be considered. By factoring the call comp(t1), we can solve this
problem and the inference rule becomes just one case.

The function in figure 7.50 on page 237 becomes

pre2b0(S) -> case pre2b1(S) of

{T,[]} -> T

end.

pre2b1([ext|S]) -> {ext,S};

pre2b1([X|S]) ->

case pre2b1(S) of

{T1,S1} -> case pre2b1(S1) of

{T2,S2} -> {{int,X,T1,T2},S2}

end

end.

Here, we have a situation with case constructs which cannot fail on the
one case they check. (It is said irrefutable.) Erlang provides a shorter
syntax for this usage as follows:

pre2b0(S) -> {T,[]}=pre2b1(S), T.

pre2b1([ext|S]) -> {ext,S};

pre2b1([X|S]) -> {T1,S1}=pre2b1(S),

{T2,S2}=pre2b1(S1),

{{int,X,T1,T2},S2}.
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Let us consider an example where inference rules are not used, but we
realise that some functions act simply as a conditional expressions. We
can see this in figure 8.3 on page 248, with functions norm/1 and cmp/3:

bst(T) -> case bst(T,infty) of false -> false;
_ -> true

end.

bst(ext,M) -> M;

bst({bst,X,T1,T2},M) -> case bst(T2,M) of

infty -> bst(T1,X);

N when N > X -> bst(T1,X);
_ -> false

end.

Note how we had to rename one variable m into N, to avoid the unwanted
binding with M before. Would the definition of bst/1 in figure 8.3 be
shorter had we used inference rules?

Factoring a word in a text using the Morris-Pratt algorithm yielded a
definition with some inference rules in figures 5.10 to 5.12 on pages 177–
180. Including the solution to Exercise 6 on page 184, we translate in
Erlang as follows:

fail( _,0) -> -1;

fail([{A,K}|P],I) -> fp(P,A,K,I-1).

fp(_,_,-1,_) -> 0;

fp(P,A, K,I) -> case suf(P,I-K-1) of

[{A,_}|_] -> K + 1;

[{_,J}|Q] -> fp(Q,A,J,K)

end.

suf( P,0) -> P;

suf([_|P],I) -> suf(P,I-1).

mp(P,T) -> PP=pp(P), mp(PP,T,PP,0,0).

mp( [], _, _,I,J) -> {factor,J-I};

mp( _, [], _,_,_) -> absent;

mp( [{A,_}|P],[A|T],PP,I,J) -> mp(P,T,PP,I+1,J+1);

mp([{_,-1}|_],[_|T],PP,0,J) -> mp(PP,T,PP,0,J+1);

mp( [{_,K}|_], T,PP,_,J) -> mp(suf(PP,K),T,PP,K,J).
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pp(X) -> pp(X,[],0).

pp( [],_,_) -> [];

pp([A|X],P,I) -> U={A,fail(P,I)}, [U|pp(X,[U|P],I+1)].

The Erlang shell The pieces of source code up to now are not complete
Erlang programs for an Erlang program to be self-contained needs to be
a module. A module is a unit of compilation containing a collection of
function definitions. The module name must be the basename of the file
containing the module. For instance, the following module named math1,

-module(math1). % Drop the file extension .erl

-export([fact/1]).

fact(1) -> 1;

fact(N) when N > 1 -> N * fact(N-1).

must be written in a file named math1.erl. The -export line lists the
names of the functions which can be called from outside the module,
that is, either from another module or from the Erlang shell. A shell is
an application which reads commands entered by some user, interprets
them, prints a result or an error message and waits for further commands.

In order to test some examples with fact/1, we first have to launch
the Erlang shell. Depending on the operating system, the programming
environment may vary greatly. Here, we shall assume a command-line
interface, like the ones available in a terminal for the Unix operating
systems and its derivatives. The Erlang shell is an application which
allows us to interactively compile modules and call functions from them.
Its name is likely to be erl. Here is the start of a session with the shell:

$ erl

Erlang R14B04 (erts-5.8.5) [source] [smp:4:4] [rq:4]

[async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.8.5 (abort with ^G)

1> '

The first line is the command to run the shell. The last line is the prompt
of the Erlang shell, the number 1 meaning that the shell is waiting for the
first command. Note that the terminal prompt is denoted by a dollar sign
($). The character ' denotes the blinking prompt of the Erlang shell where
typing will occur. If we want to close the shell and return to the operating
system shell, just type ‘q().’ (standing for ‘quit’). Each command must
be terminated by a period (.) and followed by a pressure on the return
key.
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1> q().

ok

2> $

The character represents the place where text is to be typed in the
operating system shell. But before quitting the Erlang shell, the first
action usually consists in calling the Erlang compiler to process some
module we want to use. This is done by the command ‘c’, whose argument
is the module name. In our example, the filename is math1.erl:

1> c(math1).

{ok,math1}

2> '

The compilation was successful, as the atom ok says. Let us compute
some factorials now:

2> math1:fact(4).

24

3> math1:fact(-3).

** exception error: no function clause matching

math1:fact(-3)

4> '

The error message is very legible. In this book, we will rarely copy and
paste the input to and the output from the Erlang shell. We will not write
complete modules as well because we want to focus on the programming
itself and delegate the practical aspects to a user manual or a textbook
oriented towards practice.

9.1 Memory

Let us review some programs under the angle of memory usage instead
of cost. In the introduction, we stated that the essence of an expression
is best captured by a bidimensional representation, namely a tree, as
opposed to a line of punctuated text. In section 2.3 on page 43, we
introduced the syntactic notions of context of a call and tail form of a
definition. We also assumed that identical data structures occurring in
the left-hand and right-hand sides of the same rule are actually shared.

In the present section, we elaborate on these concepts and repres-
entations, and show how they enable a better understanding of memory
management by the run-time environment of a functional language, gen-
erated by a compiler. Nevertheless, these matters depend strongly on



9.1. MEMORY 281

the compiler and the hardware architecture at hand, so it would be im-
prudent to pursue a description too detailed. Therefore, it is sufficient
and appropriate here to provide a refined model based on the directed
acyclic graphs only, to wit, abstract syntax trees with explicit sharing.
Typically, we consider the number of nodes of these trees, or a particular
kind, like cons-nodes, as a measure of how much memory needs to be
allocated in total.

Summing integers Here is the definition of sum/1, which sums the
integers in a given stack:

sum([N]) -> N;

sum([N|S]) -> N + sum(S).

For the sake of legibility, let us label the arrows:

sum([N])
α−→ N;

sum([N|S])
β−→ N + sum(S).

We have, for instance,

sum([1|[2|[3|[]]]])
β−→ 1 + sum([2|[3|[[]]]])
β−→ 1 + (2 + sum([3|[]]))
α−→ 1 + (2 + (3))

= 6.

What can be said about the speed and the memory usage of the
function sum/1? The number of rewrites clearly equals the number of
integers in the stack because every integer is matched. Hence, if the
initial function is called on a stack of n integers, the number of steps to
reach the result is n: n−1 times using clause β, and once using clause α.
Taking a slightly longer stack can provide a hint about memory usage:

sum([1|[2|[3|[4|[]]]]])
β−→ 1 + sum([2|[3|[4|[]]]])
β−→ 1 + (2 + sum([3|[4|[]]]))
β−→ 1 + (2 + (3 + sum([4|[]])))
α−→ 1 + (2 + (3 + (4)))

= 10.

This prompts us to consider only the sizes of the right-hand sides:

sum([1|[2|[3|[4|[]]]]])
β−→
β−→
β−→
α−→ .
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It seems that the total memory usage increases slowly and then reduces
sharply after the last rewrite step. But omitting blanks yields

sum([1|[2|[3|[4|[]]]]]) -> 1+sum([2|[3|[4|[]]]])

-> 1+(2+sum([3|[4|[]]]))

-> 1+(2+(3+sum([4|[]])))

-> 1+(2+(3+(4))).

It looks as if, now, the expressions are of constant size until clause α
applies. Moreover, even if (+) were instead written plus, its occurrence
should not be considered as taking more memory than (+) because names
are only tags. Also, what about the parentheses and the blanks? Should
they be considered meaningful, as far as memory allocation is concerned?
All these considerations bring to the fore the need for a finer understand-
ing of how Erlang functions and data are usually represented at run-time
but, because these encodings depend strongly on the compiler and the
hardware architecture, we should not rely on too detailed a description.
The adequate model is the abstract syntax trees and the directed acyc-
lic graphs, seen in the introduction. These allow us to draw conclusions
about memory usage which hold up in proportion of a constant.

Catenation of stacks Definition in figure 1.3 on page 7 is

cat([ ], t)
α−→ t; cat([x |s], t) β−→ [x |cat(s, t)].

The relevant measure of memory usage here is the number of cons-nodes
created by rule β. Clearly, the call cat(s, t) yields n such nodes, where
n is the length of stack s.

Reversal of stacks The definition of rev0/1 is found in section 2.2:

rev0([ ])
γ−→ [ ]; rev0([x |s])

δ−→ cat(rev0(s), [x]).

The empty stack on the right-hand side of rule γ is shared with the
pattern. Of course, the same would hold for any constant. We already
know how many such nodes are created by calls to cat/2 and, since the
length of s in the recursive call rev0(s) decreases by 1 each time, the
number of pushes is

∑n−1
k=1 k = 1

2n(n − 1), if the original stack contains
n items. We need to add one push for each [x], that is, n. In total:
n(n+ 1)/2.

The alternative definition (2.2) of the reversal, on page 39, is

rev(s)
ϵ−→ rcat(s, [ ]). rcat([ ], t)

ζ−→ t; rcat([x |s], t) η−→ rcat(s, [x |t]).

Clearly, the total number of pushes is n, the length of the input stack.
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Merging Let us quantify the memory to sort by merging n = 2p keys,
bottom-up. First, the number of stacks created is the number of nodes
of the merge tree: 2p + 2p−1 + . . . + 20 = 2p+1 − 1 = 2n − 1. There is
one cons-node for each key, which leads us to determine the sum of the
lengths of all the created stacks: (p+ 1)2p = n lg n+ n. This is the total
number of cons-nodes. In the case of top-down mergers, only the first
half of the stacks, including the original one, are reversed, hence allocate
cons-nodes. As a consequence, the total number of cons-nodes created is
1
2n lg n.

Context of a call We want now to get a better understanding of how
the context of a recursive call impact the evaluation. As a continued
example, let us define a function sum/1 such that the call sum(s) is the
sum of the integers in the stack s:

sum([n])
α−→ n; sum([n |s]) β−→ n+ sum(s).

Consider in figure 9.2a the abstract syntax tree of 1 + (2 + sum([3, 4]))
and the function call it contains in figure 9.2c. By taking as origin the
node sum, the abstract syntax tree can be split into the part below it, that
is, the argument in figure 9.2d, and the part above, called instances of
the context, in figure 9.2b.

The main interest of abstract syntax trees is that no parentheses are
required, because a sub-expression is denoted by a subtree, that is, a tree
embedded into another. Moreover, blank characters are absent as well.
Altogether, this brings the essential to the fore. To illustrate the gained
legibility, consider again the previous computation in full, from left to
right (the node to be rewritten is boxed), in figure 9.3. It is now clear
that the instances of the context accumulate so as to grow in inverse
proportion to the argument’s length: integers move one by one from the

+

1 +

2 sum

|

3 |

4 []

(a) Expression

+

1 +

2 ␣

(b) Instances of the
context n+

sum

|

3 |

4 []

(c) Call

|

3 |

4 []

(d) Argument

Figure 9.2: 1 + (2 + sum([3, 4]))
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sum

|

1 |

2 |

3 |

4 []

β−→ +

1 sum

|

2 |

3 |

4 []

β−→ +

1 +

2 sum

|

3 |

4 []

β−→ +

1 +

2 +

3 sum

|

4 []

α−→ +

1 +

2 +

3 4

Figure 9.3: Evaluation of sum([1, 2, 3, 4])

sum
β−→ +

1 sum

β−→ +

1 +

2 sum

β−→ +

1 +

2 +

3 sum

α−→ 10

Figure 9.4: Contexts while computing sum([1, 2, 3, 4])

argument to the context and the associated operation changes from a
cons-node to an addition. Therefore, if we use as memory unit a node,
the total memory is indeed constant – except for the last step.

Consider again the running example and what happens to the context,
step after step, in figure 9.4. This example shows that the context
instances grow, while the argument size decreases in such a way that the
total memory remains constant.

Tail form Let us consider the function sum/1, which sums the integers
given in a stack:

sum([N]) -> N;

sum([N|S]) -> N + sum(S).

and look for an equivalent definition in tail form, called sum0/1. Very
much like with the factorial in equation (1.1) on page 3, the idea is to
use a supplementary argument which accumulates partial results. This
kind of argument is called an accumulator. The new version should hence
look like as follows:

sum0(T) -> sum0(T, ).

sum0([M],N) -> ;

sum0([M|S],N) -> .
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or, equivalently,

sum0(T) -> sum0( ,T).

sum0(N,[M]) -> ;

sum0(N,[M|S]) -> .

Notice that, just as with sum/1, the call sum0([]) fails without a warning
and we may find this behaviour questionable. Indeed, it can be con-
sidered inappropriate in the framework of software engineering, where
programming large and robust applications is a requisite, but this book
focuses primarily on programming in the small, therefore the programs
introduced here are purposefully fragile; in other words, they may fail
on some undesirable inputs instead of providing the user with some nice
warnings, error messages or, even better, managing to get the compiler
itself to reject such programs.

Since it was decided that an accumulator is needed, we must be
clear on what kind of data it holds. As said previously, an accumulator
usually contains a part of the final result. From a different perspective,
an accumulator can be regarded as a partial trace of all the previous
rewrite steps. Here, since the final result is an integer, we bear in mind
that the accumulator ought to be a number as well.

There is no need to fill the above canvas (the boxes) from the first
line to the last: this is a program, not an essay. Perhaps the best method
is to first lie down the left-hand sides of the clauses and make sure none is
missing and that none is useless (taking into account the implicit ordering
from first to last). Second, we pick up the clause whose right-hand side
seems the easiest to guess. For instance, the first clause of sum/2 seems
simple enough because it applies when only one number, M, remains in
the input stack. Since the accumulator N holds the partial sum up to now,
only M remains to be processed. Therefore, the answer is M+N or N+M:

sum0(T) -> sum0( ,T).

sum0(N,[M]) -> M+N;

sum0(N,[M|S]) -> .

The second clause of sum0/2 is chosen next. It applies when the input
stack is not empty and its first item is M and the remaining are in S. Until
now, the partial sum is the accumulator N. It is clear that a recursive call
is needed here, because if the body were M+N again, then the rest of
the integers, S, would be useless. So the process must be resumed with
another input:

sum0(T) -> sum0( ,T).

sum0(N,[M]) -> M+N;

sum0(N,[M|S]) -> sum0( , ).
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The question now is to find what the new stack and the new accumulator
should be in this last clause. What is known about the stack? M and S.
What can be done with M? Well, the same that was done before, in the
first clause of sum0/2, that is, let us add it to the accumulator:

sum0(T) -> sum0( ,T).

sum0(N,[M]) -> M+N;

sum0(N,[M|S]) -> sum0(M+N, ).

This way, the new accumulator is M+N, which is fine since the purpose
of the accumulator is to hold the partial sum until the present number,
which is M now. What new stack of numbers should be used? It is clear
that M cannot be reused here, because it has already been added to the
accumulator, and it must not be added twice. This means that it is not
needed anymore. Remains S, which is what is sought, since it represents
all the remaining numbers to be added to the accumulator:

sum0(T) -> sum0( ,T).

sum0(N,[M]) -> M+N;

sum0(N,[M|S]) -> sum0(M+N,S).

The last unfinished business is the initial value of the accumulator. It is
important not to rush and to deal with this value at the last moment.
What kind of operation is being carried out on the accumulator? Addi-
tions. Without knowing anything about the integers in T, as it is the case
in the clause of sum0/1, what integer could be taken as an initial value?
It is well known that, for all n, n+ 0 = n, thus 0 appears to be the only
possible value here, since it does not change the total sum:

sum0(T) -> sum0(0,T).

sum0(N,[M]) -> M+N;

sum0(N,[M|S]) -> sum0(M+N,S).

The last step consists in trying some examples after the labelling

sum0(T)
α−→ sum0(0,T).

sum0(N,[M])
β−→ M+N;

sum0(N,[M|S])
γ−→ sum0(M+N,S).

Consider our running example again:

sum0([1|[2|[3|[4|[]]]]])
α−→ sum0(0,[1|[2|[3|[4|[]]]]])
γ−→ sum0(1+0,[2|[3|[4|[]]]]) = sum0(1,[2|[3|[4|[]]]])
γ−→ sum0(2+1,[3|[4|[]]]) = sum0(3,[3|[4|[]]])
γ−→ sum0(3+3,[4|[]]) = sum0(6,[4|[]])
β−→ 4 + 6 = 10.
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By contrast, let us recall here the run

sum([1|[2|[3|[4|[]]]]]) -> 1+sum([2|[3|[4|[]]]])

-> 1+(2+sum([3|[4|[]]]))

-> 1+(2+(3+sum([4|[]])))

-> 1+(2+(3+(4))).

The difference between sum0/1 and sum/1 lies not in the result (both func-
tions are indeed equivalent) but in the way the additions are performed.
They are equivalent because

4 + (3 + (2 + (1 + 0))) = 1 + (2 + (3 + 4)).

This equality holds because, for all numbers x, y and z,

1. the addition is associative: x+ (y + z) = (x+ y) + z,
2. the addition is symmetric: x+ y = y + x,
3. zero is a right-neutral number: x+ 0 = x.

To show exactly why, let us write (
1
=), (

2
=) and (

3
=) to denote, respect-

ively, the use of associativity, symmetry and neutrality, and lay out the
following equalities:

4 + (3 + (2 + (1 + 0)))
3
= 4 + (3 + (2 + 1))
2
= (3 + (2 + 1)) + 4
2
= ((2 + 1) + 3) + 4
2
= ((1 + 2) + 3) + 4
1
= (1 + 2) + (3 + 4)
1
= 1 + (2 + (3 + 4)).✷

This seems a bit heavy for such a small program. Is there a way to rewrite
further sum0/1 so that less hypotheses are needed to prove the equivalence
with sum/1? Let us start with the most obvious difference: the use of zero.
This zero is the initial value of the accumulator and its sole purpose is
to be added to the first number in the stack. We could then simply first
load the accumulator with this number, so the neutrality of zero is no
more required:

sum0([N|T]) -> sum0(N,T).

sum0(N,[M]) -> M+N;

sum0(N,[M|S]) -> sum0(M+N,S).

But this definition of sum0/1 fails on stacks containing exactly one num-
ber, because T can be empty. Therefore, we must allow the stack to be
empty in the definition of sum0/2:
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sum0([N|T]) -> sum0(N,T).

sum0(N, []) -> N;

sum0(N,[M|S]) -> sum0(M+N,S).

Now, we can easily get rid of the hypothesis that the addition is sym-
metric: by replacing M+N by N+M:

sum0([N|T]) -> sum0(N,T).

sum0(N, []) -> N;

sum0(N,[M|S]) -> sum0(N+M,S).

Let us relabel the arrows

sum0([N|T])
α−→ sum0(N,T).

sum0(N, [])
β−→ N;

sum0(N,[M|S])
γ−→ sum0(N+M,S).

and consider again our running example:

sum0([1|[2|[3|[4|[]]]]])
α−→ sum0(1,[2|[3|[4|[]]]])
γ−→ sum0(1+2,[3|[4|[]]]) = sum0(3,[3|[4|[]]])
γ−→ sum0(3+3,[4|[]]) = sum0(6,[4|[]])
γ−→ sum0(4+6,[]) = sum0(10,[])
β−→ 10.

This time, the series of additions corresponds to ((1+ 2) + 3)+ 4, which
we can prove equal to 1 + (2 + (3 + 4)) by means of associativity only:

((1 + 2) + 3) + 4
1
= (1 + 2) + (3 + 4)

1
= 1 + (2 + (3 + 4)).✷

What about the speed and the memory usage of sum0/1? It is easy to
see that each step by means of clauses β and γ process exactly one
integer from the input stack, so the total number of rewrite steps is the
number of integers plus one due to the initial rewrite through clause α.
In other words, if the initial input stack contains n integers, the number
of rewrites is exactly n+ 1.

Let us rename sum0/1 as sum0/1 in figure 9.5 on the next page.
Consider the abstract syntax trees of the rewritten expressions in fig-

ure 9.6. The intermediary trees of m+n have been skipped to emphasise
that the size of the trees strictly decreases and the size of the context is
constant.



9.1. MEMORY 289

sum0([n |t])
γ−→ sum0(n, t).

sum0(n, [ ])
δ−→ n;

sum0(n, [m |s]) ϵ−→ sum0(n+m, s).

Figure 9.5: Summing integers in a stack with sum0/1

sum0

|

1 |

2 |

3 |

4 []

γ−→ sum0

1 |

2 |

3 |

4 []

ϵ−→ sum0

3 |

3 |

4 []

ϵ−→ sum0

6 |

4 []

ϵ−→ sum0

10 []

δ−→ 10

Figure 9.6: Abstract syntax trees of sum0([1, 2, 3, 4]) ! 10

Multiplication Consider this time multiplying all the integers in a
stack. The first thing that should come to the mind is that this problem is
very similar to the previous one, only the arithmetic operator is different,
so the following definition can be written immediately, by modification
of sum/1:

mult([N]) -> N;

mult([N|S]) -> N * mult(S).

Similarly, a definition in tail form can be derived from sum0/1:

mult0([N|T]) -> mult0(N,T).

mult0(N, []) -> N;

mult0(N,[M|S]) -> mult0(N*M,S).

The reason why mult0/1 is equivalent to mult/1 is the same reason why
sum0/1 is equivalent to sum/1: the arithmetic operator (*) is associative,
just as (+) is.

What may be improved that could not be in sum0/1? In other words,
what can speed up a long series of multiplications? The occurrence of
at least one zero, for example. In that case, it is not necessary to keep
multiplying the remaining numbers, because the result is going to be
zero anyway. This optimisation can be done by setting apart the case
when N is 0:

mult0([N|T]) -> mult0(N,T).



290 CHAPTER 9. TRANSLATION TO ERLANG

mult0(N, []) -> N;

mult0(N,[0|S]) -> 0; % Improvement.

mult0(N,[M|S]) -> mult0(N*M,S).

How often a zero occurs in the input? In the worst case, there is no zero
and thus the added clause is useless. But if it is known that zero is likely
to be in the input with a probability higher than for other numbers, this
added clause could be useful in the long term, that is, on the average
time of different runs of the program. Actually, even if the numbers are
uniformly random over an interval including zero, it makes sense to keep
the clause.

Aliasing In section 2.7, we assumed that the sharing between the pat-
tern and the right-hand side of the same rule is maximal. In practice,
compilers do not enforce that property and the programmers have to
explicit the sharing beyond mere variables. For example, let us consider
again figure 2.8 on page 55 defining function flat0/1. In Erlang, max-
imum sharing in rule γ is achieved by naming [x | s] in the pattern and
reusing that name in the right-hand side. This name is called an alias.
The syntax is self-explanatory:

flat0( []) -> [];

flat0( [[]|T]) -> flat0(T);

flat0([S=[_|_]|T]) -> cat(flat0(S),flat0(T)); % Aliasing

flat0( [Y|T]) -> [Y|flat0(T)].

Another example is the function red/1 (reduce), seen in figure 2.22 on
page 70, copying its input stack, but discarding items which are success-
ively repeated:

red([ ])→ [ ];
red([x, x |s])→ red([x |s]);

red([x |s])→ [x | red(s)].
For instance, red([4, 2, 2, 1, 1, 1, 2]) ! [4, 2, 1, 2]. The translation to Erlang
with maximum sharing is

red( []) -> [];

red([X|S=[X|_]]) -> red(S);

red( [X|S]) -> [X|red(S)].

Another important example is merging in figure 4.1 on page 116:

mrg([ ], t)→ t;
mrg(s, [ ])→ s;

mrg([x |s], [y |t])→ [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t)→ [x |mrg(s, t)].
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The best translation is

mrg( [], T) -> T;

mrg( S, []) -> S;

mrg(S=[X|_],[Y|T]) when X > Y -> [Y|mrg(S,T)];

mrg( [X|S], T) -> [X|mrg(S,T)].

We must mind the abbreviations in the notations for stacks. For instance,
tms/1 in figure 4.7 on page 126 should be translated as

tms([X|T=[_|U]]) -> cutr([X],T,U);

tms( T) -> T.

Yet another example is 2-way insertion in figure 3.3 on page 102:

i2w(s)
ξ−→ i2w(s, [ ], [ ]).

i2w([ ], [ ], u)
π−→ u;

i2w([ ], [y |t], u) ρ−→ i2w([ ], t, [y |u]);
i2w([x |s], t, [z |u]) σ−→ i2w([x |s], [z |t], u), if x ≻ z;
i2w([x |s], [y |t], u) τ−→ i2w([x |s], t, [y |u]), if y ≻ x;

i2w([x |s], t, u) υ−→ i2w(s, t, [x |u]).

In Erlang, maximum sharing requires an alias in clauses σ and τ :

i2w(S) -> i2w(S,[],[]).

i2w( [], [], U) -> U;

i2w( [],[Y|T], U) -> i2w([],T,[Y|U]);

i2w(V=[X|_], T,[Z|U]) when X > Z -> i2w(V,[Z|T],U);

i2w(V=[X|_],[Y|T], U) when Y > X -> i2w(V,T,[Y|U]);

i2w( [X|S], T, U) -> i2w(S,T,[X|U]).

Note that atoms (constant constructors), including the empty stack [],
are automatically shared, so, for example, the alias S in f(S=[]) -> S.

is useless.
Andersson’s search with a tree candidate also benefits from using

aliases. The definitions of figure 8.7 on page 253 is best translated as

mem3(Y,T) -> mem4(Y,T,T).

mem4(Y, {bst,X,T1,_}, T) when X > Y -> mem4(Y,T1,T);

mem4(Y,C={bst,_,_,T2}, _) -> mem4(Y,T2,C);

mem4(Y, ext,{bst,Y,_,_}) -> true;

mem4(_, ext, _) -> false.
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sum

|

n []

α−→ ◦ sum

|

n s

β−→ +

sum

Figure 9.7: Definition of sum/1 with maximum sharing

Sometimes, aliasing is crucial. For instance, the whole discussion
about persistence in section 2.7 hinges on having maximum sharing in
each rewrite rule, but, here, Erlang needs aliasing to achieve this goal, so
definitions (2.11) on page 71 must be implemented as follows:

push(X,H=[S|_]) -> [[X|S]|H].

pop(T=[[X|S]|_]) -> {X,[S|T]}.

Control stack and heap The memory is under the exclusive super-
vision of the garbage collector. It is a process which has constantly full
access to the directed acyclic graphs and whose task consists in finding
the nodes which have become useless during evaluation. It consequently
gets rid of them, so that subsequently created nodes can find enough
room. This chapter hopefully demonstrates that the concept of control
stack and heap arise naturally when a detailed analysis shows how some
nodes can be automatically scheduled for deletion as soon as they become
useless, thus relieving the garbage collector and improving the timing of
memory management. Further investigation shows that calls to functions
defined in tail form can be optimised so that the total amount of memory
needed to evaluate a call is reduced.

For a better understanding of memory management, we need to make
sharing explicit, as with the definition of sum/1 in figure 9.7. Let us
compute sum([3, 7, 5]) and show the first rewrites in figure 9.8, where
the full state of the memory is given as snapshots between dashed ar-
rows. (DAG is the abbreviation of directed acyclic graph.) The arrows

sum

|

3 |

7 |

5 []

β
,,- sum

|

3 |

7 |

5 []

+

sum

β
,,- sum

|

3 |

7 |

5 []

+

sum

+

sum

α
,,- sum

|

3 |

7 |

5 []

+

sum

+

sum

◦

Figure 9.8: Evaluation of sum([3, 7, 5]) with a DAG (phase 1/2)
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are dashed as to distinguish them from the ones in the definition, since
rewrite rules apply in general only to parts of the trees, and we wanted
to display all the data after each rewrite.

Naturally, a question arises on how the value of the original func-
tion call is finally computed (15). Examining figure 9.8 and comparing
memory snapshots from left to right, we realise that roots (+) have been
accumulating at the right of the original call, until a reference to a value
has been reached – here, the integer 5. This process is analogous to push-
ing items on a stack, although a stack containing not only values, but
also expressions as 7 + sum([5]), and we name it ‘pushing phase.’ This
invites us to perform the inverse operation, that is, popping the expres-
sions in question, in order to finish the evaluation, or ‘popping phase.’
More precisely, we want to compute values from the trees composing the
DAG from right to left, the roots of which are considered an item in a
special stack, until the tree of the original call is reached and associated
with its own value – which is, by definition, the final result. A value can
either be an immediate value like integers, atoms and empty stacks, or
a constructed value like non-empty stacks and tuples. We may also deal
with references to values, which are graphically represented by edges; for
instance, the rightmost tree in the DAG is a reference to the immediate
value 5. When the rightmost tree is an immediate value or a reference to
a value, the second phase of the evaluation (leftward) can take place. In
the following, for the sake of conciseness, we shall write ‘value’ when a
‘reference to a value’ is also acceptable.

While our refined computational model forbids erasing nodes, be-
cause this is the exclusive task of the garbage collector, it does allow the
edge ending in the latest rewritten call to be overwritten by its value. As
explained before, these calls have been successively framed in figure 9.8
on the preceding page. The popping phase consists here in replacing the
edge to the previous node sum with an edge to the current value. Then
the patched tree is evaluated, perhaps leading to more trees to be pushed
and subsequent popping phases until one value remains in the stack.

The popping phase is shown at play in figure 9.9 on the following
page, which is to be read from right to left. The rightmost memory state
is the result of the prior pushing phase, on the last state of figure 9.8.
Note how all the nodes sum and (+) become useless, step by step, that
is, they cannot be reached from the stack (these nodes lie below the
horizontal base line). For illustration purposes, we made all the nodes (+)
disappear as soon as possible and three nodes sum are reclaimed by
the garbage collector, including the original one, that is, the leftmost.
The leftmost dashed arrow has the superscript 2 because it combines
two steps (3 + 12 → 15, and discarding the original node sum) at once,
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for the sake of room. A node is useful if it can be reached from one of
the roots of the DAG. Keep in mind that the argument of the original
call, that is, [3, 7, 5], may or may not be freed by the garbage collector,
depending on it being shared or not (from outside the figure, that is,
by some context). The intermediary node containing the value 12 has
been freed as well along the way, to suggest that garbage collection is
interleaved with the evaluation or, if adhering to a multiprocessing view,
we would say that collection and evaluation run in parallel, sharing the
same memory space but without interferences from the programmer’s
point of view – only nodes that are forever unreachable from a point
onwards during the evaluation are swept away.

Our example is actually worth another, closer look. Indeed, we can
predict exactly when the nodes sum can be reclaimed: after each step
backwards (from right to left in figure 9.9), the rightmost node sum
becomes useless. Same for the intermediary value 12: it becomes unreach-
able from the roots of the DAG as soon as it has been used to compute 15.
The same observation can be made about the nodes (+). All these facts
mean that, in our example, we do not need to rely on the garbage col-
lector to identify these particular nodes as useless: let us really implement
an isolated stack of expressions as a meta-object, instead of solely relying
on an analogy and storing everything in the same space. The memory
managed by the garbage collector is called the heap, in contrast with this
special stack, called the control stack. The heap and the control stack are
separate and complementary, making up the whole memory. Also, for im-
plementation reasons, the control stack never contains constructed data
but references to constructed data in the heap.

Consider how the evaluation in figure 9.9 can be improved with
automatic deallocation of nodes based on a stack-based policy (‘Last In,
First Out’) in figure 9.10 on the next page. Remember that the value
[3, 7, 5] is stored in the heap, not in the control stack, and that it may
be shared. Also, due to space limitations on the page, the last step is
actually twofold, as it was in figure 9.9. We can seize the growth of the
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|
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Figure 9.9: Evaluation of sum([3, 7, 5]) (phase 2/2)
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control stack in figure 9.11 on the next page. The poppings, from right
to left, are presented in figure 9.12.

The corresponding algorithm consists in the following steps. Let us
first assume, as a result of the previous steps, that the control stack is
not empty and that the top item is an immediate value or a reference to
a value, although we shall refer to either as values.

1. While the control stack contains at least two objects, pop out the
value, but without losing it, so another tree becomes the top;

(a) if the root of the top tree is a node sum, then pop it and push
instead the value;

(b) else, the node sum in the tree has an incoming edge:

i. change its destination so it reaches the value and discard
the node sum;

ii. evaluate the patched top tree and iterate.

2. The only item remaining in the control stack is the result.

Actually, we allowed integers to be stored in the control stack, so we
could replace any tree which consists solely of a reference to such kind
of value in the heap by a copy of the value. We can see in figure 9.11
that the control stack grows at every step until a value is reached.

Tail call optimisation Let us investigate what happens when using an
equivalent definition in tail form like sum0/1 in figure 9.5 on page 289.
Figure 9.13 only shows the first phase, which consists in pushing in
the control stack the tree newly produced by a rule and sharing the
subtrees denoted by variables (including aliases) occurring both in the
pattern and the right-hand side. The second phase consists in popping
the accumulated roots in order to resume suspended call contexts and,
in the end, only the final result remains in the control stack.
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Figure 9.10: Evaluation of sum([3, 7, 5]) (phase 2/2, stack and heap)



296 CHAPTER 9. TRANSLATION TO ERLANG
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Figure 9.11: Control stack while computing sum([3, 7, 5]) (phase 1/2)

◦ .,, sum ◦ .,, sum + .,, sum +

sum

◦ .,, sum +

sum

+

Figure 9.12: Control stack while computing sum([3, 7, 5]) (phase 2/2)

sum0

|

3 |

7 |

5 []

γ
,,- sum0

|

3 |

7 |

5 []

sum0
ϵ
,,- sum0

|

3 |

7 |

5 []

sum0 sum0

+

= sum0

|

3 |

7 |

5 []

sum0 sum0

10

ϵ
,,- sum0

|

3 |

7 |

5 []

sum0 sum0

10

sum0

+

= sum0

|

3 |

7 |

5 []

sum0 sum0

10

sum0

15

δ
,,- sum0

|

3 |

7 |

5 []

sum0 sum0

10

sum0

15

◦

Figure 9.13: sum0([3, 7, 5]) ! 15 without tail call optimisation

In the case of sum0/1, we notice that we already found the result
after the first phase: 15. Therefore, in this case, the second phase does
not contribute to build the value, which raises the question: why keep
the previous trees in the first place?

Indeed, they are useless after each push and a common optimisation,
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Figure 9.14: sum0([3, 7, 5]) ! 15 with tail call optimisation

named tail call optimisation and implemented by compilers of functional
languages, consists in popping the previous tree (matched by the pattern
of the rule) and pushing the new one (created by the right-hand side of
the rule). This way, the control stack contains only one item at all times.
This optimisation is shown in figure 9.14 and should be contrasted with
the series in figure 9.13 on the facing page.

Tail call optimisation can be applied to all functions in tail form.
Let us visualise another example: the evaluation of cat([1, 2], [3, 4]),

using the definition in figure 1.4 on page 7, which is not in tail form.

1. The first phase, consisting in pushing the newly created trees in
the control stack is shown in figure 9.15a on the following page.

2. The second phase of the evaluation of cat([1, 2], [3, 4]) is shown in
figure 9.15b on the next page. It consists in replacing from right to
left the reference to the previous call by the current (reference to a)
value, until the initial call itself is removed and only the final result
remains. Notice how the second argument, [3, 4], is actually shared
with the output [1, 2, 3, 4] and how no optimisation is possible.
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(a) End of phase 1/2
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Figure 9.15: cat([1, 2], [3, 4]) ! [1, 2, 3, 4]
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Transformation to tail form Our definition of flat/1 with lifting in
figure 2.12 on page 57, is easily translated to Erlang as follows:

flat( []) -> [];

flat( [[]|T]) -> flat(T);

flat([[X|S]|T]) -> flat([X,S|T]);

flat( [X|T]) -> [X|flat(T)].

It is almost in tail form: only the last rule has a call with a non-empty
context. By adding an accumulator, this definition can be transformed
into an equivalent one in tail form. The purpose of this accumulator is
to store the variables which occur in the instances of the context, so
these can be rebuilt and computed after the current call is. So let us
add a stack accumulator A, unchanged in every clause, and add a new
flat_tf/1 definition calling the new flat/2 with the initial value of the
accumulator set to the empty stack:

flat_tf(T)
α−→ flat(T,[]).

flat( [],A)
β−→ []; % A unused yet

flat( [[]|T],A)
γ−→ flat(T,A);

flat([[X|S]|T],A)
δ−→ flat([X,S|T],A);

flat( [X|T],A)
ϵ−→ [X|flat(T,A)].

Now we must accumulate a value at each call which is not in tail form
(here, clause ϵ), and use the contents of the accumulator in all clauses
where there is no call (here, clause α). The technique consists in accu-
mulating in clause ϵ the values occurring in the call context, [X| ]; in
other words, we push X onto A:

flat_tf(T)
α−→ flat(T,[]).

flat( [],A)
β−→ [];

flat( [[]|T],A)
γ−→ flat(T,A);

flat([[X|S]|T],A)
δ−→ flat([X,S|T],A);

flat( [X|T],A)
ϵ−→ flat(T,[X|A]). % Here

When the input is fully consummated, in clause β, the accumulator con-
tains all the non-stack items (all the Xs from clause ϵ) in the reverse order
of the original stack; therefore, they need to be reversed. That is to say:

flat_tf(T)
α−→ flat(T,[]).

flat( [],A)
β−→ rev(A);

flat( [[]|T],A)
γ−→ flat(T,A);

flat([[X|S]|T],A)
δ−→ flat([X,S|T],A);

flat( [X|T],A)
ϵ−→ flat(T,[X|A]).
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The definition is now completed and in tail form. What about flat0/1

in figure 2.8 on page 55?

flat0( []) -> [];

flat0( [[]|T]) -> flat0(T);

flat0([Y=[_|_]|T]) -> cat(flat0(Y),flat0(T));

flat0( [Y|T]) -> [Y|flat0(T)].

That definition has the peculiarity that some of its clauses contain two
or more calls – let us not forget that a call being recursive or not has
nothing to do, in general, with being in tail form or not.

Let us start by adding the accumulative parameter to flat0/1 and
initialise it with the empty stack:

flat0_tf(T)
α−→ flat0(T,[]). % Added

flat0( [],A)
γ−→ []; % A unused yet

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ cat(flat0(Y,A),flat0(T,A));

flat0( [Y|T],A)
ζ−→ [Y|flat0(T,A)].

cat( [],T)
η−→ T;

cat([X|S],T)
θ−→ [X|cat(S,T)].

Let us decide that, in clause ϵ, the first call to be rewritten is the leftmost
recursive call flat0(Y,A), whose context is cat( ,flat0(T,A)). There-
fore, in clause ϵ, let us save T in A so we can reconstruct the context in
the right-hand side of γ, where the current stack to process is empty and
thus the stacks saved in the accumulator enable resuming the flattening:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],[T|A])
γ−→ cat([],flat0(T,A)); % Used

flat0( [[]|T], A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T], A)
ϵ−→ flat0(Y,[T|A]); % Saved

flat0( [Y|T], A)
ζ−→ [Y|flat0(T,A)].

cat( [],T)
η−→ T;

cat([X|S],T)
θ−→ [X|cat(S,T)].

But a clause is now missing: what if the accumulator is empty? Therefore,
a clause β must be added before clause γ to take care of this situation:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [], [])
β−→ [];

flat0( [],[T|A])
γ−→ cat([],flat0(T,A));

flat0( [[]|T], A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T], A)
ϵ−→ flat0(Y,[T|A]);
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flat0( [Y|T], A)
ζ−→ [Y|flat0(T,A)].

cat( [],T)
η−→ T;

cat([X|S],T)
θ−→ [X|cat(S,T)].

We can simplify the right-hand side of clause γ because the definition of
cat/2 has become useless:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [], [])
β−→ [];

flat0( [],[T|A])
γ−→ flat0(T,A); % Simplified

flat0( [[]|T], A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T], A)
ϵ−→ flat0(Y,[T|A]);

flat0( [Y|T], A)
ζ−→ [Y|flat0(T,A)].

Clause ζ is not in tail form. We cannot just push Y onto the accumulator

flat0( [Y|T], A)
ζ−→ flat0(T,[Y|A]). % Wrong

because the latter contains stacks to be flattened later (see clause ϵ) and
Y is not a stack – this modification would lead to a match failure just
after clause γ matches, because all patterns only match stacks. What can
we do? Perhaps the first idea which comes to the mind is to add another
accumulator to hold the non-stack items, like Y. Basically, this is exactly
the same method as before, except it applies to another accumulator,
say B. Let us first add B everywhere and initialise it with []:

flat0_tf(T)
α−→ flat0(T,[],[]).

flat0( [], [],B)
β−→ []; % B unused yet

flat0( [],[T|A],B)
γ−→ flat0(T,A,B);

flat0( [[]|T], A,B)
δ−→ flat0(T,A,B);

flat0([Y=[_|_]|T], A,B)
ϵ−→ flat0(Y,[T|A],B);

flat0( [Y|T], A,B)
ζ−→ [Y|flat0(T,A,B)].

Now we can save the variables of the call context in clause ζ in B and
erase the context in question. In clause β, we know that B contains all the
non-stack items in reversed order, so we must reverse B. Since clause β
contained no further calls, this is the end:

flat0_tf(T)
α−→ flat0(T,[],[]).

flat0( [], [],B)
β−→ rev(B);

flat0( [],[T|A],B)
γ−→ flat0(T,A,B);

flat0( [[]|T], A,B)
δ−→ flat0(T,A,B);

flat0([Y=[_|_]|T], A,B)
ϵ−→ flat0(Y,[T|A],B);

flat0( [Y|T], A,B)
ζ−→ flat0(T,A,[Y|B]).
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Further examination can lead to a simpler program, where the patterns
do not match embedded stacks:

flat0_tf(T) -> flat0(T,[],[]).

flat0( [],[],B) -> rev(B);

flat0( [], A,B) -> flat0(A, [], B);

flat0( [Y], A,B) -> flat0(Y, A, B); % Optimisation

flat0([Y|T], A,B) -> flat0(Y,[T|A], B);

flat0( Y, A,B) -> flat0(A, [],[Y|B]).

The shortcoming of this approach is that it requires many accumulators
in general and it is ad hoc. Instead of adding one more accumulator to
solve our problem, we can stick to only one but make sure that values in it
are distinguished according to their origin, so a value from a given context
is not confused with a value from another context. (This was previously
implemented by using different accumulators for different context values.)
The way of achieving this with only one accumulator consists in putting
in a tuple the values of a given context together with an atom, which
plays the role of a tag identifying the original expression containing the
call. Let us backtrack to

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ []; % A unused yet

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ cat(flat0(Y,A),flat0(T,A));

flat0( [Y|T],A)
ζ−→ [Y|flat0(T,A)].

cat( [],T)
η−→ T;

cat([X|S],T)
θ−→ [X|cat(S,T)].

Let us modify clause ϵ by choosing, as before, flat0(Y,A) as the first
call to be rewritten. We choose the atom k1 to represent that call and
we pair it with the sole value of its context, that is, T. We remove the
context cat( ,flat0(T,A)) and, in the remaining call, we push {k1,T}

onto the accumulator A:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ []; % A unused yet

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ [Y|flat0(T,A)].

cat( [],T)
η−→ T;

cat([X|S],T)
θ−→ [X|cat(S,T)].

The key point is that k1 must not be pushed in this accumulator any-
where else in the program, because it must denote unambiguously the
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call in clause ϵ. Of course, this program is not correct anymore, as the
erased context must be reconstructed somewhere else and applied to the
value of the call flat0(Y,[{k1,T}|A]). The accumulator A represents, as
before, the values of the contexts. Where should we extract its contents?
Clause γ does not make any use of A and this is our cue. It means that,
at that point, there are no more stacks to be flattened, so this is the
right moment to wonder if there is some work left to be done, that is,
examine the contents of A. In order to implement this task, a dedicated
function should be created, say appk/2, so that appk(V ,A) will compute
whatever remains to be done with what is found in the accumulator A,
the value V being a partial result, that is, the result up to this point.
If there is nothing left to do, that is, if A is empty, then appk(V ,A)

rewrites into V and this is it. In other words:

appk(V,[{k1,T}|A])
κ−→ ;

appk(V, [])
ι−→ V. % The end

The empty box must be filled with the reconstruction of the context
which was erased at the point where k1 was saved in the accumulator.
The context in question was cat( ,flat0(T,A)), in clause ϵ, so we have

appk(V,[{k1,T}|A])
κ−→ cat( ,flat0(T,A));

appk(V, [])
ι−→ V.

The remaining empty box is meant to be filled with the result of the
function call flat0(Y,[{k1,T}|A]). To make this happen, two conditions
must be fulfilled. Firstly, the accumulator in the pattern of appk/2 must
be the same as at the moment of the call, that is, it must be matched
by [{k1,T}|A]. In theory, we should prove that the two occurrences of A

indeed denote the same value, but this would lead us astray. Finally, we
need to make sure that when a call to flat0/2 is over, a call to appk/2

is made with the result. When the whole transformation into tail form
will be completed, no context will be found anymore (by definition), so
all calls to flat0/2 will end in clauses whose right-hand sides do not
contain any further call to be processed. A quick examination of the
clauses reveals that clause γ is the only clause of concern and that A was
unused yet. So let us replace the right-hand side of this clause with a
call to appk/2, whose first argument is the result of the current call to
flat0/2, that is, the current right-hand side, and whose second argument
is the accumulator which may contain more information about contexts
to be rebuilt and applied. We have

flat0( [],A)
γ−→ appk([],A);
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Now we understand that V in clause κ is the value of the function call
flat0(Y,[{k1,T}|A]), so we can proceed by plugging V into the frame of
clause κ:

appk(V,[{k1,T}|A])
κ−→ cat(V,flat0(T,A));

A glance is enough to realise that clause κ is not in tail form. Therefore,
let us repeat the same method. The first call that must be rewritten
is flat0(T,A), whose context is cat(V, ). Let us associate the variable V

in the latter with a new atom k2 and push the two of them onto the
accumulator:

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

We need a new clause for appk/2 which handles the corresponding case,
that is, when the value of the call has been found and the context has
to be reconstructed and resumed:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ [Y|flat0(T,A)].

cat( [],T)
η−→ T;

cat([X|S],T)
θ−→ [X|cat(S,T)].

appk(V,[{k2,W}|A])
λ−→ cat(W,V); % A unused yet

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

Notice how, in clause λ, we renamed V (in the accumulator) into W, so as to
avoid a clash with the first argument of appk/2. Also, why is it cat(W,V)

and not cat(V,W)? The reason is found by recollecting that W denotes the
value of the call flat0(Y) (in the original definition), whereas V represents
the value of flat0(T) (in the original definition). Nothing is done yet with
the rest of the accumulator A, which entails that we must pass it to cat/2,
just like the other functions:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ [Y|flat0(T,A)].

cat( [],T,A)
η−→ T; % A unused yet

cat([X|S],T,A)
θ−→ [X|cat(S,T,A)].
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appk(V,[{k2,W}|A])
λ−→ cat(W,V,A); % Passed A

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

After clause ϵ, the first clause not being in tail form is clause ζ. Let us
pair the variable Y of the context [Y| ] with a new atom k3, and let
us save the pair into the accumulator, while reconstructing the erased
context in a new clause µ of appk/2:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k3,Y}|A]). % Y saved

cat( [],T,A)
η−→ T; % A unused yet

cat([X|S],T,A)
θ−→ [X|cat(S,T,A)].

appk(V,[{k3,Y}|A])
µ−→ [Y|V]; % A unused yet

appk(V,[{k2,W}|A])
λ−→ cat(W,V,A);

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

Something interesting happens here: the brand-new right-hand side of
clause µ makes no use of the remaining accumulator A. We encountered
the exact same situation with γ: a right-hand side containing no further
calls. In this case, we need to check whether there is more work to be
done with the data saved earlier in A. This is the very aim of appk/2,
therefore a call to it must be set within the right-hand side of clause µ:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k3,Y}|A]).

cat( [],T,A)
η−→ T; % A unused yet

cat([X|S],T,A)
θ−→ [X|cat(S,T,A)].

appk(V,[{k3,Y}|A])
µ−→ appk([Y|V],A);

appk(V,[{k2,W}|A])
λ−→ cat(W,V,A);

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

The next clause to be considered is clause η, because its right-hand side
contains no calls, so it requires now a call to appk/2 with the right-
hand side T, which is the result of the current call to flat0/2, and the
accumulator, that is, A:
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flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k3,Y}|A]).

cat( [],T,A)
η−→ appk(T,A);

cat([X|S],T,A)
θ−→ [X|cat(S,T,A)].

appk(V,[{k3,Y}|A])
µ−→ appk([Y|V],A);

appk(V,[{k2,W}|A])
λ−→ cat(W,V,A);

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

Last but not least, clause θ must be fixed as we did for the other clauses
not in tail form. Let us pick a new atom, say, k4, and tuple it with the
sole variable Y of the context [Y| ] and push the resulting pair onto the
accumulator A. Dually, we need to add a clause ν to appk/2 to catch this
case, rebuild the erased context and apply it to the result of the current
call to flat0/2, that is, its first argument:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k3,Y}|A]).

cat( [],T,A)
η−→ appk(T,A);

cat([X|S],T,A)
θ−→ cat(S,T,[X|A]).

appk(V,[{k4,X}|A])
ν−→ [X|V]; % A unused yet

appk(V,[{k3,Y}|A])
µ−→ appk([Y|V],A);

appk(V,[{k2,W}|A])
λ−→ cat(W,V,A);

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

The right-hand side of the newly created clause contains no calls, so we
must send it to appk/2 together with the rest of the accumulator, in order
to process any pending contexts:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k3,Y}|A]).

cat( [],T,A)
η−→ appk(T,A);

cat([X|S],T,A)
θ−→ cat(S,T,[{k4,X}|A]).
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appk(V,[{k4,X}|A])
ν−→ appk([X|V],A);

appk(V,[{k3,Y}|A])
µ−→ appk([Y|V],A);

appk(V,[{k2,W}|A])
λ−→ cat(W,V,A);

appk(V,[{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

The transformation is now finished. It is correct in the sense that the
resulting program is equivalent to the original one, that is, flat0/1 and
flat0_tf/1 compute the same values from the same inputs, and all the
clauses of the latter are in tail form. It is also complete in the sense that
any definition can be transformed. As announced, the main interest of
this method lies in its uniformity and must not be expected to generate
programs which are faster than the originals.

It is possible, upon close examination, to shorten a bit the definition
of appk/2. Indeed, clauses ν and µ are identical, if not the presence of a
different tag, k4 versus k3. Let us fuse them into a single clause and use
a new atom k34 instead of every occurrence of k3 and k4.

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k34,Y}|A]).

cat( [],T,A)
η−→ appk(T,A);

cat([X|S],T,A)
θ−→ cat(S,T,[{k34,X}|A]).

appk(V,[{k34,Y}|A])
µ−→ appk([Y|V],A);

appk(V, [{k2,W}|A])
λ−→ cat(W,V,A);

appk(V, [{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

Let us make a short digression and transform flat0_tf/1 further so that
flat0_tf(T) is rewritten into a pair made of the value of flat0(T) and
its cost. Because the definition is initially in tail form, we just have to
add a counter and increment it where the clause corresponds to a clause
in the original definition, else the counter is left unchanged. We also have
to add a clause to set the first value of the counter. Let us recall first
the original definition of flat0/1 (we rename the arrows here to ease the
forthcoming steps):

flat0( [])
γ−→ [];

flat0( [[]|T])
δ−→ flat0(T);

flat0([Y=[_|_]|T])
ϵ−→ cat(flat0(Y),flat0(T));

flat0( [Y|T])
ζ−→ [Y|flat0(T)].
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cat( [],T)
η−→ T;

cat([X|S],T)
θ−→ [X|cat(S,T)].

Let us identify and name identically in the tail form version flat0_tf/1

the clauses that have their counterpart in the definition of flat0/1:

flat0_tf(T) −→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k34,Y}|A]).

cat( [],T,A)
η−→ appk(T,A);

cat([X|S],T,A)
θ−→ cat(S,T,[{k34,X}|A]).

appk(V,[{k34,Y}|A]) −→ appk([Y|V],A);

appk(V, [{k2,W}|A]) −→ cat(W,V,A);

appk(V, [{k1,T}|A]) −→ flat0(T,[{k2,V}|A]);

appk(V, []) −→ V.

Drawing from our practical understanding of the new, systematic
transformation, we can try to summarise it as follows.

1. Consider all the definitions involved, that is, the one of immediate
concern, but also all which it depends upon;

2. add a stack accumulator to all these definitions and add a definition
setting the empty stack as the initial value of the accumulator;

3. for each body made of a call in tail form, just pass the accumulator
unchanged;

4. replace each body containing no call by a call to a new function
appk/2, with the body expression and the accumulator unchanged;

5. for each body not in tail form, including those of appk/2,

(a) identify or choose the first call to be evaluated;
(b) select all the values and variables in the call context which

are parameters, except the accumulator, and group them in a
tuple, together with a unique atom;

(c) replace the body in question with the call to be done first and
pass to it the accumulator on top of which the tuple of the
previous step has been pushed;

(d) create a clause for appk/2 matching this case, whose body is
the previously mentioned context;

(e) replace the place-holder in the context by the first argument
of appk/2 and make sure that there is no clash of variables;

6. add the clause appk(V,[]) -> V to appk/2.



9.1. MEMORY 309

This algorithm is said to be global, insofar as all the steps must be
achieved before a program equivalent to the original input is reached,
because intermediary steps may not lead to correct definitions. It is pos-
sible to dynamically rearrange the order in which some steps are applied
so the algorithm becomes incremental, but it is probably not worth the
complication (based on the analysis of the call graph).

Let us apply the same methodological steps to another difficult defin-
ition like that of the Fibonacci function fib/1:

fib(0)
β−→ 1;

fib(1)
γ−→ 1;

fib(N) when N > 1
δ−→ fib(N-1) + fib(N-2).

The steps are as follows.

1. This definition is self-contained.

2. Let us rename fib/1 into fib/2, then add a stack accumulator to
it so it becomes fib/2, next create a clause α defining fib_tf/1 as
a single call to fib/2 where the initial value of the accumulator is
the empty stack:

fib_tf(N)
α−→ fib(N,[]). % New

fib(0,A)
β−→ 1;

fib(1,A)
γ−→ 1;

fib(N,A) when N > 1
δ−→ fib(N-1,A) + fib(N-2,A).

3. There is no body in tail form which contains a call.

4. Clauses β and γ are in tail form and contain no call, so we must
replace the bodies with a call to function appk/2, whose first ar-
gument is the original body (here, both are the value 1) and the
second argument is the accumulator unchanged:

fib_tf(N)
α−→ fib(N,[]).

fib(0,A)
β−→ appk(1,A);

fib(1,A)
γ−→ appk(1,A);

fib(N,A) when N > 1
δ−→ fib(N-1,A) + fib(N-2,A).

5. Clause δ is not in tail form and contains two calls, so we must
choose which one we want to compute first. Let us arbitrarily
choose the rightmost call, that is, fib(N-2,A). Therefore, its con-
text is fib(N-1,A) + . The values in the context, excluding the
accumulator, are reduced to the sole value of N. Let us create a
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unique atom identifying this call, k1, and form the pair {k1,N}. Let
us replace the body of clause δ with fib(N-2,[{k1,N}|A]). Next,
let us create a clause for appk/2 matching this tuple. Its body is
the context we just removed from the body of clause δ. In it, let
us fill the hole with the first parameter.

fib_tf(N)
α−→ fib(N,[]).

fib(0,A)
β−→ appk(1,A);

fib(1,A)
γ−→ appk(1,A);

fib(N,A) when N > 1
δ−→ fib(N-2,[{k1,N}|A]).

appk(V,[{k1,N}|A])
ϵ−→ fib(N-1,A) + V.

The body of ϵ is not in tail form, as it contains a function call not
located at the root of the abstract syntax tree. The context of this
call is + V and all the values it contains are limited to the one
denoted by the variable V. Let us generate a new unique atom k2

and pair it with V. We then replace the body of clause ϵ with the
call to be computed first and we pass to it the accumulator A on
top of which the pair has been pushed. We make a new clause
of appk/2 matching this case and in its body we put the context
we just mentioned. We substitute the first parameter to the place-
holder . We have

appk(V,[{k2,W}|A])
ζ−→ V + W;

appk(V,[{k1,N}|A])
ϵ−→ fib(N-1,[{k2,V}|A]).

Note that we carefully renamed the variable V in the accumulator
into W in order to avoid a clash with the first parameter V. This new
body V+W is in tail form and contains no further function calls, so it
must be embedded into a recursive call because the accumulator A

may not be empty – so further calls may be waiting. We pass A to
that call. Finally, all the clauses are in tail form:

fib_tf(N)
α−→ fib(N,[]).

fib(0,A)
β−→ appk(1,A);

fib(1,A)
γ−→ appk(1,A);

fib(N,A) when N > 1
δ−→ fib(N-2,[{k1,N}|A]).

appk(V,[{k2,W}|A])
ζ−→ appk(V+W,A);

appk(V,[{k1,N}|A])
ϵ−→ fib(N-1,[{k2,V}|A]).

6. We must make sure to add a clause to match the case of the empty
accumulator and rewrite to the first parameter:
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fib_tf(N)
α−→ fib(N,[]).

fib(0,A)
β−→ appk(1,A);

fib(1,A)
γ−→ appk(1,A);

fib(N,A) when N > 1
δ−→ fib(N-2,[{k1,N}|A]).

appk(V, [])
η−→ V; % Do not forget!

appk(V,[{k2,W}|A])
ζ−→ appk(V+W,A);

appk(V,[{k1,N}|A])
ϵ−→ fib(N-1,[{k2,V}|A]).

Let us apply now our general method to flat/1. Let us pick up
here:

flat_tf(T) -> flat(T,[]).

flat( [],A) -> []; % A unused yet

flat( [[]|T],A) -> flat(T,A);

flat([[X|S]|T],A) -> flat([X,S|T],A);

flat( [Y|T],A) -> [Y|flat(T,A)].

The only body containing no calls is in the first clause of flat/2,
so it must be passed to a call to appk/2, together with the accumu-
lator. Only the last body is not in tail form. The only call to be
performed has the context [Y| ], whose only values are reduced to
the sole Y. So we generate a unique atom k1 and we pair it with Y.
We replace the body not in tail form with the call to which we
pass the accumulator on top of which the pair has been pushed.
We consequently create a clause for appk/2 matching this case. Its
body is the just erased context. The hole is filled with the first
parameter:

flat_tf(T) -> flat(T,[]).

flat( [],A) -> appk([],A);

flat( [[]|T],A) -> flat(T,A);

flat([[X|S]|T],A) -> flat([X,S|T],A);

flat( [Y|T],A) -> flat(T,[{k1,Y}|A]).

appk(V,[{k1,Y}|A]) -> [Y|V].

Since the body of the newly created clause of appk/2 is a value, it
has to be wrapped into a recursive call because the accumulator A

may not be empty, so perhaps some more calls have to be com-
puted:

flat_tf(T) -> flat(T,[]).

flat( [],A) -> appk([],A);
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flat( [[]|T],A) -> flat(T,A);

flat([[X|S]|T],A) -> flat([X,S|T],A);

flat( [Y|T],A) -> flat(T,[{k1,Y}|A]).

appk(V,[{k1,Y}|A]) -> appk([Y|V],A).

Finally, the definition of appk/2 must be completed by a clause
corresponding to the case when the accumulator is empty and its
body simply is the first argument, that is, by design, the result:

flat_tf(T) -> flat(T,[]).

flat( [],A) -> appk([],A);

flat( [[]|T],A) -> flat(T,A);

flat([[X|S]|T],A) -> flat([X,S|T],A);

flat( [Y|T],A) -> flat(T,[{k1,Y}|A]).

appk(V, []) -> V;

appk(V,[{k1,Y}|A]) -> appk([Y|V],A).

If we compare this version with

flat_tf(T) -> flat(T,[]).

flat( [],A) -> rev(A);

flat( [[]|T],A) -> flat(T,A);

flat([[X|S]|T],A) -> flat([X,S|T],A);

flat( [Y|T],A) -> flat(T,[Y|A]).

we understand that the latter can be derived from the former if
the pair {k1,Y} is replaced by Y. This is possible because it is the
only atom which was generated. The definition of appk/2 then is
equivalent to rcat/2 (section 2.2 on page 37):

rev(S) -> rcat(S,[]).

rcat( [],T) -> T;

rcat([X|S],T) -> rcat(S,[X|T]).

The philosophy underlying our general method to transform a given
group of definitions into an equivalent in tail form consists in adding
a parameter which is a stack accumulating the values of the different
contexts and creating a function (appk/2) to reconstruct these when the
call they contained is over. These rebuilt contexts are in turn transformed
into tail form until all the clauses are in tail form. As a result, the num-
ber of clauses is larger than in the original source and the algorithm is
obscured because of all the administrative work about the accumulator.
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In order to save time and efforts, it is wise to consider tail forms useful a
posteriori, when we run afoul of the maximum stack size because, except
if very large inputs are, from the design phase, likely. Another reason
may be to compile to low-level C (only using goto jumps).

Let us transform straight insertion (section 3.1 on page 91) and ana-
lyse the cost of the resulting definition. We start from

isrt( [])
β−→ [];

isrt([X|S])
γ−→ ins(isrt(S),X).

ins([Y|S],X) when X > Y
δ−→ [Y|ins(S,X)];

ins( S,X)
ϵ−→ [X|S].

(the clauses have been renamed) and we add a stack accumulator to our
functions and initialise it with the empty stack (new clause α):

isrt_tf(S)
α−→ isrt(S,[]).

isrt( [],A)
β−→ []; % A unused yet

isrt([X|S],A)
γ−→ ins(isrt(S,A),X,A).

ins([Y|S],X,A) when X > Y
δ−→ [Y|ins(S,X,A)];

ins( S,X,A)
ϵ−→ [X|S]. % A unused yet

We can now inspect each clause and, depending on its body shape (that
is: expression in tail form, either with or without a call, or not in tail
form), some transformation is done. First, the body of clause β is in tail
form and does not contain any function call. Thus, we transform it by
calling the auxiliary function appk/2:

isrt( [],A)
β−→ appk([],A);

Next is clause γ, which is not in tail form. The first call to be evaluated
is isrt(S,A), whose control context is ins( ,X,A). Let us keep the call
whilst saving into the accumulator A the variable X needed to rebuild the
control context later, in a new clause of function appk/2. This variable
needs a priori to be tagged by some unique atom, say k1:

isrt([X|S],A)
γ−→ isrt(S,[{k1,X}|A]).

...

appk(V,[{k1,X}|A]) → ins(V,X,A).

The following clause is δ, which is not in tail form. The only call to be eval-
uated is ins(S,X,A), whose control context is [Y| ]. Let us associate Y

with a unique atom k2, then save both of them in the accumulator A and,
dually, add a clause to appk/2 to reconstruct the erased control context:

ins([Y|S],X,A) when X > Y
δ−→ ins(S,X,[{k2,Y}|A]);

...

appk(V,[{k2,Y}|A]) → appk([Y|V],A);
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The last clause is ϵ, which is in tail form and contains no call, so we must
pass its body to appk/2 in order to check whether there are pending
control contexts to rebuild and evaluate:

ins( S,X,A)
ϵ−→ appk([X|S],A).

In order to complete the transformation, we must add a clause to appk/2

to process the case when the accumulator is empty, so the final result is
found. Finally, the resulting program is (last step in bold typeface)

isrt_tf(S)
α−→ isrt(S,[]).

isrt( [],A)
β−→ appk([],A);

isrt([X|S],A)
γ−→ isrt(S,[{k1,X}|A]).

ins([Y|S],X,A) when X > Y
δ−→ ins(S,X,[{k2,Y}|A]);

ins( S,X,A)
ϵ−→ appk([X|S],A).

appk(V, [])
ζ−→ V;

appk(V,[{k2,Y}|A])
η−→ appk([Y|V],A);

appk(V,[{k1,X}|A])
θ−→ ins(V,X,A).

We can remark that the atom k1 is not necessary in the definition of
isrt_tf/1, since all other values in the accumulator are tagged k2:

isrt_tf(S)
α−→ isrt(S,[]).

isrt( [],A)
β−→ appk([],A);

isrt([X|S],A)
γ−→ isrt(S,[X|A]). % Here

ins([Y|S],X,A) when X > Y
δ−→ ins(S,X,[{k2,Y}|A]);

ins( S,X,A)
ϵ−→ appk([X|S],A).

appk(V, [])
ζ−→ V;

appk(V,[{k2,Y}|A])
η−→ appk([Y|V],A);

appk(V, [X|A])
θ−→ ins(V,X,A). % and here

It becomes obvious now that isrt/2 reverses its first argument in the
accumulator, which is initialised in clause α to the empty stack. Then,
in clause β, appk/2 is called with the same arguments. For instance,
isrt([3,8,2],[])

3−→ appk([],[2,8,3]). Hence, we conclude that

isrt(S,[]) ≡ appk([],rev(S)),

which allows us to cut out the definition of isrt/2 entirely as follows:

isrt_tf(S)
α−→ appk([],rev(S)).

ins([Y|S],X,A) when X > Y
δ−→ ins(S,X,[{k2,Y}|A]);

ins( S,X,A)
ϵ−→ appk([X|S],A).

appk(V, [])
ζ−→ V;

appk(V,[{k2,Y}|A])
η−→ appk([Y|V],A);

appk(V, [X|A])
θ−→ ins(V,X,A).
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We expect that sorting a stack or the same stack reversed is the same:

isrt_tf(S) ≡ isrt_tf(rev(S)).

By clause α, and remarking that rev(rev(S)) ≡ S, we draw

isrt_tf(S) ≡ appk([],rev(rev(S))) ≡ appk([],S).

Therefore, we can simplify the body of clause α:

isrt_tf(S)
α−→ appk([],S).

ins([Y|S],X,A) when X > Y
δ−→ ins(S,X,[{k2,Y}|A]);

ins( S,X,A)
ϵ−→ appk([X|S],A).

appk(V, [])
ζ−→ V;

appk(V,[{k2,Y}|A])
η−→ appk([Y|V],A);

appk(V, [X|A])
θ−→ ins(V,X,A).

We can get a shorter program at the expense of more comparisons.
Remark that when clause η applies, Y is lower than the head of V,
which exists because this clause is only used to compute the bodies
of clauses ϵ and η, where the first argument is not the empty stack.
Therefore, appk([Y|V],A) ≡ ins(V,Y,A), because clause ϵ would apply.
Accordingly, let us change clause η:

isrt_tf(S)
α−→ appk([],S).

ins([Y|S],X,A) when X > Y
δ−→ ins(S,X,[{k2,Y}|A]);

ins( S,X,A)
ϵ−→ appk([X|S],A).

appk(V, [])
ζ−→ V;

appk(V,[{k2,Y}|A])
η−→ ins(V,Y,A);

appk(V, [X|A])
θ−→ ins(V,X,A).

We can see clearly now that appk/2 calls ins/3 in the same way in clauses
η and θ, which means that it is useless to tag Y with k2 and we can get
rid of clause θ (Z can either be a X or a Y):

isrt_tf(S)
α−→ appk([],S).

ins([Y|S],X,A) when X > Y
δ−→ ins(S,[Y|A]); % Here

ins( S,X,A)
ϵ−→ appk([X|S],A).

appk(V, [])
ζ−→ V;

appk(V,[Z|A])
η−→ ins(V,Z,A). % and here

Perhaps it is clearer to get rid of appk/2 by integrating its two operations
in isrt_tf/1 and ins/3. Let us split clauses α and ϵ to manifest the cases
where, respectively, S and A are empty:
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isrt_tf( []) α0−−→ appk([],[]);

isrt_tf([X|S]) α1−−→ appk([],[X|S]).

ins([Y|S],X, A) when X > Y δ−−→ ins(S,X,[Y|A]);

ins( S,X,[Y|A]) ϵ0−−→ appk([X|S],[Y|A]);

ins( S,X, []) ϵ1−−→ appk([X|S],[]).

appk(V, []) ζ−−→ V;

appk(V,[Z|A]) η−−→ ins(V,Z,A).

We can now replace the bodies of clauses α0 and ϵ1 by their value, as
given by clause ζ, and we can remove ζ:

isrt_tf( []) α0−−→ [];

isrt_tf([X|S]) α1−−→ appk([],[X|S]).

ins([Y|S],X, A) when X > Y δ−−→ ins(S,X,[Y|A]);

ins( S,X,[Y|A]) ϵ0−−→ appk([X|S],[Y|A]);

ins( S,X, []) ϵ1−−→ [X|S].

appk(V,[Z|A]) η−−→ ins(V,Z,A).

We saved one rewrite in case the input stack is empty. Lastly, the bodies
of clauses α1 and ϵ0 can be replaced by their value, as given by clause η,
which can be, finally, erased. We rename the accumulator A as T.

isrt_tf( []) α0−−→ [];

isrt_tf([X|S]) α1−−→ ins([],X,S).

ins([Y|S],X, T) when X > Y δ−−→ ins(S,X,[Y|S]);

ins( S,X,[Y|T]) ϵ0−−→ ins([X|S],Y,T);

ins( S,X, []) ϵ1−−→ [X|S].

It is important to remember that these last steps, relative to the removal
of tag k2 and so forth, make sense only because, in assessing the cost,
we take into account only the number of function calls, not the number
of comparisons, which is now greater for not using the control context
[Y| ] in the original clause δ of ins/3. In other words, the keys saved in
the accumulator in the new clause δ have to be re-inserted in clause ϵ0.

The same analysis used for assessing the cost of isrt/1 applies here as
well, except that the keys are inserted in their original order. So when the
keys are sorted increasingly, the cost is here maximum (that is, clause δ
is used maximally) and when it is sorted non-increasingly, the cost is
minimum (that is, clause δ is never used). If keys are not repeated, the
best case of isrt/1 is the worst case of isrt_tf/1 and the worst case of
isrt/1 is the best case of isrt_tf/1. This is true because ‘nondecreasing’
means the same as ‘increasing’ when there is no repetition.

In order to find the minimum cost of the final version of isrt_tf/1, it
is helpful to get first a better understanding of the computational process
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by unfolding a simple example like sorting [4,3,2,1], which is a stack
sorted in decreasing order:

isrt_tf([4,3,2,1]) α1−−→ ins( [],4,[3,2,1])
ϵ0−−→ ins( [4],3, [2,1])
ϵ0−−→ ins( [3,4],2, [1])
ϵ0−−→ ins([2,3,4],1, [])
ϵ1−−→ [1,2,3,4].

Let us note Bisrt_tf
n the minimum cost of sorting n keys. Then Bisrt_tf

0 = 1,
by clause α0. Let us assume next that n > 0. Then

• clause α1 is used once;
• clause δ is not used, since we assume here that the keys are already

sorted non-increasingly;
• clause ϵ0 is used once for each key in its third argument, which, by

clause α1, means all keys except the first, that is n− 1 times;
• clause ϵ1 is used once.

In sum, the evaluation trace is α1ϵ
n−1
0 ϵ1, so the total cost is

Bisrt_tf
n = |α1ϵ

n−1
0 ϵ1| = n+ 1,

if n > 0. Since we found that Bisrt_tf
0 = 1 = 0 + 1, we can extend

the previous formula to n = 0. This result can be related directly to
W isrt

n = (n2+3n+2)/2, because the best case of isrt_tf/1 corresponds to
the worst case of isrt/1 when the keys are not repeated. We can further
reckon that this minimum cost for isrt_tf/1 is also an absolute minimum
for a sorting algorithm when the input is sorted non-increasingly, because
it is simply the cost needed to reverse the input.

Let W isrt_tf
n be the maximum cost of isrt_tf(S), where the stack S

contains n keys (in increasing order). For the empty stack, the evaluation
trace is α0. For singletons, for example, [5], it is α1ϵ1. To understand
the general case n > 1, we can try

isrt_tf([1,2,3,4]) α1−−→ ins( [],1,[2,3,4])
ϵ0−−→ ins( [1],2, [3,4])
δ−−→ ins( [],2,[1,3,4])
ϵ0−−→ ins( [2],1, [3,4])
ϵ0−−→ ins( [1,2],3, [4])
δ−−→ ins( [2],3, [1,4])
δ−−→ ins( [],3,[2,1,4])
ϵ0−−→ ins( [3],2, [1,4])
ϵ0−−→ ins( [2,3],1, [4])
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ϵ0−−→ ins([1,2,3],4, [])
δ−−→ ins( [2,3],4, [1])
δ−−→ ins( [3],4, [2,1])
δ−−→ ins( [],4,[3,2,1])
ϵ0−−→ ins( [4],3, [2,1])
ϵ0−−→ ins( [3,4],2, [1])
ϵ0−−→ ins([2,3,4],1, [])
ϵ1−−→ [1,2,3,4].

Notice the interplay of clauses δ and ϵ0. A series of applications of clause δ
ends with the first argument to be the empty stack. This is because the
effect of clause δ is to save the contents of this argument by reversing it
on top of the third argument. In other words, in the worst case, clause δ
is equivalent to

ins([Y|S],X,T) when X > Y → ins([],X,rcat(S,[Y|T]));

A sequence of δ is followed by a series of ϵ0 of same length, followed by
another ϵ0 or ϵ1. The reason is that clause ϵ0 restores on top of the first
argument the keys saved previously by clause δ. Then, if there are some
keys left in the last argument (to be sorted), one more application of
clause ϵ0 is required, otherwise the program ends with clause ϵ1, that is,
the evaluation trace when n > 1 is

α1

n−2
∏

p=0

(

δpϵp+1
0

)

· δn−1ϵn−1
0 · ϵ1 = α1

n−2
∏

p=0

((δϵ0)
pϵ0) · (δϵ0)n−1 · ϵ1.

This observation is the key for finding the maximum cost as it hints at
counting the rewrite steps of clause δ and of clause ϵ0 together, as evinced
in the right-hand side of the equality. We can now directly derive the
maximum cost:

W isrt_tf
n =

∣
∣
∣
∣
∣
∣

α1

n−2
∏

p=0

((δϵ0)
pϵ0) · (δϵ0)n−1 · ϵ1

∣
∣
∣
∣
∣
∣

= |α1|+

∣
∣
∣
∣
∣
∣

n−2
∏

p=0

((δϵ0)
pϵ0)

∣
∣
∣
∣
∣
∣

+
∣
∣(δϵ0)

n−1
∣
∣+ |ϵ1|

= 1 +
n−2
∑

p=0

|(δϵ0)pϵ0|+ (n− 1)|δϵ0|+ 1

W isrt_tf
n = 1 +

n−2
∑

p=0

(2p + 1) + 2(n − 1) + 1 = n2 + 1.
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Since the worst case of isrt_tf/1 and isrt/1 are identical, we can com-
pare their cost in this case, for n # 0:

W isrt
n = (n2 + 3n + 2)/2 and W isrt_tf

n = 2 · W isrt
n + 3n+ 1.

Let us relate now the best and worst cases for isrt/1 and isrt_tf/1. We
have, for n > 3, Bisrt_tf

n < Bisrt
n < W isrt

n < W isrt_tf
n . If we note C isrt

n the
cost of isrt/1 on an input of length n, these inequalities are equivalent
to say Bisrt_tf

n < C isrt
n < W isrt_tf

n . This is the best we can do because we
only have the obvious inequalities Bisrt_tf

n " C isrt_tf
n "W isrt_tf

n , which do
not allow us to compare C isrt

n and C isrt_tf
n . In order to obtain a stronger

result, we need an average cost analysis so we can tell apart isrt_tf/1

from isrt/1. Indeed, it might be that, for a given input stack of length n,
most configurations of the input lead to a cost for isrt_tf/1 which is
actually lower than for isrt/1. Let us note Aisrt_tf

n the average number
of rewrites needed to compute isrt_tf(S), where the length of stack S
is n. Similarly, we note Ains

p,q for the average cost of the call ins(P,X,Q),
where stack P has length p and stack Q has length q. The short story is
this: because the keys are random, the average number of times clause δ
is used is p/2. Since the aim of clause ϵ0, as observed before, is to put
back the keys previously moved by clause δ, we expect, in average, the
same number p/2, plus 1, because clause ϵ0 also prepares the possible
following use of clause δ. In other words, the difference with the longest
evaluation trace defining W isrt

n is that the subsequences δϵ0 are expected
to be 50% shorter in average, so the evaluation trace is, in average,

α1

n−2
∏

p=0

(

(δϵ0)
p/2ϵ0

)

· (δϵ0)(n−1)/2 · ϵ1,

from which we deduce the average cost for n > 1:

Aisrt_tf
n = 1 +

n−2
∑

p=0

(

2 · p
2
+ 1
)

+

(

2 · n− 1

2

)

+ 1 =
1

2
n2 +

1

2
n+ 1.

Elegantly, this formula extends to cope with n = 0, 1 and we can compare

now Aisrt_tf
n to Aisrt

n , for n # 0:

Aisrt_tf
n = 1

2n
2 + 1

2n+ 1 ∼ 1
2n

2 ∼ 2 · Aisrt
n .

In other words, isrt_tf/1, in spite of being optimised, is nevertheless
50% slower than the original function, in average for large values of n.
This should not be too surprising, as a transformation to tail form should
only be undertaken for the sake of the control stack, not efficiency.
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(a) With a stack of tuples

{k3, , }

I1 {k1, , , }

V E {k3, , }

I2 {}

(b) With nested tuples

Figure 9.16: Two implementations of the same linear accumulator

Exercise Consider the variation

isrt0(L) -> isrt0( L, [], []).

isrt0( [], [], Q) -> Q;

isrt0( [],[J|P], Q) -> isrt0( [], P,[J|Q]);

isrt0([I|L], P,[K|Q]) when K > I -> isrt0([I|L],[K|P], Q);

isrt0([I|L],[J|P], Q) when I > J -> isrt0([I|L], P,[J|Q]);

isrt0([I|L], P, Q) -> isrt0( L, P,[I|Q]).

Here, one rewrite involves moving exactly one key, so the cost of
isrt0/3 is the number of key movements to sort the original stack. Ana-
lyse the minimum, maximum and average number of key movements.

Light encoding of stack accumulators The accumulators used to
transform definitions into tail form are, in their most general instance,
stacks of tuples. While using a stack brings to the fore the very nature of
the accumulator, it incurs a penalty in the size of the memory required
because, in the abstract syntax trees, a push corresponds to a node, just
as a tuple. By nesting tuples in tuples, we can get rid of the stack alto-
gether. For instance, instead of writing [{k3,X1},{k1,V ,E},{k3,X2}],
we would write the nested tuples {k3,X1,{k1,V ,E,{k3,X2,{}}}}. Both
abstract syntax trees are easily compared in figure 9.16. The encoding
of a stack accumulator by means of tuples only supposes to add a com-
ponent to each tuple, which holds what was the ‘next’ tuple in the stack.
The memory saving consists in one edge for each initial tuple, plus all the
push nodes, that is, if there were n tuples, we save n edges (often called
pointers in imperative languages) and n nodes. This is a very significant
amelioration. As an illustration, let us improve on the following code we
derived earlier:

flat0_tf(T)
α−→ flat0(T,[]).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);
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flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A)
ζ−→ flat0(T,[{k34,Y}|A]).

cat( [],T,A)
η−→ appk(T,A);

cat([X|S],T,A)
θ−→ cat(S,T,[{k34,X}|A]).

appk(V,[{k34,Y}|A])
µ−→ appk([Y|V],A);

appk(V, [{k2,W}|A])
λ−→ cat(W,V,A);

appk(V, [{k1,T}|A])
κ−→ flat0(T,[{k2,V}|A]);

appk(V, [])
ι−→ V.

It results in the more economical

flat0_tf(T)
α−→ flat0(T,{}).

flat0( [],A)
γ−→ appk([],A);

flat0( [[]|T],A)
δ−→ flat0(T,A);

flat0([Y=[_|_]|T],A)
ϵ−→ flat0(Y,{k1,T,A});

flat0( [Y|T],A)
ζ−→ flat0(T,{k34,Y,A}).

cat( [],T,A)
η−→ appk(T,A);

cat([X|S],T,A)
θ−→ cat(S,T,{k34,X,A}).

appk(V,{k34,Y,A})
µ−→ appk([Y|V],A);

appk(V, {k2,W,A})
λ−→ cat(W,V,A);

appk(V, {k1,T,A})
κ−→ flat0(T,{k2,V,A});

appk(V, {})
ι−→ V.

Improvements Just to illustrate the point that improvements on a
definition which is not in tail form are much more beneficial than a mere
transformation to tail form, let us consider again the Fibonacci function:

fib(0) -> 1;

fib(1) -> 1;

fib(N) when N > 1 -> fib(N-1) + fib(N-2).

The equations defining the cost of this function are simply:

Cfib
0 := 1; Cfib

1 := 1; Cfib
n := 1 + Cfib

n−1 + Cfib
n−2, with n > 1.

Adding 1 on both sides of the last equation and reordering the terms:

Cfib
n + 1 = (Cfib

n−1 + 1) + (Cfib
n−2 + 1).

This gives us the idea to set Dn := Cfib
n + 1, yielding, for n > 1,

D0 = Cfib
0 + 1 = 2, D1 = Cfib

1 + 1 = 2, Dn = Dn−1 +Dn−2.
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The recurrence is the same as the Fibonacci sequence (third clause of
fib/1), except for D0 and D1 whose values are 2 instead of 1. In order
to make it coincide with the values of fib/1, we need to set Fn := Dn/2:

Cfib
n = 2 · Fn − 1.

Now we have F0 = F1 = 1 and Fn = Fn−1 + Fn−2, for all n > 1;
importantly, Fn computes the same values as fib/1, that is, Fn ≡ fib(n).
The generating function associated to the sequence (Fn)n#0 is

f(x) :=
∑

k#0

Fkx
k. (9.1)

Let us set aside for a moment the issue of the convergence and let us
work out a closed form for f(x). We have xf(x) =

∑

k>0 Fk−1xk and
x2f(x) =

∑

k>1 Fk−2xk, therefore

f(x)−xf(x)−x2f(x) = F0+F1x−F0x+
∑

k>1

(Fk − Fk−1 − Fk−2)x
k = x.

Thus
f(x) =

x

1− x− x2
.

Now, let us expand f(x) back into a power series by naming φ := 1+
√
5

2

and φ̂ := 1−
√
5

2 the roots of 1− x− x2 and factoring the denominator:

f(x) =
x

(1− φx)(1− φ̂x)
=

1√
5

(
1

1− φx −
1

1− φ̂x

)

.

We can now use the geometric power series 1
1−αx =

∑

k#0 α
kxk to derive

f(x) =
∑

k#0

φk − φ̂k√
5

xk,

so, by identification with the coefficients in equation (9.1), we conclude

Fn =
1√
5
(φn − φ̂n).

(See Graham et al. (1994), § 6.6, for more details.) Of course, we may
very well doubt the result, as the method neglects convergence issues,
therefore let us prove now by means of complete induction on n > 0 that

F0 = 1; Fn =
1√
5
(φn − φ̂n).

First, let us verify that the formula works for the smallest value of n:

F1 =
1√
5
(φ− φ̂) = 1√

5
(φ− (1− φ)) = 1,
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fib(5)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

Figure 9.17: Call tree of fib(5)

where we used the fact φ̂ = 1− φ. Let us suppose now that the equation
to establish is valid for all values ranging from 1 to n (this is the complete
induction hypothesis) and let us prove that it holds for n + 1. We have
Fn+1 := Fn + Fn−1. We can use the complete induction hypothesis for
the cases n− 1 and n:

Fn+1 =
1√
5
(φn − φ̂n) + 1√

5
(φn−1 − φ̂n−1)

=
1√
5
(φn−1(φ+ 1)− φ̂n−1(φ̂+ 1)).

The key is that φ and φ̂ are the roots of x2 = x+ 1, therefore

Fn+1 =
1√
5
(φn−1 · φ2 − φ̂n−1 · φ̂2) = 1√

5
(φn+1 − φ̂n+1),

which was the statement to be proved. The complete induction principle
then implies that the equation holds for all n > 0. Now that we de-
rived a closed form for Fn, let us study its asymptotic behaviour. This
is straightforward if we start by noticing that φ̂ < 1, therefore φ̂n → 0,
as n gets large and, because φ > 1,

Fn ∼
1√
5
φn, implying Cfib

n ∼
2√
5
φn.

That is, this cost is exponential and, because φ > 1, it will always be
greater than any polynomial cost, except perhaps for a finite number of
some small values of n. In other words, this is hopelessly slow.

How can we improve this definition?
We must resist the temptation to transform it into tail form because

being in tail form only benefits the control stack, not the cost in general.
By looking at the call tree of fib(5) in figure 9.17, we realise that some
small subtrees are duplicated, like the ones rooted at fib(2) and, even
larger ones, like fib(3). Let us examine the leftmost branch, from the
leaf to the root. It is made of the successive nodes fib(1), fib(2), fib(3),
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fib(4) and fib(5), that is, all the values of fib(N) for N ranging from 1

to 5. Generalising this observation, we can say that the series (fib(N))N
is entirely described, except fib(0), by the leftmost branch in the call
tree of fib(N). Therefore, starting from the small tree

fib(2)

fib(1) fib(0)

we can obtain the complete call tree for fib(5) by growing the tree from
the root, whilst sharing some subtrees, that is, reusing them instead of
recomputing them, so the call tree looks now like in figure 9.18 (technic-
ally, it is a directed acyclic graph), where the arrowed edges implement
the reuse of subtrees. This graph representation leads us to think that if
two successive Fibonacci numbers are kept at all times, we can achieve
this maximal sharing. Let us denote by Fn the nth Fibonacci number in
the series. Then each computational step is (Fn−1, Fn)→ (Fn, Fn+1) :=
(Fn, Fn + Fn−1). Let f be the function such that f(x, y) := (y, x + y),
then (Fn, Fn+1) = f(Fn−1, Fn) and

(Fn, Fn+1) = f(Fn−1, Fn) = f(f(Fn−2, Fn−1)) = f2(Fn−2, Fn−1)

etc. till we reach (Fn, Fn+1) = fn(F0, F1) := fn(1, 1), for all n # 0. Let
π1 be the function such that π1(x, y) = x, that is, it projects the first
component of a pair, then Fn = π1 ◦fn(1, 1), for all n # 0. The iteration
of f is easy to define by the recurrences

f0(x, y) = (x, y), fn(x, y) = fn−1(f(x, y)) := fn−1(y, x+ y).

The Erlang code is now straightforward:

fib_opt(N) -> pi1(f(N,{1,1})).

pi1({X,_}) -> X.

f(0,{X,Y}) -> {X,Y};

f(N,{X,Y}) -> f(N-1,{Y,X+Y}).

A tail form definition is extremely easy to obtain, without even applying
the general method:

fib(0) fib(1) fib(2) fib(3) fib(4) fib(5)

Figure 9.18: Call tree of fib(5) with maximal sharing
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fib_opt_tf(N) -> f(N,{1,1}).

f(0,{X,_}) -> X; % Projection done here

f(N,{X,Y}) -> f(N-1,{Y,X+Y}).

We deduce that its cost is n + 2. This is a tremendous improvement
over fib/1 and, as an unexpected bonus, the definition is in tail form
and is made of the same number of clauses as the original.

The general algorithm we presented in this section transforms all the
definitions of the functions used by a given definition. Assuming that the
size of the control stack is a real issue, is it possible not to transform all
the functions involved? Consider again slst0/2, defined in equation (2.7)
on page 51:

slst0(S,X) -> rev(sfst(rev(S),X)).

If we use the alternative definition sfst0/2, which is in tail form, instead
of sfst/2, and, since rev/1 is already in tail form, we reach

slst0(S,X) -> rev(sfst0(rev(S),X)).

where all the composed functions are in tail form. Of course, a function
composition, like sfst0/2, is not, by definition, in tail form, but it is
not a problem. The size of control stack needed to compute the calls to
slst0/2 will be bounded by a small constant, because it is not recursive.

9.2 Higher-order functions

Polymorphic sorting There is an aspect of straight insertion sort
with isrt/1 (section 3.1 on page 91) which deserves a second thought.
Erlang functions are polymorphic, that is, they may process some of their
arguments in a uniform manner, irrespective of its type. For example,
reversing a stack does not depend on the nature of the keys it contains
– it is a purely structural algorithm. By contrast, our definition of isrt/1
relies on the usage of the predefined comparison operator (>) in a guard.
This implies that all keys in the stack must be pairwise comparable – for
example, they can be integers. But what if we want to sort other kinds of
values, like stacks? Consider the very practical need to sort a set of bills:
each bill can be represented by a stack of prices rounded to the closest
integer and the set in question by a stack itself; we would then want to
sort by insertion the bills by, say, nondecreasing total amounts. If we set
on writing a version of isrt/1 tailored to work only with keys which are
stacks of integers, we are duplicating code and we would have to write
a different instance every time a different kind of values to be sorted
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presents itself. As a consequence, what is needed here is polymorphism
on function parameters, more precisely, the possibility of a function to
be a value, thus suitable as an argument. Erlang provides this facility in
a natural way and many functional languages do as well. In our case,
we need the caller of isrt/1 to provide an additional argument which
is a comparison function between the keys. Then the new isrt/2 would
make use of this caller-defined comparison, instead of always applying
the default operator (>) which works only (or mostly) on integers. Here
is again the definition of isrt/1:

isrt( [])
β−→ [];

isrt([X|S])
γ−→ ins(isrt(S),X).

ins([Y|S],X) when X > Y
δ−→ [Y|ins(S,X)];

ins( S,X)
ϵ−→ [X|S].

Then, our first attempt at modification leads us straightforwardly to

isrtf( [],_)
β−→ [];

isrtf([X|S],F)
γ−→ ins(isrtf(S,F),X,F).

ins([Y|S],X,F) when F(X,Y)
δ−→ [Y|ins(S,X,F)];

ins( S,X,_)
ϵ−→ [X|S].

But the compiler would reject this program because Erlang does not
allow a user-defined function to be called in a guard. The rationale is
that the call F(X,Y) above may not terminate and Erlang guarantees that
pattern matching always ends. Because it is impossible to automatically
check whether any function call terminates on all inputs (this problem
is equivalent to the famous halting problem of a Turing machine, which
is undecidable), the compiler does not even try and prefers to reject all
guards made of function calls. Thus we must move the call F(X,Y) inside
the body of the same clause, which begets the question as how to merge
clauses δ and ϵ into a new clause δ0. A simple way out is to create another
function, triage/4, whose task is to take the result of the comparison
and proceed with the rest of the evaluation. Of course, this means that
triage/4 must also receive all necessary information to carry on:

isrtf( [],_) β−→ [];

isrtf([X|S],F) γ−→ ins(isrtf(S,F),X,F).

ins([Y|S],X,F) δ0−→ triage(F(X,Y),[Y|S],X,F).

triage( ,[Y|S],X,F) ζ−→ [Y|ins(S,X,F)];

triage( ,[Y|S],X,F) η−→ [X|S].

The empty boxes must be filled with the result of a comparison. In our
case, we want a comparison with two possible outputs, depending on the
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first argument being lower or greater than the second. By definition, the
result of X > Y is the atom true if the value of X is greater than the value
of Y and false otherwise. Let us follow the same convention for F and
impose that the value of F(X,Y) is the atom true if X is greater than Y

and false otherwise. It is even better to rename the parameter F into
something more intuitive according to its behaviour, like Gt (Greater
than):

triage( true,[Y|S],X,Gt) ζ−→ [Y|ins(Gt,X,S)];

triage(false,[Y|S],X,Gt) η−→ [X|S].

We notice that clause η makes no use of Y, which means we actually lose
a key. What went wrong and when? The mistake came from not realising
that clause ϵ covered two cases, S is empty or not, therefore we should
have untangled these two cases before merging clause ϵ with clause δ,
because in δ we have the pattern [Y|S], that is, the non-empty case. Let
us rewind and split ϵ into ϵ0 and ϵ1:

isrtf( [], _) β−→ [];

isrtf([X|S],Gt) γ−→ ins(isrtf(S,Gt),X,Gt).

ins([Y|S],X,Gt) when Gt(X,Y) δ−→ [Y|ins(S,X,Gt)];

ins([Y|S],X,Gt) ϵ0−→ [X|[Y|S]];

ins( [],X, _) ϵ1−→ [X].

Notice that we did not write

ins([],X,_) ϵ1−→ [X];

ins( S,X,_) ϵ0−→ [X|S].

even though it would have been correct, because we had in mind the
fusion with clause δ, so we needed to make the pattern [Y|S] conspicuous
in ϵ0. For even more clarity, we made apparent the parameter Gt: the
patterns of clauses δ and ϵ0 are now identical and ready to merge into a
new clause δ0:

isrtf( [], _) β−→ [];

isrtf([X|S],Gt) γ−→ ins(isrtf(S,Gt),X,Gt).

ins([Y|S],X,Gt) δ0−→ triage(Gt(X,Y),[Y|S],X,Gt).

ins( [],X, _) ϵ1−→ [X].

triage( true,[Y|S],X,Gt) ζ−→ [Y|ins(S,X,Gt)];

triage(false,[Y|S],X, _) η−→ [X|[Y|S]].

We can improve a little bit clause η by not distinguishing Y and S:

triage(false, S,X, _) η−→ [X|S].
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This transformation is correct because S is never empty. Instead of using
an auxiliary function like triage/4, which takes many arguments and
serves no purpose other than performing a test on the value of Gt(X,Y)

and proceed accordingly, we can make good use of a case construct:

isrtf( [], _) β−→ [];

isrtf([X|S],Gt) γ−→ ins(isrtf(S,Gt),X,Gt).

ins([Y|S],X,Gt) δ0−→ case Gt(X,Y) of

true
ζ−→ [Y|ins(S,X,Gt)];

false
η−→ [X|[Y|S]]

end;

ins( [],X, _) ϵ1−→ [X].

We can decrease the memory usage again in the clause η (case false),
this time by means of an alias for the pattern [Y|S], so the best version
of the code is

isrtf( [], _) β−→ [];

isrtf([X|S],Gt) γ−→ ins(isrtf(S,Gt),X,Gt).

ins(T=[Y|S],X,Gt) δ0−→ case Gt(X,Y) of

true
ζ−→ [Y|ins(S,X,Gt)];

false
η−→ [X|T]

end;

ins( [],X, _) ϵ1−→ [X].

How would we call isrtf/2 so the resulting value is the same as calling
isrt/1? First, we need a comparison function which behaves exactly like
the operator (>):

gt_int(X,Y) when X > Y -> true;

gt_int(_,_) -> false.

If we try now to form the call

isrtf([5,3,1,4,2],gt_int),

we find that an error occurs at run-time because gt_int is an atom, not
a function. That is why Erlang provides a special syntax for denoting
functions used as values:

isrtf([5,3,1,4,2],fun gt_int/2).

Notice the new keyword fun and the usual indication of the number of
arguments the function is expected to operate on (here, two).

What would happen if we passed as an argument the function lt_-

int/2 defined as follows?
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lt_int(X,Y) when X < Y -> true;

lt_int(X,Y) -> false.

The consequence is that the result is sorted non-increasingly and all we
had to do was to change the comparison function, not the sorting function
itself.

It may seem a burden to have to name even simple comparison func-
tions like lt_int/2, which is none other than the predefined operator (<).
Fortunately, Erlang provides a way to define functions without giving
them a name. The syntax consists in using the keyword fun together
with the keyword end and put the usual definition in-between, without a
function name. Reconsider for example the previous calls but using such
anonymous functions (sometimes called lambdas):

isrtf([5,3,1,4,2],fun(X,Y) -> X > Y end)

results in [1,2,3,4,5] and

isrtf([5,3,1,4,2],fun(X,Y) -> X < Y end)

results in [5,4,3,2,1].
Let us now use isrtf/2 to sort stacks of stacks of integers, according

to the sum of the integers in each stack – this is the practical application
of sorting bills we previously mentioned. As the example of sorting in
non-increasing order hints at, we only need here to write how to compare
two stacks of integers by means of the sum0/1 function in figure 9.5 on
page 289). We have Csum0

n = n + 2. Now we can define the comparison
function gt_bill/2, based upon the operator (>):

gt_bill(P,Q) -> sum0(P) > sum0(Q).

Notice in passing that the predefined Erlang comparison operator (>)
results in either the atom true or false, so there is no need to use a case

construct. Then we can sort our bills by calling

isrtf([[1,5,2,9],[7],[2,5,11],[4,3]],fun gt_bill/2)

or, simply,

isrtf([[1,5,2,9],[7],[2,5,11],[4,3]],

fun(P,Q) -> sum0(P) < sum0(Q) end).

(By the way, do we expect [7] to appear before or after [4,3] in the
answer? What would we have to modify so the relative order of these two
stacks is reversed?) It is just as easy to sort the bills in non-increasing
order. This great easiness in passing around functions as any other kind of
values is what justifies the adjective functional for a language like Erlang
and many others. A function taking another function as an argument is
said to be a higher-order function.



330 CHAPTER 9. TRANSLATION TO ERLANG

Sorted association lists There is something that we could improve
in the previous definition of isrtf/2. Sorting by comparison may im-
ply that some keys are compared more than once, as the worst case of
insertion sort demonstrates eloquently. It may be that one comparison
has a small cost but, compounded over many uses, it leads to a signific-
ant cost. In the case of sorting bills, it is more efficient to compute all
the total amounts first and then only use these amounts during the sort
process, because comparing one integer to another is much faster than
recomputing the sum of many integers in a stack. So, what is sorted is a
stack of pairs whose first component, called the key, is a simple and small
representative of the second component, called the value (improperly, as
keys are Erlang values as well, but such is the traditional nomenclature).
This data structure is sometimes called an association list. Only the key
is used for sorting, not the value, therefore, if the key is an integer, the
comparison on the key is likely to be faster than on the values. The only
penalty is that all the keys must be precomputed in a first pass over the
initial data and they must be stripped from the final result in an addi-
tional postprocessing. This time we shall design these first and last passes
in the most general fashion by parameterisation upon the evaluation Mk

of the keys:

% Computing the keys

mk_keys( _, []) -> [];

mk_keys(Mk,[V|Values]) -> [{Mk(V),V}|mk_keys(Mk,Values)].

% Eliminating the keys

rm_keys( []) -> [];

rm_keys([{_,V}|KeyVal]) -> [V|rm_keys(KeyVal)].

The cost of mk_keys/2 depends on the cost of Mk. The cost of calling
rm_keys(S) is n+ 1 if S contains n pairs key-value. Now we can sort by
calling isrtf/2 with a comparison on two keys and with the function to
build the keys, sum0/1. For instance:

rm_keys(isrtf(mk_keys(fun sum0/1,

[[1,5,2,9],[7],[2,5,11],[4,3]]),

fun({K1,_},{K2,_}) -> K1 > K2 end))

It is very important to notice that we did not need to redefine isrtf/2.
Actually, isrtf/2, mk_keys/2 and rm_keys/1 would very well constitute a
library by grouping their definitions in the same module. The client, that
is, the user of the library, would then provide the comparison function
fitted to their data to be sorted and the function making the keys. This
modularisation is enabled by polymorphism and higher-order functions.
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len0(s)→ len0(s, 0).
len0([ ], n)→ n;

len0([x |s], n)→ len0(s, n + 1).

Figure 9.19: Computing the length of a stack (tail form)

As a last example proving the versatility of our program, let us sort
stacks by their non-increasing lengths:

rm_keys(isrtf(mk_keys(fun len0/1,

[[1,5,2,9],[7],[2,5,11],[4,3]]),

fun({K1,_},{K2,_}) -> K1 < K2 end))

where len0/1 is specified in figure 9.19. The result:

[[1,5,2,9],[2,5,11],[4,3],[7]].

Notice that [4,3] occurs before [7] because the former is longer.
Let us specialise further isrtf/1. Here is the definition again:

isrtf( [], _) β−→ [];

isrtf([X|S],Gt) γ−→ ins(isrtf(S,Gt),X,Gt).

ins(T=[Y|S],X,Gt) δ0−→ case Gt(X,Y) of

true
ζ−→ [Y|ins(S,X,Gt)];

false
η−→ [X|T]

end;

ins( [],X, _) ϵ1−→ [X].

It is clear that if keys are repeated in the input stack, the call Gt(X,Y)
is expected to be rewritten to false at least once, therefore duplicates
are kept by clause η and their relative order is preserved, that is, the
sorting algorithm is stable. What if we do not want to preserve such
duplicates in the output? We need to rewrite the definition to support
this choice. The choice itself, that is, to keep them or not, would naturally
be implemented as an additional functional parameter, say Eq. Also, we
would need a 3-way comparison, so the equality case is explicit. Let us
modify the variable Gt to reflect this increase in detail and call it more
generally Cmp (compare). Its arguments should be values amongst the
user-defined atoms lt (lower than), gt (greater than) and eq (equal). We
have

isrtf( [], _, _) β−→ [];

isrtf([X|S],Cmp,Eq) γ−→ ins(isrtf(S,Cmp,Eq),X,Cmp,Eq).
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ins(T=[Y|S],X,Cmp,Eq) δ0−→ case Cmp(X,Y) of

gt
ζ−→ [Y|ins(S,X,Cmp,Eq)];

lt
η−→ [X|T];

eq
θ−→ Eq(X,T) % New case

end;

ins( [],X, _, _) ϵ1−→ [X].

Now, let us say that we want to sort nondecreasingly a stack of integers
and retain possible redundant numbers, just as the previous version al-
lowed. We have (novelty in boldface type):

isrtf([5,3,1,4,3],fun(X,Y) -> X>Y end,fun(X,T) -> [X|T] end)

which results in [1,3,3,4,5]. If we do not want the numbers repeated,
we form instead the call

isrtf([5,3,1,4,3],fun(X,Y) -> X>Y end,fun(_,T) -> T end)

resulting in [1,3,4,5]. In passing, this technique solves the problem of
removing duplicates in a stack of keys for which there is a total order.
However, if only successive duplicates have to be removed from a stack,
the function red/1, defined in figure 2.22 on page 70, is more efficient
because its cost is linear in the input size.

We would be remiss if we do not mention that a higher-order func-
tion is not only a function whose at least one parameter is a function,
but it also can be a function whose calls evaluate in a function. This
kind of function is said to be curried, as an homage to the logician
Haskell Curry. The possibility was already there when we introduced
the keywords fun and end, because they allow us to define an anonym-
ous function and use it just like another value, so nothing impeded us
from using such a functional value as the result of a named function, like
in the following function mathematically composing two functions:

compose(F,G) -> (fun(X) -> F(G(X)) end).

Actually, the parentheses around the functional value are useless if we
remember that the keywords fun and end play the role of parentheses
when the anonymous function is not called :

compose(F,G) -> fun(X) -> F(G(X)) end.

The higher-order function compose/2 can be used to compute the com-
position of two other functions, the result being a function, of course.



9.2. HIGHER-ORDER FUNCTIONS 333

Functional iterators We may desire a function which sums the im-
ages of a stack S of integers by a given function f . In mathematical
notation, the final result would be expressed as

∑

k∈S

f(k).

In order to implement this in Erlang, we must proceed in two steps: firstly,
we need a higher-order function which computes the images of the items
of a stack by a function; secondly, we need a function summing the
integers of a stack. We already have the latter, known from figure 9.5
page 289 as sum0/1. The former is traditionally called map/2, such that
the call map(F,S) applies function F to all the items of stack S and
evaluates into the stack of the results. That is,

map(F,[X1,X2,. . .,Xn]) ≡ [F(X1),F(X2),. . .,F(Xn)].

With this goal in mind, it is straightforward to define map/2:

map(_, []) -> [];

map(F,[X|S]) -> [F(X)|map(F,S)].

The function we were looking for is now compactly defined as the com-
position of map/2 and sum0/1 as follows:

sumf(F) -> fun(S) -> sum0(map(F,S)) end.

For instance, the function call

sumf(fun(X) -> X*X end)

denotes the function which sums the squares of the numbers in a stack
to be provided. It is equivalent to the value

fun(S) -> sum0(map(fun(X) -> X*X end,S)) end.

It is possible to call this function just after it has been computed by
sumf/1, but parentheses must be added around a function being called
when it is anonymous. For instance, see the boldface type and underlining
in

(sumf(fun(X) -> X*X end))([1,2,3]).

The function map/2 is often used because it captures a common operation
on stacks. For example,

push(_, []) -> [];

push(X,[P|Perms]) -> [[X|P]|push(X,Perms)].
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is equivalent to

push(X,Perms) -> map(fun(P) -> [X|P] end,Perms).

This style leads to clearer programs as it shows the underlying recursive
evaluation without having to read or write a definition for it. In other
words, using a higher-order function like map/2 allows us to identify a
common recursive pattern and let the programmer focus instead on the
specific processing of the items. We shall encounter other examples in
the next sections but, before we move on, imagine we typed instead

push(X,Perms) -> map(fun(Perms) -> [X|Perms] end,Perms).

The Erlang compiler would issue the following warning:

Warning: variable ’Perms’ shadowed in ’fun’.

What happens is that the parameter Perms (in boldface type) ‘hides’
the parameter Perms of push/2 in the sense that, in the body of the
anonymous function, the occurrence of Perms refers to fun(Perms), but
not push(X,Perms). In this case, it is not an error, but the compiler
designers worried about programmers walking on the shadowy side of
the street. For example,

push(X,Perms) -> map(fun(X) -> [X|X] end,Perms). % Capture

is definitely wrong because the two variables X in [X|X], which is the body
of the anonymous function, are the parameter of the anonymous function.
A faulty shadowing is called a capture. Here, the parameter X bound
by push(X,Perms) has been captured to mean instead the parameter of
fun(X). As a guideline, it is best to avoid shadowing a parameter, as the
Erlang compiler reminds us for our own sake. Note that

sumf(fun(S) -> S*S end)

is fine because it is equivalent to

fun(S) -> sum0(map(fun(S) -> S*S end,S)) end

which is a correct shadowing.

Folds Some other useful and frequently recursive schemas can be con-
veniently reified into some other higher-order functions. Consider a func-
tion which traverses completely a stack while processing an accumulator
depending or not on the current visited item. In the end, the result is
the final value of the accumulator, or else another function is called to
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finalise it. A simple example is len0/1 in figure 9.19 on page 331. In this
case, the accumulator is an integer and the operation on it consists in
incrementing it, whatever the current item is. Another function reverses
a stack (equation (2.2) on page 39):

rev(S) -> rcat(S,[]).

rcat( [],T) -> T;

rcat([X|S],T) -> rcat(S,[X|T]).

Here, the accumulator is a stack and the operation on it consists in
pushing the current item on top of it. Let us abstract separately these
two concerns in a higher-order function

1. which takes as input the function creating a new accumulator from
the current item and the previous accumulator and

2. which applies it successively to all the items of a parameter stack.

One famous function doing exactly this is called foldl/3 in Erlang, which
stands for ‘fold left,’ because once the new accumulator for some item
has been computed, the prefix of the stack up to it can be folded back,
as if the stack were written down on a sheet of paper, because it is no
longer useful. So the name should be better read as ‘fold from left to
right’ or rightward fold. We want

foldl(F,A,[X1,X2,. . .,Xn]) ≡ F(Xn,. . .,F(X2,F(X1,A)). . .),

where A is the initial value of the accumulator. Figure 9.20 shows the
corresponding abstract syntax trees. The following definition implements
the desired effect:

foldl(_,A, []) -> A;

foldl(F,A,[X|S]) -> foldl(F,F(X,A),S).

Now we can rewrite new definitions of len0/1 and rev/1:

|

X1 |

X2 |

Xn []

(a) Stack S

F

Xn F

X2 F

X1 A

(b) foldl(F,A,S)

Figure 9.20: The result of foldl/3 on a non-empty stack
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lenl(S) -> foldl(fun(_,A) -> A+1 end, 0,S).

revl(S) -> foldl(fun(X,A) -> [X|A] end,[],S).

Function foldl/3 is not in tail form because of the embedded call F(X,A),
but only a constant amount of control stack is used for the recursion of
foldl/3 itself (one node). In our two examples, F is in tail form, therefore
these new definitions are almost in tail form and can stand against the
originals. More definitions almost in tail form are

suml([N|S]) -> foldl(fun(X,A) -> X+A end, N,S).

rcatl(S,T) -> foldl(fun(X,A) -> [X|A] end, T,S).

rmap(F,S) -> foldl(fun(X,A) -> [F(X)|A] end,[],S).

Again, the reason why these definitions are not exactly in tail form is
due to the call F(X,A) in the definition of foldl/3, not because of the
functional arguments fun(X,A) -> ... end in the calls to foldl/3: these
are not function calls but anonymous function definitions, that is, pieces
of data. The main advantage of using foldl/3 is that it allows the pro-
grammer to focus exclusively on the processing of the accumulator, whilst
foldl/3 itself provides the ride for free. Moreover, we can easily compare
different functions defined by means of foldl/3.

When the accumulator is a stack on which values are pushed, the
result is in reverse order with respect to the input. That is why rmap/2,
above, is not equivalent to map/2. The former is to be preferred over the
latter if the order of the items is not relevant, because map/2 requires a
control stack as long as the input stack. This leads us quite naturally
to introduce another higher-order function: foldr/3, meaning ‘fold from
right to left,’ or leftward fold. We expect

foldr(F,A,[X1,X2,. . .,Xn]) ≡ F(X1,F(X2,. . .,F(Xn,A)). . .).

Figure 9.21 shows the corresponding abstract syntax trees. We achieve
this behaviour with the following definition:

foldr(_,A, []) -> A;

foldr(F,A,[X|S]) -> F(X,foldr(F,A,S)).

|

X1 |

X2 |

Xn []

(a) Stack S

F

X1 F

X2 F

Xn A

(b) foldr(F,A,S)

Figure 9.21: The result of foldr/3 on a non-empty stack
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This definition, like foldl/3, is not in tail form but, unlike foldl/3, it
requires a control stack as long as the input stack.

With the help of foldr/3, we can redefine map/2 and cat/2 as

mapr(F,S) -> foldr(fun(X,A) -> [F(X)|A] end,[],S).

catr(S,T) -> foldr(fun(X,A) -> [X|A] end, S,T).

Compare rcatl/2, defined above, with catr/2: the role of the accumu-
lator and of the input stack have been exchanged, as well as foldl/3 and
foldr/3. It is also possible to define

lenr(S) -> foldr(fun(_,A) -> 1+A end, 0,S). % Bad

sumr([N|S]) -> foldr(fun(X,A) -> X+A end, N,S). % Bad

isrtr(S) -> foldr(fun(X,A) -> ins(A,X) end,[],S). % Bad

but that would be unwise because foldr/3 does not use a bounded
amount of control stack, contrary to foldl/3. In the case of isrt/1, it is
best to call foldl/3 instead because the order of insertion does not mat-
ter in average (although it swaps the best and worst cases if the items
are not repeated). Note also, in the case of isrtr/1, how the order of the
arguments of the mapped function ins/2 matters.

This leads us to formulate some guidelines about the transformation
into tail form. We already know that a definition in tail form is worth
having or even necessary if the maximum size of the control stack is smal-
ler than that of some input recursively traversed in its greatest extension.
No speed-up should be expected a priori from turning a definition into
tail form – although this may happen sometimes. Usually,

• it is preferable, if possible, to use foldl/3 instead of foldr/3 be-
cause, provided the functional parameter is defined in tail form, the
call will use a small limited amount of control stack (if the para-
meter is not in tail form, at least foldl/3 won’t burden further the
control stack, contrary to foldr/3);

• when writing our own recursion, that is, without resorting to folds,
it is best to have it in tail form if the accumulator is an integer,
otherwise, the maximum size of the control stack may need to be
proportional to the size of the input, despite the output being a
single integer. (Contrast sum/1 and sum0/2, as well as len/1 and
len0/1.)

Independently of stack allocation, there can be a significant difference
in cost when using one fold instead of the other. Take for example the
following two calls:
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foldl(fun cat/2,[],S) ≡ foldr(fun cat/2,[],S).

The first one will be slower than the second, as shown by inequality (2.6)
on page 42.

What cannot be programmed with folds? As the defining properties
show, folds traverse the input stack in its entirety, hence there is no way
to get off the bus while it is running. For instance, sfst/2 in section 2.3,
on page 43, is, in Erlang,

sfst( [],X)
θ−→ [];

sfst([X|S],X)
ι−→ S;

sfst([Y|S],X)
κ−→ [Y|sfst(S,X)].

and cannot be implemented by means of a fold because there are two ends
to the function calls: either the item has not been found and we ran afoul
the end of the stack in clause θ, or it has been found somewhere inside
the stack in clause ι. However, in theory, if we accept a full traversal of
the stack for every call, then sfst/2 can be programmed by means of
a rightward fold. The usual technique is to have an accumulator which
is either an atom meaning ‘not found’ or a pair with an atom meaning
‘found’ and the rebuilt stack. If the result is ‘not found,’ then we just
give back the original stack. The following function makes a stronger
case because it is really impossible to express by means of a fold, even
inefficiently. It is the ‘complete tail’ function:

ctail( []) -> [];

ctail([_|S]) -> S.

In general, a function F can be equivalently expressed by a call to a fold
if, and only if, for all stacks S and T , for all item X, we have

F(S) ≡ F(T)⇒ F([X|S]) ≡ F([X|T]).

(See Gibbons et al. (2001), Weber and Caldwell (2004).) For instance, we
have ctail([]) ≡ ctail([2]) but ctail([1]) ̸≡ ctail([1,2]).

One positive side-effect of using maps and folds is that they some-
times allow the programmer to recognise some compositions that can be
optimised by means of some equivalence. As an example, we have, for all
functions F and G:

map(F,map(G,S)) ≡ map(compose(F,G),S).

Without counting in the costs of F and G, the left-hand side induces the
cost 2n+2, if S contains n items, whereas the right-hand side incurs the
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cost n + 2, so it is much preferable to the former. Another interesting
equation is

foldl(F,A,S) ≡ foldr(F,A,S) (9.2)

if F is associative and symmetric. Let us prove it. The first clauses of
the definitions of foldl/3 and foldr/3 imply that, for all F and A,

foldl(F,A,[]) ≡ A ≡ foldr(F,A,[]).

For non-empty stacks, this equation means:

F (Xn, . . . , F (X2, F (X1, A)) . . .) ≡ F (X1, F (X2, . . . , F (Xn, A)) . . .).

Although the ellipses in the previous equation are intuitive, they are not
a valid foundation for a rigorous mathematical argument. Instead, by
definition, we have

foldl(F,A,[X|S]) ≡ foldl(F,F(X,A),S).

Dually, by definition, we also have

foldr(F,A,[X|S]) ≡ F(X,foldr(F,A,S)).

The original equation would thus be established for all stacks if we prove

foldl(F,F(X,A),S) ≡ F(X,foldr(F,A,S)).

Let us call this conjecture Fold and prove it by structural induction. In
general terms, this principle states that, given a finite data structure S,
a property Fold(S) to be proved about it, then

1. if Fold(S) is provable for all the atomic S, that is, configurations
of S that cannot be decomposed;

2. if, assuming Fold(T ) for all immediate substructures T of S, then
Fold(S) is proved;

3. then Fold(S) is proved for all S.

Here, the data structure S being a stack, there is a unique atomic stack:
the empty stack. So we must first prove Fold([]). The first clauses of the
definitions of foldl/3 and foldr/3 imply that, for all F and A,

foldl(F,F(X,A),[]) ≡ F(X,A) ≡ F(X,foldr(F,A,[])),

which is Fold([]). Next, let us consider a non-empty stack [Y |S]. What
are its immediate substructures? By construction of stacks, there is only
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one immediate substack of [X|S], namely S. Therefore, let us assume
Fold(S) for a given stack S and suppose that F is associative and sym-
metric (this is the structural induction hypothesis) and let us prove
Fold([Y |S]), for all Y . For F to be associative means that, for all val-
ues I, J and K, we have

F (I, F (J,K)) ≡ F (F (I, J),K).

The symmetry of F means that, for all I and J , we have

F (I, J) ≡ F (J, I).

Let us start with the left-hand side of Fold([Y |S]):

foldl(F,F(X,A),[Y |S])
≡ foldl(F,F(Y ,F(X,A)),S) (definition of foldl/3)
≡ foldl(F,F(F(Y ,X),A),S) (associativity of F )
≡ foldl(F,F(F(X,Y ),A),S) (symmetry of F )
≡ F(F(X,Y ),foldr(F,A,S)) (induction hypothesis Fold(S))
≡ F(X,F(Y ,foldr(F,A,S))) (associativity of F )
≡ F(X,foldr(F,A,[Y |S])) (definition of foldr/3). ✷

This proves Fold([Y |S]). The principle of structural induction then im-
plies that Fold(S) is proved for all stacks S, hence the original equa-
tion (9.2) on the previous page. The previous derivation suggests a vari-
ation in the definition of foldl/3:

foldl_alt(_,A, []) -> A;

foldl_alt(F,A,[X|S]) -> foldl_alt(F,F(A,X),S).

The difference lies in the order of the parameters of F. We would then
have to prove a slightly different conjecture:

foldl_alt(F,F(A,X),S) ≡ F(X,foldr(F,A,S)).

The previous derivation would read now as follows:

foldl_alt(F,F(A,X),[Y |S])
≡ foldl_alt(F,F(F(A,X),Y ),S) (definition)
≡ fold_alt(F,F(A,F(X,Y )),S) (associativity of F )
≡ F(F(X,Y ),foldr(F,A,S)), (induction hypothesis Fold(S))
≡ F(X,F(Y ,foldr(F,A,S))) (associativity of F )
≡ F(X,foldr(F,A,[Y |S])), (definition of foldr/3). ✷
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We see that the symmetry of F is not required anymore but in only one
remaining place: when the stack is empty. Indeed, we have

foldl_alt(F,F(A,X),[]) ≡ F(A,X), by definition;

F(X,foldr(F,A,[])) ≡ F(X,A), by definition of foldr/3.

Therefore, in order to prove the variant conjecture about foldl_alt/3

and foldr/3, we must have

F(A,X) ≡ F(X,A),

that is, A, which is the initial value of the accumulator, must commute
with all items X under F . This is not a clear improvement over the
first theorem about foldl/3, which required all pairs of successive items
commute. Nevertheless, there is an interesting special case, which is when
A is a neutral element for F , that is, for all X,

F(A,X) ≡ F(X,A) ≡ A.

Then symmetry altogether is no more required. Therefore, foldl_alt/3
is preferable over foldl/3, because it provides more opportunities when
transforming applications of foldr/3. But, since the standard library of
Erlang offers the definition foldl/3, we shall stick to it. The standard
library of OCaml, however, proposes the function fold_left, which cor-
responds to foldl_alt/3.

Anyway, theorem (9.2) allows us to transform immediately some calls
to foldr/3, which requires an amount of control stack at least propor-
tional to the size of the input stack, into calls to foldl/3, whose para-
meter F is the only function possibly not using a constant amount of
control stack (if it does, the gain is all the more obvious). This is why
the following definitions are equivalent:

lenl(S) -> foldl(fun(_,A) -> A+1 end,0,S).

lenr(S) -> foldr(fun(_,A) -> A+1 end,0,S).

Proving that the following two definitions are equivalent happens to be
a bit trickier:

suml([N|S]) -> foldl(fun(X,A) -> X+A end,N,S).

sumr([N|S]) -> foldr(fun(X,A) -> X+A end,N,S).

The reason is that the first item of the stack serves as the initial value of
the accumulator in both cases, despite the order of traversal of the stack
being reversed (rightward versus leftward). It is much more obvious to
see that the following definitions are equivalent:
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sum1(S=[_|_]) -> foldl(fun(X,A) -> X+A end,0,S).

sum2(S=[_|_]) -> foldr(fun(X,A) -> X+A end,0,S).

only because addition is associative and symmetric.

Functional encoding of maps In order to illustrate further the ex-
pressive power of higher-order functions, let us muse about a small, albeit
unlikely, example. We mentioned on page 330 association lists being a
collection of pairs key-value, straightforwardly implemented as stacks, for
instance, [{a,0},{b,1},{a,5}]. A mapping is an association list which
is searched based on the first component of the pairs. Typically, we have

find(_, []) -> absent;

find(X,[{X,V}|_]) -> V; % Associated value found

find(X, [_|S]) -> find(X,S). % Keep searching

Notice that if a key is repeated, only the first pair will be considered, for
instance, find(a,[{a,0},{b,1},{a,5}]) evaluates to 0, not 5. These pairs
are called bindings. Let us assume now that we want to present formally
what a mapping is but without relying upon any particular programming
language. In this case, we must count on mathematics to convey the
concept, more precisely, on mathematical functions. We would say that
a mapping M is a function from some finite set of values K to some finite
set of values V. Therefore, what was previously the conjunction of a data
type (a stack) and a lookup function (find/2) is now a single function,
representing the mapping and the lookup at the same time. A binding
x C→ y is just another notation for the pair (x, y), where x ∈ K and
y ∈ V. We need now to express how a mapping is updated, that is, how
a mapping is extended with a new binding. With a stack, this is simply
done by pushing a new pair but, without a stack, we would say that an
update is a function itself, taking a mapping and a binding as arguments
and returning a new mapping. An update is thus a higher-order function.
Let the function (⊕) be such that M ⊕ x1 C→ y is the update of the
mapping M by the binding x1 C→ y, as defined by

(M ⊕ x1 C→ y)(x2) :=

{

y if x1 = x2,

M(x2) otherwise.

We can check that we return the value associated to the first key matching
the input, as expected. The empty mapping would be a special function
returning a special symbol meaning ‘not found,’ like M∅(x) = ⊥, for all x.
The mapping containing the binding (1, 5) would be M∅ ⊕ 1 C→ 5. This
is very abstract and independent of any programming language, whilst
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being totally precise. If now the need arises to show how this definition
can be programmed, this is when functional languages can shine. An
update would be directly written in Erlang as

update(M,{X1,Y}) -> fun(X2) -> case X2 of X1 -> Y;
_ -> M(X2)

end

end.

The correspondence with the formal definition is almost immediate, there
is no need to introduce a data structure and its interpretation, nor prove
its correctness. The empty mapping is simply

empty(_) -> absent.

For example, the mapping as stack [{a,0},{b,1},{a,5}] can be modelled
with higher-order functions only as

update(update(update(fun empty/1,{a,5}),{b,1}),{a,0}).

Perhaps what needs to be learnt from all this is that stacks in functional
languages, despite having a distinctive syntax and being used pervasively,
are not a fundamental data type: functions are.

Functional encodings of tuples Let us start by abstracting the tuple
into its essence and, because in a functional language functions are the
main feature, we should ask ourselves what is done with something we
think of as a tuple. Actually, we rushed because we should have realised
first that all tuples can be expressed in terms of the empty tuple and
pairs. For instance, {5,foo,{fun(X) -> X*X end}} can be rewritten with
embedded pairs as {5,{foo,{fun(X) -> X*X end,{}}}}. So let us reph-
rase the question in terms of pairs only. Basically, a pair is constructed
(or injected) and matched, that is, deconstructed (or projected). This
analysis leads to the conclusion that the functional encoding of pairs
requires three functions: one for making, mk_pair/2, and two for unmak-
ing, fst/1 and snd/1. Once a pair is built, it is represented as a function,
therefore functions extracting the components take as an argument an-
other function denoting the pair, thus they are of higher order. Consider

mk_pair(X,Y)
α−→ fun(Pr)

β−→ Pr(X,Y) end. % Pr is a projection

fst(P)
γ−→ P(fun(X,_)

δ−→ X end). % P denotes a pair

snd(P)
ϵ−→ P(fun(_,Y)

ζ−→ Y end).

We have the following expected behaviour:
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fst(mk_pair(3,5))
α−→ fst(fun(Pr)

β−→ Pr(3,5) end)
γ−→ (fun(Pr)

β−→ Pr(3,5) end)(fun(X,_)
δ−→ X end)

β−→ (fun(X,_)
δ−→ X end)(3,5)

δ−→ 3.

To proof the versatility of this encoding, let us define a function add/1

which adds the components of the pair passed to it:

add(P)
η−→ fst(P) + snd(P).

A call to add/1 would unravel as follows, assuming that arguments are
evaluated rightward:

add(mk_pair(3,5))
α−→ add(fun(Pr)

β−→ Pr(3,5) end)
η−→ fst(fun(Pr)

β−→ Pr(3,5) end)

+ snd(fun(Pr)
β−→ Pr(3,5) end)

γ−→ (fun(Pr)
β−→ Pr(3,5) end)(fun(X,_)

δ−→ X end)

+ snd(fun(Pr)
β−→ Pr(3,5) end)

β−→ (fun(X,_)
δ−→ X end)(3,5)

+ snd(fun(Pr)
β−→ Pr(3,5) end)

δ−→ 3 + snd(fun(Pr)
β−→ Pr(3,5) end)

ϵ−→ 3 + (fun(Pr)
β−→ Pr(3,5) end)(fun(_,Y)

ζ−→ Y end)
β−→ 3 + (fun(_,Y)

ζ−→ Y end)(3,5)
ζ−→ 3 + 5 = 8.

The keen reader may feel cheated, though, because we could have simply
defined add/2 as

add(X,Y) -> X + Y.

Indeed, this critique is valid. The ability of functions to receive various
arguments at once amounts to them receiving one tuple exactly, whose
components are these various values. Therefore, we have to retry and
make sure that our functions are nullary or unary, that is, take zero or
one argument. This is achieved by taking one value as argument and
rewrite the call into a function which will take in turn the next value as
argument etc. This translation is called currying.

mk_pair(X)
α−→ fun(Y)

β−→ fun(Pr)
γ−→ (Pr(X))(Y) end end.

fst(P)
δ−→ P(fun(X)

ϵ−→ fun(_)
ζ−→ X end end).

snd(P)
η−→ P(fun(_)

θ−→ fun(Y)
ι−→ Y end end).

add(P)
κ−→ fst(P) + snd(P).
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Let us recall that fun(X) -> fun(P) -> ... is equivalent to the expres-
sion fun(X) -> (fun(P) -> ...) The parentheses around Pr(X) are ne-
cessary in Erlang because this call is in the place of a function being
called itself. Now

add((mk_pair(3))(5))
α−→ add((fun(Y)

β−→ fun(Pr)
γ−→ (Pr(3))(Y) end end)(5))

β−→ add(fun(Pr)
γ−→ (Pr(3))(5) end)

κ−→ fst(fun(Pr)
γ−→ (Pr(3))(5) end)

+ snd(fun(Pr)
γ−→ (Pr(3))(5) end)

δ−→ (fun(Pr)
γ−→(Pr(3))(5) end)(fun(X)

ϵ−→ fun(_)
ζ−→X end end)

+ snd(fun(Pr)
γ−→ (Pr(3))(5) end)

γ−→ ((fun(X)
ϵ−→ fun(_)

ζ−→ X end end)(3))(5)

+ snd(fun(Pr)
γ−→ (Pr(3))(5) end)

ϵ−→ (fun(_)
ζ−→ 3 end)(5) + snd(fun(Pr)

γ−→ (Pr(3))(5) end)
ζ−→ 3 + snd(fun(Pr)

γ−→ (Pr(3))(5) end)
η−→ 3 +(fun(Pr)

γ−→(Pr(3))(5) end)(fun(_)
θ−→ fun(Y)

ι−→ Y end end)
γ−→ 3 + ((fun(_)

θ−→ fun(Y)
ι−→ Y end end)(3))(5)

θ−→ 3 + (fun(Y)
ι−→ Y end)(5)

ι−→ 3 + 5 = 8.

Of course, this encoding is usually not worth doing because the number
of function calls is much greater than when using a data structure. Its
main interest is to show the theoretical expressive power of higher-order
functions.

Functional encoding of stacks To gain more insight into the nature
of stacks as data structures, we can encode stacks only with higher-order
functions. In the former view, a stack is an infrastructure, a kind of
inert container for data and functions are expected to operate on it. In
the latter view, a stack is a composition of functions containing data
as arguments and waiting to be called to do something with them. The
difference between both points of view is not an imagined dichotomy
between data and functions, which is blurred in object-oriented languages
too, but the fact that higher-order functions alone can make up a stack.

Since we already know how to encode pairs with higher-order func-
tions, a first approach to encoding stacks with functions simply consists
in encoding them with pairs. Abstractly, a stack can either be empty or
constructed by pushing an item into another stack, so all we need is to
translate these two concepts. The empty stack can readily be represented
by the empty tuple {} and pushing becomes pairing:

push(X,S) -> {X,S}.
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This encoding was introduced in figure 9.16 on page 320 to save memory
on linear accumulators. Here, we want to go one step further and get rid
of the pairs themselves by means of their functional interpretation seen
above, so push/2 becomes a renaming of mk_pair/2:

push(X,S) -> fun(Pr) -> Pr(X,S) end. % See mk_pair/2

To understand the status of the empty stack, we must consider projec-
tions on stacks. These are usually called head and tail. We implement
them as the original versions of fst/2 and snd/2, where S, H and T denote,
respectively, an encoding of a stack, a head and a tail:

head(S) -> S(fun(H,_) -> H end). % See fst/2

tail(S) -> S(fun(_,T) -> T end). % See snd/2

Let us now think how the empty stack is used. It is a stack such that
any projection of its putative contents fails, that is, projecting the first
component (the head) fails, as well as projecting the second component
(the tail). A trick consists in defining

empty() -> fail. % The atom fail is arbitrary

The point is that empty/0 is nullary, so calling it with an argument fails,
as in head(fun empty/0). For example, the stack [a,b,c] is encoded

push(a,push(b,push(c,fun empty/0))).

This solution relies on the arity, that is, the number of parameters, of
empty/0 to lead to failure. This failure is consistent with the way classic
stacks, that is, stacks as data structures, are used: tail([_|S]) -> S and
the call tail([]) fails to match a clause. The limit of this encoding is
that, being based on functions, the encoded stacks cannot be matched by
the heads of the clauses. For example, the function ctail/1 on page 338

ctail( []) -> [];

ctail([_|S]) -> S.

cannot not be encoded because we would need a way to check whether
an encoded stack is empty without crashing the program if it is not. If
we prefer the caller to be gently informed of the problem instead, that is,
we want the definition of the projections to be complete, we could allow
empty/1 to take a projection which is then discarded:

empty(_) -> fail.
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We would have the rewrite head(fun empty/1) → fail, which is not a
failure insofar the run-time system is concerned, but is interpreted by
the application as a logical failure. Of course, it becomes the burden of
the caller to check whether the atom fail is returned and the burden
of the stack maker to make sure not to push this atom in the encoded
stack, otherwise a caller would confuse the empty stack with a regular
item. (A better solution consists in using exceptions.)

Fixed-point combinators Many functions need some other auxiliary
functions to carry out subtasks. For example, consider figure 9.19 on
page 331 where len0/2 is the auxiliary function. To forbid its usage
outside the scope of the module, it would be omitted in the -export clause
at the beginning, but it still could be called from within the module it
is defined. How could we avoid this as well? This is where anonymous
functions comes handy:

len0(S) ->

Len = fun( [],N) -> N;

([_|S],N) -> Len(S,N+1) % Does not compile

end,

Len(S,0).

This limits the visibility of the anonymous function bound to variable Len

to the body of len0/1, which is exactly what we wanted. The problem
here is that this definition is rejected by the Erlang compiler because the
binding construct (=) does not make the variable on its left-hand side
visible to the right-side, hence Len is unknown in the call Len(S,N+1). In
some other functional languages, there is a specific construct to allow
recursion on local definitions, for instance, let rec in OCaml, but the
following hypotyposis is nevertheless theoretically relevant. The original
problem becomes another one: how can we define anonymous recursive
functions? A workaround is to pass an additional function parameter,
which is used in stead of the recursive call:

len1(S) -> Len = fun(_, [],N) -> N;

(F,[_|S],N) -> F(F,S,N+1)

end,

Len(Len,S,0).

Notice that we renamed len0/1 into len1/1 because we are going to envis-
age several variants. Moreover, the anonymous function is not equivalent
to len/2 because it takes three arguments. Also, the compiler emits the
following warning (we removed the line number):
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Warning: variable ’S’ shadowed in ’fun’.

We have seen this before, on page 334. Here, the shadowing is harmless,
because inside the anonymous function denoted by Len, the original value
of S, that is, the argument of len1/1, is not needed. Nevertheless, for the
sake of tranquillity, a simple renaming will get rid of the warning:

len1(S) -> Len = fun(_, [],N) -> N;

(F,[_|T],N) -> F(F,T,N+1) % Renaming

end,

Len(Len,S,0).

We can alter this definition by currying the anonymous function and
renaming it so Len now is equivalent to fun len/2:

len2(S) -> H = fun(F) -> fun( [],N) -> N;

([_|T],N) -> (F(F))(T,N+1)

end

end,

Len = H(H), % Equivalent to fun len/2

Len(S,0).

Let us define a function u/1 which auto-applies its functional argument
and let us make use of it in stead of F(F):

u(F) -> fun(X,Y) -> (F(F))(X,Y) end. % Self-application

len3(S) -> H = fun(F) -> fun( [],N) -> N;

([_|T],N) -> (u(F))(T,N+1)

end

end,

(H(H))(S,0). % Expanded Len

Let us replace now u(F) by F. This transformation does not preserve the
semantics of H, so let us rename the resulting function G and we redefine H

to be equivalent to its prior instance:

len3(S) -> G = fun(F) -> fun( [],N) -> N;

([_|T],N) -> F(T,N+1)

end

end,

H = fun(F) -> G(u(F)) end,

(H(H))(S,0).
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The interesting point is that the anonymous function referred to by vari-
able G is very similar to Len at the beginning. (It may sound paradoxical
to speak of anonymous functions with names, but, in Erlang, variables
and function names are two distinct syntactic categories, so there is no
contradiction in terms.) Here it is again:

len0(S) ->

Len = fun( [],N) -> N;

([_|S],N) -> Len(S,N+1) % Unfortunately invalid

end,

Len(S,0).

The difference is that G abstracts over F instead of having a (problem-
atic) recursive call. Let us expand back the call u(F) and get rid of u/1

altogether:

len4(S) ->

G = fun(F) -> fun( [],N) -> N;

([_|T],N) -> F(T,N+1)

end

end,

H = fun(F) -> G(fun(X,Y) -> (F(F))(X,Y) end) end,

(H(H))(S,0).

To gain some generality, we can extract the assignments to H and Len,
put them into a new function x/1 and expand Len in place:

x(G) -> H=fun(F) -> G(fun(X,Y)->(F(F))(X,Y) end) end, H(H).

len5(S) -> G = fun(F) -> fun( [],N) -> N;

([_|T],N) -> F(T,N+1)

end

end,

(x(G))(S,0).

By putting the definition of function x/1 into a dedicated module, we can
now easily define recursive anonymous functions. There is a limitation,
though, which is that x/1 is tied to the arity of F. For instance, we cannot
use it for the factorial:

fact(N) -> G = fun(F) -> fun(0) -> 1;

(N) -> N * F(N-1)

end

end,

(x(G))(S,0). % Arity mismatch
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Therefore, if we really want a general scheme, we should work with fully
curried functions, so all functions are unary:

x(G) -> H = fun(F) -> G(fun(X) -> (F(F))(X) end) end, H(H).

len6(S) -> G=fun(F) -> fun(N) -> fun( []) -> N;

([_|T]) -> (F(N+1))(T)

end

end

end,

((x2(G))(0))(S).

Notice that we swapped the order of the stack and the integer, since
there is no pattern matching to be done on the latter. The grammar of
Erlang obliges us to put parentheses around every function call resulting
in a function being immediately called, so calling fully curried functions
with all their arguments, like ((x2(G))(0))(S), ends up being a bit fas-
tidious, although a good text editor can help us in paring properly the
parentheses.

The theoretical point of this derivation is that we can always write a
non-recursive function equivalent to a recursive one, since even x/1 is not
recursive. In fact, nothing special is required as long as we have unres-
tricted function calls. Some strongly and statically typed languages like
OCaml reject the definition of x/1 above, but other valid, albeit more com-
plex, definitions are possible. (In the case of OCaml, the switch -rectypes

allows us to compile the one above, though.) If we grant ourselves the
use of recursion, which we never banned, we can actually write a simpler
definition of x/1, named y/1:

y(F) -> fun(X) -> (F(y(F)))(X) end. % Recursive

This definition is actually very easy to come by, as it relies on the com-
putational equivalence, for all X,

(y(F))(X) ≡ (F(y(F)))(X),

If we assume the mathematical property ∀x.f(x) = g(x) ⇒ f = g, the
previous equivalence would yield

y(F) ≡ F(y(F)),

which, by definition, shows that y(F) is a fixed-point of F. Beware that

y(F) -> F(y(F)). % Infinite loop
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does not work because the call y(F) would immediately start evaluat-
ing the call y(F) in the body, therefore never ending. Some functional
programming languages have a different evaluation strategy than Erlang
and do not always start by evaluating the argument in a function call,
which may make this definition directly workable. Another example:

fact(N) -> F = fun(F) -> fun(A) -> fun(0) -> A;

(M) -> (F(A*M))(M-1)

end

end

end,

((y(F))(1))(N).

The technique we developed in the previous lines can be used to reduce
the amount of control stack in some functions. For example, consider

cat( [],T) -> T;

cat([X|S],T) -> [X|cat(S,T)].

Note how the parameter T is threaded until the first argument is empty.
This means that a reference to the original stack T is duplicated at each
rewrite until the last step, because the definition is not in tail form. In
order to avoid this, we could use a recursive anonymous function which
binds T not as a parameter but as part of the (embedding) scope:

cat(S,T) -> G = fun(F) -> fun( []) -> T; % T in scope

([X|U]) -> [X|F(U)]

end

end,

(y(G))(S).

This transformation is called lambda-dropping, and its inverse lambda-
lifting . The function y/1 is called the Y fixed-point combinator.

We sometimes may want to define two mutually recursive anonymous
functions. Consider the following example, which is in practice utterly
useless and inefficient, but simple enough to illustrate our point.

even(0) -> true;

even(N) -> odd(N-1).

odd(0) -> false;

odd(N) -> even(N-1).

Let us say that we do not want even/1 to be callable from any other
function but odd/1. This means that we want the following pattern:
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odd(I) -> Even = fun( ) -> end,

Odd = fun( ) -> end,

Odd(I).

where Even and Odd depend on each other. As the canvas is laid out,
Even cannot call Odd. The technique to allow mutual recursion consists
in abstracting the first function over the second, that is, Even becomes a
function whose parameter is a function destined to be used as Odd:

odd(I) -> Even = fun(Odd) -> fun(0) -> true;

(N) -> Odd(N-1)

end

end,

Odd = fun( ) -> end,

Odd(I).

The next step is more tricky. We can start naïvely, though, and let the
problem come to the fore by itself:

odd(I) -> Even = fun(Odd) -> fun(0) -> true;

(N) -> Odd(N-1)

end

end,

Odd = fun(0) -> false;

(N) -> (Even( Odd ))(N-1)

end,

Odd(I).

The problem is not unheard of and we already know how to define an
anonymous recursive function by abstracting over the recursive call and
passing the resulting function to the Y fixed-point combinator:

odd(I) -> Even = fun(Odd) -> fun(0) -> true;

(N) -> Odd(N-1)

end

end,

Odd = y(fun(F) -> fun(0) -> false;

(N) -> (Even(F))(N-1)

end

end),

Odd(I).

The technique presented here to achieve local recursion is interesting
beyond compilation, as shown by Goldberg and Wiener (2009). Fixed-
point combinators can also be shown to work in imperative languages,
like C:
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#include<stdio.h>

#include<stdlib.h>

typedef int (*fp)();

int fact(fp f, int n) {

return n? n * ((int (*)(fp,int))f)(f,n-1) : 1; }

int read(int dec, char arg[]) {

return (’0’ <= *arg && *arg <= ’9’)?

read(10*dec+(*arg - ’0’),arg+1) : dec; }

int main(int argc, char** argv) {

if (argc == 2)

printf("%u\n",fact(&fact,read(0,argv[1])));

else printf("Only one integer allowed.\n");

return 0;

}

Continuations In section 9.1, the transformation into tail form applies
to first-order programs, that is, those without higher-order functions,
and its result are first-order programs as well. Here, we explain briefly
a transformation to tail form which results in higher-order functions in
continuation-passing style (often abbreviated CPS). The main advantage
is that programs are shorter. The first example was flat/1:

flat( []) -> [];

flat( [[]|T]) -> flat(T);

flat([[X|S]|T]) -> flat([X,S|T]);

flat( [X|T]) -> [X|flat(T)].

Applying the algorithm of section 9.1, the tail form we found was

flat_tf(T) -> flat(T,[]).

flat( [],A) -> appk([],A);

flat( [[]|T],A) -> flat(T,A);

flat([[X|S]|T],A) -> flat([X,S|T],A);

flat( [Y|T],A) -> flat(T,[{k1,Y}|A]).

appk(V, []) -> V;

appk(V,[{k1,Y}|A]) -> appk([Y|V],A).
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(This is the version using a stack accumulator instead of embedded
tuples.) The driving idea consists in adding a stack A which accumu-
lates the variables of all the call contexts, each occurrence being uniquely
tagged, and an auxiliary function appk/2 then reconstructs the contexts.

The idea behind continuation-passing style is to not separate the
variables of the contexts and their reconstruction. Instead, what is saved
is a function, named continuation, corresponding to one clause of appk/1
reconstructing a context. This way, there is no need for appk/1. First, just
like an empty accumulator was created, an initial continuation is needed.
For the moment, we will ignore it. Just like an extra argument was added
for the accumulator, an extra argument is added for the continuation:

flat_k(T) -> flat_k(T, ).

flat_k( [],K) -> []; % K unused yet

flat_k( [[]|T],K) -> flat_k(T,K);

flat_k([[X|S]|T],K) -> flat_k([X,S|T],K);

flat_k( [X|T],K) -> [X|flat_k(T,K)].

Just like before, each right-hand side is examined in order. If it contains
no function call, the expression (where appk/2 was called): is applied to
the continuation K:

flat_k( [],K) -> K([]);

If it is a function call in tail form, nothing is done, just like before:

flat_k( [[]|T],K) -> flat_k(T,K);

flat_k([[X|S]|T],K) -> flat_k([X,S|T],K);

If the right-hand side is not in tail form, we identify the first call to be
evaluated. Here, there is only one: flat_k(T,K). Now is the main differ-
ence with the original transformation. Instead of extracting the variables
from the context and generating a clause of appk/2 reconstructing that
context, we pass to the call a new continuation which applies the con-
text to the result of the call and then calls K, just like appk/2 was called
recursively:

flat_k( [X|T],K) -> flat_k(T,fun(V) -> K([X|V]) end).

Finally, we need to determine what is the continuation counterpart of
the empty accumulator. More precisely, we want to find an equivalent to
appk(V,[]) -> V. That is, we want a continuation such that, provided
with V, returns V: it is the identity function. We now have completed the
transformation to continuation-passing style:
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flat_k(T) -> flat_k(T,fun(V) -> V end).

flat_k( [],K) -> K([]);

flat_k( [[]|T],K) -> flat_k(T,K);

flat_k([[X|S]|T],K) -> flat_k([X,S|T],K);

flat_k( [X|T],K) -> flat_k(T,fun(V) -> K([X|V]) end).

The number of rewrites is the same as with flat_tf/1; the main interest
is that the resulting code is shorter, as each clause of appk/2 is encoded
as an anonymous function at each location not in tail form. (Note that
it is tradition to name the continuations with the letter K.)

Let us consider another related example, flat0/1:

flat0( []) -> [];

flat0( [[]|T]) -> flat0(T);

flat0([Y=[_|_]|T]) -> cat(flat0(Y),flat0(T));

flat0( [Y|T]) -> [Y|flat0(T)].

The first-order tail form we derived was

flat0_tf(T) -> flat0(T,[]).

flat0( [],A) -> appk([],A);

flat0( [[]|T],A) -> flat0(T,A);

flat0([Y=[_|_]|T],A) -> flat0(Y,[{k1,T}|A]);

flat0( [Y|T],A) -> flat0(T,[{k34,Y}|A]).

cat( [],T,A) -> appk(T,A);

cat([X|S],T,A) -> cat(S,T,[{k34,X}|A]).

appk(V,[{k34,Y}|A]) -> appk([Y|V],A);

appk(V, [{k2,W}|A]) -> cat(W,V,A);

appk(V, [{k1,T}|A]) -> flat0(T,[{k2,V}|A]);

appk(V, []) -> V.

Again, for the sake of the argument, we use the non-optimised version
without embedded tuples for the stack accumulator. First, we generate
the identity continuation:

flat0_k(T) -> flat0_k(T,fun(V) -> V end).

The right-hand side of the first clause of flat0/1 contains no calls so we
apply to it the current continuation:

flat0_k( [],K) -> K([]);

The right-hand side of the second clause of flat0/1 is a call in tail form,
so its transform just passes around the current continuation:

flat0_k( [[]|T],K) -> flat0_k(T,K);
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The third clause is more complicated because it contains three calls. Let
us decide that the first to be evaluated will be flat0(Y). (Erlang does
not specify the order of evaluation of arguments.) We start by setting
the framework of the new continuation:

flat0_k([Y=[_|_]|T],K) -> flat0_k(Y,fun(V) -> end);

The parameter V will hold, when the new continuation will be called, the
value of flat0(Y). Next, we must evaluate the call flat0(T), so we set

flat0_k([Y=[_|_]|T],K) ->

flat0_k(Y,fun(V) -> flat0_k(T,fun(W) -> end) end);

We have to prepare the future call to cat/2, which must also be trans-
formed in continuation-passing style. What must be catenated are the
values of flat0(Y) and flat0(T). The former will be bound by the para-
meter V and the latter by W, therefore:

flat0_k([Y=[_|_]|T],K) ->

flat0_k(Y,fun(V) ->

flat0_k(T,fun(W) -> cat_k(V,W, ) end) end);

Finally, we must put to good use the continuation K by keeping in mind
its meaning: ‘Call K with the value of cat(flat0(Y),flat0(T)).’ At this
point, we do not know the value of this call, so we have to pass K to
cat_k/3, which will know that value:

flat0_k([Y=[_|_]|T],K) ->

flat0_k(Y,fun(V) ->

flat0_k(T,fun(W) -> cat_k(V,W,K) end) end);

Now, we must transform cat_k/3 in continuation-passing style. The ori-
ginal cat/2 is

cat( [],T) -> T;

cat([X|S],T) -> [X|cat(S,T)].

We have

cat_k( [],T,K) -> K(T);

cat_k([X|S],T,K) -> cat_k(S,fun(V) -> K([X|V]) end).

Note that we did not care for introducing the identity continuation, as
there is only one call to cat_k/3. Remains to transform the last clause
of flat0/2, which contains one call whose context is [Y| ]:

flat0_k( [Y|T],K) -> flat0_k(T,fun(V) -> [Y|V] end).
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Summing up all previous steps, we arrive at

flat0_k(T) -> flat0_k(T,fun(V) -> V end).

flat0_k( [],K) -> K([]);

flat0_k( [[]|T],K) -> flat0_k(T,K);

flat0_k([Y=[_|_]|T],K) ->

flat0_k(Y,fun(V) ->

flat0_k(T,fun(W) -> cat_k(V,W,K) end) end);

flat0_k( [Y|T],K) -> flat0_k(T,fun(V) -> [Y|V] end).

cat_k( [],T,K) -> K(T);

cat_k([X|S],T,K) -> cat_k(S,fun(V) -> K([X|V]) end).

All functions are now in tail form, because a continuation is an anonym-
ous function, that is, it is a value.

Our next example is fib/1, the straightforward but extremely ineffi-
cient implementation of the Fibonacci function:

fib(0) -> 1;

fib(1) -> 1;

fib(N) -> fib(N-1) + fib(N-2).

The corresponding continuation-passing style is

fib_k(N) -> fib_k(N,fun(V) -> V end).

fib_k(0,K) -> K(0);

fib_k(1,K) -> K(1);

fib_k(N,K) ->

fib_k(N-1,fun(V) -> fib_k(N-2,fun(W) -> K(V+W) end) end).

Continuation-passing style is also interesting because it makes some
optimisations easier to spot (Danvy, 2004). The design of sfst0/2 in fig-

ure 2.4 on page 49 was motivated by the need to share the input in case
the sought item was missing. This kind of improvement is common in al-
gorithms combining a search and an optional local update. For example,
let us consider again leaf insertion without duplicates in a binary search
tree in figure 8.9 on page 254:

insl0(Y,{bst,X,T1,T2}) when X > Y -> {bst,X,insl0(Y,T1),T2};

insl0(Y,{bst,X,T1,T2}) when Y > X -> {bst,X,T1,insl0(Y,T2)};

insl0(Y, ext) -> {bst,Y,ext,ext};

insl0(Y, T) -> T.

In case Y is present in the tree, the last clause will share the subtree below
the found occurrence of Y in the input tree, but the two first clauses,
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corresponding to the search phase, will duplicate all the nodes from the
input root to Y (excluded). This can be avoided by threading the original
tree through the recursive calls and transforming the function in tail
form, so if Y is found, the entire input is shared and the evaluation stops
immediately (no pending contexts). First, let us transform the definition
into continuation-passing style (new continuations set in boldface type):

insl0(Y,T) -> insl0(Y,T,fun(V) -> V end).

insl0(Y,{bst,X,T1,T2},K) when X > Y ->

insl0(T1,Y,fun(V) -> K({bst,X,V,T2}) end);

insl0(Y,{bst,X,T1,T2},K) when Y > X ->

insl0(T2,Y,fun(V) -> K({bst,X,T1,V}) end);

insl0(Y, ext,K) -> K({bst,Y,ext,ext});

insl0(Y, T,K) -> K(T).

Second, we thread the original search tree T (renamed U):

insl0(Y,T) -> insl0(TmT,fun(V) -> V end,T).

insl0(Y,{bst,X,T1,T2},K,U) when X > Y ->

insl0(T1,Y,fun(V) -> K({bst,X,V,T2}) end,U);

insl0(Y,{bst,X,T1,T2},K,U) when Y > X ->

insl0(T2,Y,fun(V) -> K({bst,X,T1,V}) end,U);

insl0(Y, ext,K,U) -> K({bst,Y,ext,ext});

insl0(Y, T,K,U) -> K(T).

Finally, we discard the continuation in the last clause of insl0/4 and the
right-hand side shares the input:

insl0(Y,T) -> insl0(Y,T,fun(V) -> V end,T).

insl0(Y,{bst,X,T1,T2},K,U) when X > Y ->

insl0(T1,Y,fun(V) -> K({bst,X,V,T2}) end,U);

insl0(Y,{bst,X,T1,T2},K,U) when Y > X ->

insl0(T2,Y,fun(V) -> K({bst,X,T1,V}) end,U);

insl0(Y, ext,K,U) -> K({bst,Y,ext,ext});

insl0(Y, T,K,U) -> U. % Input shared

In functional languages featuring exceptions, as Erlang does, the same
effect can be achieved without continuations:

insl0(Y,T) -> try insl_(Y,T) catch throw:dup -> T end.

insl_(Y,{bst,X,T1,T2}) when X > Y -> {bst,X,insl_(Y,T1),T2};

insl_(Y,{bst,X,T1,T2}) when Y > X -> {bst,X,T1,insl_(Y,T2)};

insl_(Y, ext) -> {bst,Y,ext,ext};

insl_(Y, T) -> throw(dup).
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This style is to be preferred over CPS because it preserves most of the
original program (‘direct style’). Nevertheless, this shows that continu-
ations are useful when writing a compiler, so features like exceptions
can be removed, as long as higher-order functions are available (Appel,
1992). These, in turn, can be transformed into first-order functions by
defunctionalisation (Reynolds, 1972, Danvy and Nielsen, 2001).

Continuations can also be a design pattern. Consider the problem
of determining whether a given stack is a palindrome, that is, given s,
whether s ≡ rev(s). The obvious

pal(S) -> S == rev(S).

works in n + 2 rewrites because the cost of the operator (==) is not
accounted for. Internally, though, what happens is that S is traversed
(completely if it is a palindrome). If we do not allow ourselves the use of
the equality operator on stacks, we may try

pal(S) -> eq(S,rev(S)).

eq(S,S) -> true;

eq(_,_) -> false.

which is cheating in the same way: the non-linear pattern eq(S,S) re-
quires that its arguments are traversed, without impacting the cost. If
we also give up such patterns on stacks, we may come up with a solution
based on continuations (Danvy and Goldberg, 2001):

pal(S) -> pal(S,S,fun(_) -> true end).

pal( S, [],K) -> K(S); % Even length

pal([_|S], [_],K) -> K(S); % Odd length

pal([X|S],[_,_|T],K) ->

pal(S,T,fun([Y|U]) -> X == Y andalso K(U) end).

We reuse here an idea we saw in figure 4.7 on page 126: duplicating the
reference to S and moving into the second copy twice as fast as in the first
(last clause); when reaching the end of the second copy (first and second
clause of pal/3), the first copy holds the second half of the original
stack, which is applied to the current continuation. The continuation
was constructed by keeping a reference X to the current item in the first
copy and scheduling an equality test with the first item of its parameter
(the operator andalso is sequential, to wit, if its first argument evaluates
to false, its second argument is not evaluated, so the continuation is
dropped). Indeed, the idea is to compare the second half of the original
stack with the items of the first half in reverse order, and this is the very
purpose of the continuation. Note that the continuation takes a stack as
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an argument, but evaluates into a boolean, contrary to previous uses of
continuations, where the initial continuation was the identity function
(compare with par/1). Notice also how we also find out the parity of the
length of the original stack, without using integers. It is easy to write an
equivalent first-order function:

pal0(S) -> pal0(S,S,[]).

pal0( S, [],A) -> eq(S,A);

pal0([_|S], [_],A) -> eq(S,A);

pal0([X|S],[_,_|T],A) -> pal0(S,T,[X|A]).

eq( [], []) -> true;

eq([X|S],[X|T]) -> eq(S,T);

eq( _, _) -> false.

The difference is that pal0/3, instead of constructing a continuation hold-
ing the items of the first half and preparing a test, explicitly reverses the
first half and compares it to second half by means of eq/2. The cost of
pal/1 and pal0/1 is the same.

The minimum cost is Bpal
n = Bpal0

n = ⌊n/2⌋+2, if S is not a palindrome
and a difference lies in the middle.

The maximum cost is Wpal
n = Wpal0

n = 2⌊n/2⌋+1, if S is a palindrome.
Further comparison of their memory consumption would require a

way to quantify the store needed for a functional value, but it is likely
that, in this case, the memory usages of pal/1 and pal0/1 are similar,
so choosing one or the other is purely a matter of style, for instance,
conciseness may be preferred.

Another entertaining example is provided again by Danvy (1988,
1989). The purpose is to make all the prefixes of a word, for example,

allp([a,b,c,d])! [[a],[a,b],[a,b,c],[a,b,c,d]],

where allp/1 stands for all prefixes. Building the suffixes with a linear
cost would be much easier, in particular, it is straightforward to maximise
memory sharing with an alias:

alls( []) -> [];

alls(S=[_|T]) -> [S|alls(T)].

(The name alls means all suffixes.) We have Calls
n = n+ 1 and

alls([a,b,c,d])! [[a,b,c,d],[b,c,d],[c,d],[d]].

A solution for prefixes, based on continuations, is
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allp(S) -> allp(S,fun(X) -> X end).

allp( [],_) -> [];

allp([X|S],K) -> [K([X])|allp(S,fun(T) -> K([X|T]) end)].

Another higher-order solution allp0/1 relies on a map (see page 333):

allp0( []) -> [];

allp0([X|S]) -> [[X]|map(fun(T) -> [X|T] end,allp0(S))].

We have Callp0
n = (n+ 1) +

∑n−1
k=1 k = 1

2n
2 + 1

2n+ 1.

Exercise Write a first-order version of allp0/1.
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Chapter 10

Translation to Java

In this chapter we show how to translate simple functional programs
to Java, illustrating what may be called a functional style in an object-
oriented language. We will make no use of side-effects, so all variables
are assigned only once. Objects programmed in this manner are some-
times called functional objects. The difficulties we face have to do with
the type system of Java, since our functional language is untyped. As
a consequence, some programs cannot be translated and others require
intermediary translations, called refinements, before the equivalent Java
program is produced.

In the introduction, on page 15, we laid out the design pattern for
modelling stacks: an abstract class Stack<Item> parameterised over the
type of its contents Item and two extensions, EStack<Item> for empty
stacks and NStack<Item> for non-empty stacks. It is important to under-
stand the rationale behind this pattern, because it is perhaps more likely
to find an imperative implementation in the following lines:

public class Stack<Item> { // Stack.java

private Item head;

private Stack<Item> tail;

public Stack() { head = null; tail = null; }

public boolean empty() { return head == null; }

public Item pop() throws EmptyStack {

if (empty()) throw new EmptyStack();

final Item orig = head;

if (tail.empty()) head = null; else head = tail.pop();

return orig; }

363
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public void push(final Item item) {

Stack<Item> next = new Stack<Item>();

next.head = head;

next.tail = tail;

head = item;

tail = next; }

}

// EmptyStack.java

public class EmptyStack extends Exception {}

This encoding has several defaults. Firstly, it is incorrect if the top of
a stack (head) is a null reference. This can be remedied by adding a
level of indirection, that is, by creating a private class holding head and
tail or modelling the empty stack with null, which entails to check for
null before calling any method. Secondly, pervasive use of null refer-
ences increases the risk of an invalid access. Thirdly, the code for pop

and push already suggests that further operations will lead to lengthy
reference manipulations. Fourthly, persistence, for example, keeping suc-
cessive versions of a stack, is not easy.

A thorough study of the issues of null references in programming lan-
guage design is given by Chalin and James (2007), Cobbe (2008) and
Hoare (2009). One practical inconvenience of such references is that they
render the composition of methods cumbersome and, for example, in-
stead of writing s.cat(t).push(x).rev(), we would have to check if each
call returns null or not.

The design we presented in the introduction avoids all the problems
and limitations previously mentioned. Of course, this comes with a cost,
which we will discuss in a couple of occasions. For now, let us recall the
Java program of the introduction, which will be completed further in this
chapter:

// Stack.java

public abstract class Stack<Item> {

public final NStack<Item> push(final Item item) {

return new NStack<Item>(item,this); }

public abstract Stack<Item> cat(final Stack<Item> t); }

// EStack.java

public final class EStack<Item> extends Stack<Item> {

public Stack<Item> cat(final Stack<Item> t) { return t; }

}
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// NStack.java

public final class NStack<Item> extends Stack<Item> {

private final Item head;

private final Stack<Item> tail;

public NStack(final Item item, final Stack<Item> stack) {

head = item; tail = stack;

}

public NStack<Item> cat(final Stack<Item> t) {

return tail.cat(t).push(head);

}

}

Notice that we eschewed defining any method pop. The reason is that
it is intrinsically a partial function, undefined when its argument is the
empty stack, and this is why we had to resort to the exception EmptyStack

above. In practice, anyway, this method is hardly useful as it would be
implicit in an algorithm, for example, in the definition of cat in class
NStack<Item>. More fundamentally, because head and tail are part of
the data structure itself, there is no need for a pop method.

10.1 Single dispatch

Stack reversal As we have seen in equation (2.2) on page 39, the
efficient manner to reverse a stack in our functional language consists in
using an accumulator as follows:

rev(s)
ϵ−→ rcat(s, [ ]). rcat([ ], t)

ζ−→ t; rcat([x |s], t) η−→ rcat(s, [x |t]).

Function rev/1 is defined with one rule which does not discriminate on
the nature of its parameter. Therefore, its translation will be one method
in the abstract class Stack<Item>:

// Stack.java

public abstract class Stack<Item> {

...

public Stack<Item> rev() {

return rcat(new EStack<Item>()); }

}

An examination of the patterns defining the rules of function rcat/2 shows
that only the first parameter is constrained, more precisely, it is either
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expected to be an empty stack or a non-empty stack. This simple kind
of functional definition is easily translated by relying upon the single
dispatch feature of Java, that is, the dynamic class of an object determ-
ines the method being called. When, in a rule, exactly one parameter
is constrained, it is thus the natural candidate for single dispatch. For
example,

// Stack.java

public abstract class Stack<Item> {

...

public abstract Stack<Item> rcat(final Stack<Item> t);

}

Class EStack<Item> contains the translation of rule ζ:

// EStack.java

public final class EStack<Item> extends Stack<Item> {

...

public Stack<Item> rcat(final Stack<Item> t) { return t; }

}

Class NStack<Item> holds the translation of rule η (tail is s, head is x):

// NStack.java

public final class NStack<Item> extends Stack<Item> {

...

public Stack<Item> rcat(final Stack<Item> t) {

return tail.rcat(t.push(head));

}

}

Skipping Let us recall the function sfst/2 in section 2.3 on page 43:

sfst([ ], x)
θ−→ [ ]; sfst([x |s], x) ι−→ s; sfst([y |s], x) κ−→ [y |sfst(s, x)].

This definition cannot be translated as it is because it contains an implicit
equality test in its patterns ι and κ, hence it cannot solely rely on single
dispatch. Perhaps the easiest way to proceed is to extend our functional
language with a conditional expression if . . . then . . . else . . . and refine the
original definition to use it. Here, we obtain

sfst([ ], x)
θ−→ [ ]; sfst([y |s], x) ι+κ−−→ if x = y then s else [y |sfst(s, x)].

Now that pattens do not overlap anymore, we can translate to Java. First,
we must not forget to expand the abstract class Stack<Item>:
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// Stack.java

public abstract class Stack<Item> {

...

public abstract Stack<Item> sfst(final Item x);

}

The translation of rule θ goes into the class EStack<Item>:

// EStack.java

public final class EStack<Item> extends Stack<Item> {

...

public EStack<Item> sfst(final Item x) { return this; }

}

The joint translation of ι and κ is

// NStack.java

public final class NStack<Item> extends Stack<Item> {

...

public Stack<Item> sfst(final Item x) {

return head.compareTo(x) == 0 ?

tail : tail.sfst(x).push(head); }

}

This last step reveals a mistake and a limitation of our method: in order
to compare two values of class Item like head and x, we need to specify
that Item extends the predefined class Comparable. Therefore, we must
rewrite our class definitions as follows:

public abstract class Stack<Item

extends Comparable<? super Item>> {

...

}

public class EStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

}

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

}

It is a limitation because we must constrain Item to be comparable even
if some methods do not require this, like rev, which is purely structural.
Also, the abstract class must be updated every time a new operation is



368 CHAPTER 10. TRANSLATION TO JAVA

added. (For a detailed understanding of generics in Java, see Naftalin
and Wadler (2006).)

Insertion sort Insertion sort was defined in section 3.1 on page 91 as

ins([y |s], x) κ−→ [y | ins(s, x)], if x ≻ y; isrt([ ])
µ−→ [ ];

ins(s, x)
λ−→ [x |s]. isrt([x |s]) ν−→ ins(isrt(s), x).

Function isrt/1 is easy to translate because it only needs single dispatch.
Function ins/2 too, but first requires a refinement introducing a condi-
tional. Easy things first:

// Stack.java

public abstract class Stack<Item

extends Comparable<? super Item>> {

...

public abstract Stack<Item> isrt();

}

// EStack.java

public class EStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public EStack<Item> isrt() { return this; }

}

// NStack.java

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public NStack<Item> isrt() {return tail.isrt().ins(head);}

}

Notice how ins(isrt(s), x) became tail.isrt().ins(head). The general
method consists, firstly, in translating x and s into x and tail; secondly,
in finding a possible order of evaluation (there may be more than one)
and laying out the translations of each function call from left to right,
separated by full stops. In the case at hand, isrt(s) is evaluated first and
becomes tail.isrt(), then ins( , x), which yields .ins(head).

The refinement of ins/2 is

ins([y |s], x)→ if x ≻ y then [y | ins(s, x)] else [x |s];
ins([ ], x)→ [x].

Note how we split rule λ in two cases: [ ] and [y |s], so the latter can be
merged with rule κ and partake to the conditional. We can now translate
to Java:
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// Stack.java

public abstract class Stack<Item

extends Comparable<? super Item>> {

...

protected abstract NStack<Item> ins(final Item x);

}

// EStack.java

public class EStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

protected NStack<Item> ins(final Item x) {return push(x);}

}

// NStack.java

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

protected NStack<Item> ins(final Item x) {

return head.compareTo(x) < 0 ?

tail.ins(x).push(head) : push(x); }

}

The method ins is declared protected, because it is erroneous to insert
an item into a non-ordered stack.

Testing To test these definitions, we need a method print:

public abstract void print(); // Stack.java

public void print() { System.out.println(); } // EStack.java

public void print() { // NStack.java

System.out.print(head + " "); tail.print(); }

Finally, the Main class would look like

public class Main { // Main.java

public static void main (String[] args) {

Stack<Integer> nil = new EStack<Integer>();

Stack<Integer> s = nil.push(5).push(2).push(7);

s.print(); // 7 2 5

s.rev().print(); // 5 2 7

Stack<Integer> t = nil.push(4).push(1); // 1 4

s.cat(t).print(); // 7 2 5 1 4

t.cat(s).isrt().print(); } // 1 2 4 5 7

}



370 CHAPTER 10. TRANSLATION TO JAVA

The properties we proved earlier on the functional source codes are trans-
ferred to the Java target codes. In particular, the costs are left invariant
and they count the number of method calls needed to compute the value
of a method call, assuming that we do not account for the calls to push:
this method, which was intended as a commodity, was declared final in
the hope that the compiler might inline its definition.

Cutting In section 2.6 on page 66, we saw how to cut a stack in two
stacks by specifying the length of the prefix:

cut(s, 0)→ ⟨[ ], s⟩; push(x, ⟨t, u⟩)→ ⟨[x |t], u⟩.
cut([x |s], k)→ push(x, cut(s, k − 1)).

Here, we have another instance of a rule which covers two different cases:
in the first rule of cut/2, either s is empty or not. If the latter, the
translation of the rule must be merged with the translation of the second
rule. There is an additional difficulty in the fact that Java does not
provide native pairs to translate ⟨t, u⟩ immediately. Fortunately, it is not
difficult to devise a class for pairs if we realise that, abstractly, a pair is a
thing that has two properties: one informing about its ‘first component’
and another about its ‘second component.’ We have

// Pair.java

public class Pair<Fst,Snd> {

protected final Fst fst;

protected final Snd snd;

public Pair(final Fst f, final Snd s) {fst = f; snd = s;}

public Fst fst() { return fst; }

public Snd snd() { return snd; }

}

Now we can proceed as follows:

// Stack.java

public abstract class Stack<Item

extends Comparable<? super Item>> {

...

public abstract

Pair<Stack<Item>,Stack<Item>> cut(final int k);

}

Notice that, as usual, a function with n parameters is translated into a
method with n − 1 parameters because one of them is used to perform
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the single dispatch or, in terms of the type system, it supports subtype
polymorphism (Pierce, 2002).

// EStack.java

public class EStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Pair<Stack<Item>,Stack<Item>> cut(final int k) {

return new Pair<Stack<Item>,Stack<Item>>(this,this);

}

}

// NStack.java

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Pair<Stack<Item>,Stack<Item>> cut(final int k) {

if (k == 0)

return new Pair<Stack<Item>,Stack<Item>>

(new EStack<Item>(),this);

Pair<Stack<Item>,Stack<Item>> p = tail.cut(k-1);

return new Pair<Stack<Item>,Stack<Item>>

(p.fst().push(head),p.snd());

}

}

Finally, the Main class could look like

// Main.java

public class Main {

public static void main (String[] args) {

Stack<Integer> nil = new EStack<Integer>();

Stack<Integer> s = nil.push(5).push(2).push(7); // 7 2 5

Stack<Integer> t = nil.push(4).push(1); // 1 4

Pair<Stack<Integer>,Stack<Integer>> u = s.cat(t).cut(2);

u.fst().print(); // 7 2

u.snd().print(); // 5 1 4

}

}

A translation may or must enjoy different interesting properties. For ex-
ample, it must be correct in the sense that the result of the evaluation
of a call in the source language is, in a certain sense, equal to the result
of the evaluation of the translated call. This is what we wanted for our
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translation from our functional language to Java. Additionally, it could
be required that erroneous behaviours also translate into erroneous be-
haviours. For example, it may be desirable that infinite loops translate
into infinite loops and that run-time errors in evaluations in the source
langage correspond to similar errors in the target. (The translation of
cut/2 does not preserve all errors. Why?)

10.2 Binary dispatch

Functions defined by matching two or more stacks in the same pattern
call for multiple dispatch in a target object-oriented language. Unfor-
tunately, Java only features single dispatch, in other words, only one
parameter of the source function supports subtype polymorphism in the
target. In case of binary dispatch, we can refine the source definition into
an equivalent definition which can, in turn, be translated with single
dispatch alone. This technique was proposed a long time ago by Ingalls
(1986) and a practical overview was published by Muschevici et al. (2008).

Merge sort For example, let us consider again the definition of mrg/2
in figure 4.7 on page 126:

mrg([ ], t)→ t;
mrg(s, [ ])→ s;

mrg([x |s], [y |t])→ [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t)→ [x |mrg(s, t)].

We need to rewrite this definition so only one stack is inspected in the
patterns. In order to do so, we choose arbitrarily one stack parameter, let
us say the first, and match it against the empty and non-empty patterns
as follows:

mrg([ ], t)→ t;
mrg([x |s], t)→ mrg0(x, s, t).

mrg0(x, s, [ ])→ [x |s];
mrg0(x, s, [y |t])→ if x ≻ y then [y |mrg([x |s], t)] else [x |mrg(s, [y |t])].

Note how we had to introduce an auxiliary function mrg0/3 to handle
the matching of the second argument, t, of mrg/2. We also made use
of a conditional construct in the last rule of mrg0/3, where we can also
avoid the memory-consuming pushes [x | s] and [y | t] by, respectively,
calling mrg0(x, s, t) and mrg0(y, t, s). The latter call is a consequence of
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the theorem that merging is a symmetric function: mrg(s, t) ≡ mrg(t, s).
We have now

mrg([ ], t)→ t;
mrg([x |s], t)→ mrg0(x, s, t).

mrg0(x, s, [ ])→ [x |s];
mrg0(x, s, [y |t])→ if x ≻ y then [y |mrg0(x, s, t)] else [x |mrg0(y, t, s)].

Then we have two functions that can be translated to Java only using
single dispatch:

// Stack.java

public abstract class Stack<Item

extends Comparable<? super Item>> {

...

public abstract Stack<Item> mrg(final Stack<Item> t);

public abstract Stack<Item> mrg0(final Item x,

final Stack<Item> s);

}

// EStack.java

public class EStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Stack<Item> mrg(final Stack<Item> t) { return t; }

public Stack<Item> mrg0(final Item x,final Stack<Item> s){

return s.push(x); }

}

// NStack.java

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Stack<Item> mrg(final Stack<Item> t) {

return t.mrg0(head,tail); }

public Stack<Item> mrg0(final Item x,

final Stack<Item> s) {

return x.compareTo(head) > 0 ?

tail.mrg0(x,s).push(head)

: s.mrg0(head,tail).push(x); }

}

Keep in mind that the pattern mrg0(x, s, [y | t]) means that [y | t] trans-
lates as this, so the target code should go in the class NStack<Item>,
where head is the translation of y and tail is the image of t. Finally,
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public class Main { // Main.java

public static void main (String[] args) {

Stack<Integer> nil = new EStack<Integer>();

Stack<Integer> s = nil.push(5).push(2).push(7); // 7 2 5

Stack<Integer> t = nil.push(4).push(1); // 1 4

s.isrt().mrg(t.isrt()).print(); // 1 2 4 5 7

t.isrt().mrg(s.isrt()).print(); // 1 2 4 5 7

}

}

At this point, it could be argued that our translation scheme leads to
cryptic Java programs. But this critique is valid only because it forgets
to take into account any specification. We propose that the functional
program is the specification of the Java program and should accompany
it. A translation to Erlang could be performed first, due to its simplicity,
and it would in turn be translated into Java, while remaining as a com-
ment in the target code and its documentation. For example, we would
write

// NStack.java

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

// mrg0(X,S,[Y|T]) -> case X > Y of

// true -> [Y|mrg0(X,S,T)];

// false -> [X|mrg0(Y,T,S)]

// end.

//

public Stack<Item> mrg0(final Item x,

final Stack<Item> s) {

return x.compareTo(head) > 0 ?

tail.mrg0(x,s).push(head)

: s.mrg0(head,tail).push(x); }

}

(We could even go a step further and rename the Erlang parameters Y

and T, respectively, as Head and Tail.) This has the additional advantage
that the specification is executable, so the result of running the Erlang
program can be expected to be equal to the result of the translated run
in Java, which is a significant help for the test phase.

Let us finish now the translation of top-down merge sort in fig-

ure 4.7 on page 126. We have

tms([x, y |t]) α−→ cutr([x], [y |t], t); tms(t)
β−→ t.
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A refinement is necessary because rule β covers the case of the empty
stack and the singleton stack. Let us make all these cases explicit and
reorder them as follows:

tms([ ])→ [ ]; tms([x])→ [x]; tms([x, y |t])→ cutr([x], [y |t], t).

Now, we must fuse the two last rules because they are covered by the
case ’non-empty stack’ and introduce an auxiliary function tms0/2 whose
role is to distinguish between the singleton and longer stacks. Whence

tms([ ])
γ−→ [ ]; tms0(x, [ ])

ϵ−→ [x];
tms([x |t]) δ−→ tms0(x, t). tms0(x, [y |t])

ζ−→ cutr([x], [y |t], t).

At this point, both tms/1 and tms0/2 can be translated into Java using
single dispatch but, before doing so, we must check whether the final
refinement is indeed equivalent to the original program. We can test
some calls whose partial evaluations make use, as a whole, of all the
rules in the refined program and then compare them with the partial
evaluations in the original program. (This is an instance of structural
testing , more precisely, path testing .) Here, we found out that three cases
are distinguished: empty stack, singleton and longer stacks. In the refined
program, we have the interpretations

tms([ ])
γ−→ [ ].

tms([x])
δ−→ tms0(x, [ ])

ϵ−→ [x].
tms([x, y |t]) δ−→ tms0(x, [y |t])

ζ−→ cutr([x], [y |t], t).

We can now compare with the same calls being partially computed with
the original program:

tms([ ])
β−→ [ ].

tms([x])
β−→ [x].

tms([x, y |t]) α−→ cutr([x], [y |t], t).

These calls agree and cover all the arrows in all the definitions. We can
now translate the refined program:

// Stack.java

public abstract class Stack<Item

extends Comparable<? super Item>> {

...

public abstract Stack<Item> tms();

protected abstract Stack<Item> tms0(final Item x);

}
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// EStack.java

public class EStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Stack<Item> tms() { return this; }

protected Stack<Item> tms0(final Item x) {

return push(x);

}

}

// NStack.java

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Stack<Item> tms() { return tail.tms0(head); }

protected Stack<Item> tms0(final Item x) {

return tail.cutr(new EStack<Item>().push(x),this);

}

}

Notice again how auxiliary functions result in protected methods and
how they add to the overall cost, compared to the functional program:
this is a limitation on how properties on the source transfer to the target.
However, the asymptotic cost is the same as in the original functional
program. A closer look at tms0 shows that we translated [y | t] by this

instead of tail.push(head), as an optimisation. Moreover, we dispatch
cutr on tail because we already know that this is the parameter we are
going to distinguish when translating cutr/3 defined in figure 4.7 on
page 126:

cutr(s, [y |t], [a, b |u])→ cutr([y |s], t, u);
cutr(s, t, u)→ mrg(tms(s), tms(t)).

We remark that two stacks are matched by the first pattern so some
refinement is called for and we must choose one parameter to start with.
A little attention reveals that the third one is the best choice, because
if it does not contain at least two items, it is simply discarded. We need
to introduce two auxiliary functions, cutr0/3 and cutr1/3, that check, re-
spectively, whether the third parameter contains at least two items and
whether the second contains at least one. The result is shown in fig-

ure 10.1. Note how cutr1(s, [ ], u) → mrg(tms(s), tms([ ])) was simplified
using the theorems tms([ ]) ≡ [ ] and mrg(s, [ ]) ≡ s. The translation is
now direct:
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cutr(s, t, [ ])→ mrg(tms(s), tms(t));
cutr(s, t, [a |u])→ cutr0(s, t, u).

cutr0(s, t, [ ])→ mrg(tms(s), tms(t));
cutr0(s, t, [b |u])→ cutr1(s, t, u).

cutr1(s, [ ], u)→ tms(s);
cutr1(s, [y |t], u)→ cutr([y |s], t, u).

Figure 10.1: Cutting and merging top-down

// Stack.java

public abstract class Stack<Item

extends Comparable<? super Item>> {

...

public abstract Stack<Item> cutr(final Stack<Item> s,

final Stack<Item> t);

protected abstract Stack<Item> cutr0(final Stack<Item> s,

final Stack<Item> t);

protected abstract Stack<Item> cutr1(final Stack<Item> s,

final Stack<Item> u);

}

// EStack.java

public class EStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Stack<Item> cutr(final Stack<Item> s,

final Stack<Item> t) {

return s.tms().mrg(t.tms()); }

protected Stack<Item> cutr0(final Stack<Item> s,

final Stack<Item> t) {

return s.tms().mrg(t.tms()); }

protected Stack<Item> cutr1(final Stack<Item> s,

final Stack<Item> u) {

return s.tms();

}

}
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// NStack.java

public class NStack<Item extends Comparable<? super Item>>

extends Stack<Item> {

...

public Stack<Item> cutr(final Stack<Item> s,

final Stack<Item> t) {

return tail.cutr0(s,t);

}

protected Stack<Item> cutr0(final Stack<Item> s,

final Stack<Item> t) {

return t.cutr1(s,tail);

}

protected Stack<Item> cutr1(final Stack<Item> s,

final Stack<Item> u) {

return u.cutr(s.push(head),tail);

}

}

Note that it is of the utmost importance to constantly mind the para-
meter in the source function whose translation will be the base for dis-
patch. Finally, the Main class might look like

// Main.java

public class Main {

public static void main (String[] args) {

Stack<Integer> nil = new EStack<Integer>();

Stack<Integer> s = nil.push(5).push(2).push(7); // 7 2 5

Stack<Integer> t = nil.push(4).push(1); // 1 4

s.tms().print(); // 2 5 7

s.cat(t).tms().print(); // 1 2 4 5 7

}

}



Chapter 11

Introduction to XSLT

Recursion is a programming technique often neglected in undergraduate
curricula, rushed at the end of the semester, except when the program-
ming language is functional, that is, if it prominently features immutable
data and a control flow mostly defined by the composition of mathemat-
ical functions. Examples of such languages are Scheme, Haskell, OCaml,
Erlang and XSLT (Kay, 2008). Amongst them, XSLT is rarely taught in
college, so professionals without prior exposure to functional program-
ming are likely to face the double challenge of learning a new program-
ming paradigm and using XML: while the former put forth recursion,
the latter obscures it because of its inherent verbosity. The syntactic dif-
ficulty is inevitable with XSLT because its grammar is XML, as well as
it is the grammar of its input and, usually, of its output.

This is why this chapter introduces the basics of XSLT by relying
on our understanding of our abstract functional programming language
or, concretely, a small subset of Erlang, a language chosen for its plain
and regular syntax, as well as its native pattern matching, yielding very
compact programs. Hopefully, the mental model of an Erlang program-
mer will ease the transition to thinking recursively in XSLT, having then
to overcome only the obstacle of XML. Accordingly, a tiny subset of
XSLT is presented and previous examples in Erlang are systematically
stripped of their use of pattern matching so they become easily translat-
able into XSLT, which lacks that feature. At the same time, new exercises
on unranked trees, that is, trees where internal nodes can have a variable
number of children, are worked out directly in XSLT, aiming at a transfer
of skills from Erlang.

The purpose of this chapter is not to present as many features of XSLT
as possible, but to think recursively in XSLT, which can be conceived as
a functional language specialised for the processing of XML documents.

379
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11.1 Documents

We start our journey with a very brief presentation of the basics of XML,
HTML and DTD, based on our lecture notes. The reader already a bit
familiar with these languages may skip it and use it as a reference for
the following chapters.

XML The acronym XML stands for eXtensible Markup Language. It is
a language for defining unranked trees with plain text, with a minimum
number of syntactic constructs. These trees are used to model structured
documents. Database programmers would perhaps call them semi-struc-
tured data because they are then conceived in opposition to data that fit
well into tables, the fundamental structure of relational databases. These
tables implement a mathematical model of relations satisfying schemas,
whilst XML represents unranked trees and formal grammars. (To add to
the confusion, XML also can be adjoined schemas of their own.) Anyway,
to understand what XML is and how this modelling works, it is probably
easier to start with a small example, like an email. What are the different
elements and what is the structure, that is, how are the elements related
to each other? As far as the elements are concerned, an email contains
at least

• the sender’s address,
• a subject or title,
• the recipient’s address,
• a body of plain text.

The elements correspond to the tree nodes and the structure is modelled
by the shape of the tree itself (its topology). For example:

From: Me

Subject: Homework

To: You

A deadline is a due date for a homework.

This email can be modelled by a tree in figure 11.1 on the facing page.

Note that the (boxed) leaves, called text nodes, contain text whereas the
inner nodes contain information about their subtrees, in particular the
leaves. Since the information in the inner nodes describes the information
actually laid out, it is called metadata or mark-up, which explains part
of the acronym ‘XML’. The corresponding XML document is:
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email

from

Me

subject

Homework

to

You

body

A definition

deadline

is[...] emphasis

homework

.

Figure 11.1: An email viewed as an XML tree

<email>

<from>Me</from>

<subject>Homeworks</subject>

<to>You</to>

<body>

A <definition>deadline</definition> is a due date for a

<emphasis>homework</emphasis>.

</body>

</email>

Elements Each subtree is denoted by an opening and a closing tag. An
opening tag is a name enclosed between < and >. A closing tag is a name
enclosed between </ and >. A pair of opening and closing tags constitute
an element ; in other words, a subtree corresponds to an element. In
particular, the element including all the others is called the root element
(here, it is named email). The element name is not part of the text, it is
metadata, so it suggests the meaning of the data contained in the subtree.
For example, the whole XML document is an element whose name is
email because the document describes a email. A preorder traversal of the
XML tree (see page 203 for binary trees) yields nodes in the same order
as their corresponding elements, when read in the XML document. (We
shall comment on this.) The data (as opposed to the metadata) is always
contained in the leaves, and is always text. Note, in particular, how the
contents of the text nodes who are children of elements definition and
emphasis have been respectively typeset with a bold typeface and in
italics, but other interpretations would have been possible. It is important
to understand that visual interpretations of mark-up are not defined in
XML. This is why we wrote earlier that XML is purely a formal grammar,
without semantics.

Actually, our example is not a correct XML document because it lacks
a special element which says that the document is indeed XML, and, more
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precisely, what is the version of XML used here, for instance:

<?xml version="1.0"?>

This special element is actually not an element per se, as the special
markers <? and ?> show. It is more a declaration, carrying some inform-
ation about the current file to destination of the reader, whether it is a
parsing software, usually called an XML processor, or a human. As such,
it is a processing instruction (more to come on this).

For now, consider the following element:

<axiom>

The empty set <varnothing/> contains no elements.

</axiom>

which could be interpreted as

Axiom: The empty set ∅ contains no elements.

This <varnothing/> is an empty element, it features a special tag
terminator, />, which is absent in normal opening and closing tags. It
is useful for denoting things, as symbols, that cannot be written with
the Roman alphabet and need to be distinguished from plain text. The
associated tree is

axiom

The empty set varnothing contains no elements.

An empty element corresponds to a leaf in the XML tree, despite it is
mark-up and not data.

Nodes do not need to be unique amongst siblings. For instance, if we
want to send an email to several recipients, we would write:

<email>

<from>Me</from>

<subject>Homeworks</subject>

<to>You</to>

<to>Me</to>

<body>

A <definition>deadline</definition> is a due date for a

<emphasis>homework</emphasis>.

</body>

</email>
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The XML tree associated to this XML document is

email

from

Me

subject

Homeworks

to

You

to

Me

body

A definition

deadline

is[...] emphasis

homework

.

Note that there are two nodes to and that their order must be the same
as in the XML document.

Attributes It is possible to annotate each mark-up node with some
labelled strings, called attributes. For example, we may want to specify
that our email is urgent, which is a property of the email as a whole, not
a part of the contents per se:

<email priority="urgent">

<from>Me</from>

<subject>Homeworks</subject>

<to>You</to>

<body>

A <definition>deadline</definition> is a due date for a

<emphasis>homework</emphasis>.

</body>

</email>

That XML document may be represented by the following annotated tree:

email

@priority

urgent

from

Me

subject

Homeworks

to

You

body

[...]

Note the symbol @ preceding the attribute name, which distinguishes it
from element nodes. Amongst siblings, attribute nodes are found before
element nodes. We may attach several attributes to a given element:

<email priority="urgent" ack="yes">

<from>Me</from>

<subject>Homeworks</subject>
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<to>You</to>

<body>

A <definition>deadline</definition> is a due date for a

<emphasis>homework</emphasis>.

</body>

</email>

email

@priority

urgent

@ack

yes

from

Me

subject

Homeworks

to

You

body

[...]

The order of the attributes matters. Any element can have attributes,
including empty elements. Attributes are considered to be a special kind
of node, although they are not often represented in the XML tree for lack
of room.

The xml processing instruction too can hold other predefined attrib-
utes besides version:

<?xml version="1.0" encoding="UTF-8"?>

<?xml version=’1.1’ encoding="US-ASCII"?>

<?xml version=’1.0’ encoding=’iso-8859-1’?>

The encoding is the character encoding of the XML document, which is
particularly useful when using Unicode or some dedicated Asian font, for
instance. Note that the attribute names must be in lowercase and the
attribute values must be enclosed in single or double quotes. In the case
of version and encoding, only some standardised values are valid.

Escaping Most programming languages offer strings of characters to
the programmer to use. For instance, in C, the strings are enclosed
between double quotes, like "abc". Thus, if the string contains double
quotes, we must take care of distinguishing, or escaping, them, so the
compiler (or, more precisely, the parser) can recognise the double quotes
in the contents from the enclosing double quotes. In C, escaping a char-
acter is achieved by adding a backslash just before it. This way, the
following is a valid C string: "He said: \"Hello!\"."

In XML, there is a similar problem. The attribute values can either be
enclosed by single or double quotes. If the latter, the double quotes in the
contents need escaping; if the former, the quotes need escaping. Problems
also stem from the characters used for the mark-up. For example, the
following element
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<problem>For all integers n, we have n < n + 1.</problem>

is not valid because the text between the tags contains the character ‘<’,
which is confused by the XML parsers with the (expected) start of a tag:

<problem>For all integers n, we have n < n + 1.</problem>

The way in which XML escapes this character is by using the special
sequence of characters &lt; so the previous element, once corrected, is

<valid>For all integers n, we have n &lt; n + 1.</valid>

Predefined named entities The sequence &lt; is called a predefined
named entity. Such entities always

1. start with an ampersand (&),
2. continue with a predefined name (here, lt),
3. end with a semicolon (;).

Of course, the use of the ampersand to mark the start of an entity entails
that this very character must itself be escaped if used to only denote
itself. In that case, we should use &amp; instead. There are some other
characters which can sometimes cause a problem to XML parsers (as
opposed to always create a problem, as < and & do). A summary of all
the predefined named entities is given in the following table.

Character Entity Mandatory

& &amp; always
< &lt; always
> &gt; in attribute values
" &quot; between double quotes
’ &apos; between single quotes

As an illustration, consider the following document:

<?xml version="1.0" encoding="UTF-8"?>

<escaping>

<amp>&amp;</amp>

<lt>&lt;</lt>

<quot>&quot;</quot>

<quot attr="&quot;">"</quot>

<apos attr=’&apos;’>&apos;</apos>

<apos>’</apos>

<gt>&gt;</gt>
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<gt attr="&gt;">></gt>

<other>&#100;</other>

<other>&#x00E7;</other>

</escaping>

The two last entities are predefined numbered entities because they denote
characters by using their Unicode point (http://www.unicode.org/). If
the code is given in decimal, it is introduced by &#, for instance, &#100.
If the code is given in hexadecimal, it is introduced by &#x, for example,
&#x00E7.

Internal entities It can be annoying to use numbers to refer to charac-
ters, especially if one considers that Unicode requires up to six digits. To
make life easier, it is possible to bind a name to an entity representing a
character, and get a user-defined internal entity. They are called internal
because their definition must be in the same document where they are
used. For example, it is easier to use &n; rather than &#241, especially if
the text is in Spanish (this represents the letter ñ). This kind of entity
must be declared in the document type declaration, which is located, if
any, just after the declaration <?xml ... ?> and before the root element.
A document type declaration is made of the following components:

1. the opening <!DOCTYPE,
2. the root element name,
3. the opening character [,
4. the named character entity declarations,
5. the closing ]>.

A named character entity declaration is made of

1. the opening <!ENTITY,
2. the entity name,
3. the numbered character entity between double quotes,
4. the closing >

For example: <!ENTITY n "&#241;"> Here is a complete example:

<?xml version="1.0"?>

<!DOCTYPE spain [

<!ELEMENT spain (#PCDATA)>

<!ENTITY n "&#241;">

]>

<spain>

Viva Espa&n;a!

</spain>
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One can think such an entity as being a macro in cpp, the C preprocessor
language. It is indeed possible to extend user-defined internal entities to
denote any character string, not just a single character. Typically, if one
wishes to repeat a long or difficult piece of text, like a foreign company
name or the genealogy of the kings of Merina, it is best to name this text
and put an entity with that name wherever one wants its contents. The
syntax for the declaration is fundamentally the same. For example,

<!ENTITY univ "Konkuk University">

<!ENTITY motto "<spain>Viva Espa&n;a!</spain>">

<!ENTITY n "&#241;">

External entities Sometimes the XML document needs to include
other XML documents, but copying and pasting of those is not a good
strategy, since this precludes us from automatically following their edit-
ing. Fortunately, XML allows us to specify the inclusion of other XML
documents by means of external entities. The declaration of these entities
is as follows:

1. the opening <!ENTITY,
2. the entity name,
3. the keyword SYSTEM,
4. the full name of the XML file between double quotes,
5. the closing >

For example,

<?xml version="1.0"?>

<!DOCTYPE longdoc [

<!ENTITY part1 SYSTEM "p1.xml">

<!ENTITY part2 SYSTEM "p2.xml">

<!ENTITY part3 SYSTEM "p3.xml">

]>

<longdoc>

The included files are:

&part1;

&part2;

&part3;

</longdoc>

At parsing time, the external entities are fetched by the underlying op-
erating system and copied into the main XML document, replacing their
associated entity. Therefore the included parts cannot contain any pro-
log, that is, no XML declaration <?xml ... ?> and no document type
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declaration <!DOCTYPE ... ]>. When reading an external entity, XML
processors are required to copy verbatim the contents of the referenced
external document and then to parse it as if it always belonged to the
main document.

Unparsed entities Unparsed entities allow us to refer to binary ob-
jects, like images, videos, sounds, or to some text which is not XML, like
a program or a play by Shakespeare. They are declared by

1. the opening <!ENTITY,
2. the entity name,
3. the keyword SYSTEM,
4. the full name of the non-XML external file between double quotes,
5. the keyword NDATA,
6. a notation (the kind of the file),
7. the closing >

The following is an example.

<?xml version="1.0"?>

<!DOCTYPE doc [

<!ELEMENT doc (para,graphic)>

<!ELEMENT para (#PCDATA)>

<!ELEMENT graphic EMPTY>

<!ATTLIST graphic image CDATA #REQUIRED

alt CDATA #IMPLIED>

<!NOTATION gif

SYSTEM "CompuServe Graphics Interchange Format 87a">

<!ENTITY picture SYSTEM "picture.gif" NDATA gif>

<!ENTITY me "Christian Rinderknecht">

]>

<doc>

<para>The following element refers to my picture:</para>

<graphic image="picture" alt="A picture of &me;"/>

</doc>

Had we used external entities, the object would have been copied in place
of the reference and parsed as XML – which it is not. Notice the notation
gif, which is the kind of the unparsed entity. Notations must be defined
in the document type declarations as follows:

1. the opening <!NOTATION,
2. the notation name,
3. the keyword SYSTEM,
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4. a description of the kind of unparsed entity the notation refers to
(it can be a MIME type, an URL, plain English...)

5. the closing >

Notice also that unparsed entities must be used either

• as attribute values (in our example, the attribute name is image),
• or as names (picture), instead of the entity syntax (&picture;).

For example, the next document is not well-formed:

<?xml version="1.0"?>

<!DOCTYPE doc [

<!NOTATION jpeg SYSTEM "image/jpeg">

<!ENTITY pic "pictures/me.jpeg" NDATA jpeg>

]>

<doc>

&pic;

</doc>

Unparsed character data It is sometimes tiresome to have to escape
characters, that is, to use character entities. To avoid the need of escap-
ing, there is a special construct: CDATA sections (short for ‘Character
DATA’), made of

1. the opening <!CDATA[,
2. some text without escaping and without the sequence ]]>,
3. the closing ]]>.

For example

<paragraph>An example of conditional in C:

<c><!CDATA[if (x < y) return &r;]]></c>

</paragraph>

entity

parsed

predefined

named numbered

user-defined

internal external

unparsed

Figure 11.2: Summary of the different kinds of entities
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Internal linking Consider a document representing a technical book,
like a textbook. It is common to find cross-references in such kind of
books, that is, references in some chapters to other chapters or sections,
or bibliographical entries. One easy way to achieve this is to use some
attributes as labels, that is, names unambiguously identifying a location
in the structure, and some attributes as references (to the labels). The
problem is that the writer is then in charge of checking whether

• a given label is unique throughout the whole document, including
external entities,

• every reference corresponds to an existing label (linking).

XML provides a way to ensure that any validating parser will check this
kind of internal linking automatically: using the predefined attributes ID

and IDREF. The former is the kind of all the (attribute) labels and the
latter is the kind of all the (attribute) references. The attributes used
either as labels or references must be declared in the DOCTYPE section
using ATTLIST (‘attribute list’).

To declare labels, we must write

1. the opening <!ATTLIST,
2. the name of the element being labelled,
3. the names of the label attributes separated by spaces,
4. the keyword ID,
5. the keyword #REQUIRED if the element must always be labelled, oth-

erwise #IMPLIED,
6. the closing >

For the references, we must write

1. the opening <!ATTLIST,
2. the name of the referring element,
3. the names of the reference attributes separated by spaces,
4. the keyword IDREF,
5. the keyword #REQUIRED if the element must always carry a reference,

otherwise #IMPLIED,
6. the closing >

For example,

<?xml version=’1.0’?>

<!DOCTYPE map [

<!ATTLIST country code ID #REQUIRED

name CDATA #REQUIRED

border IDREF #IMPLIED>
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]>

<map>

<country code="uk" name="United Kingdom" border="ie"/>

<country code="ie" name="Ireland" border="uk"/>

</map>

Comments It is possible to include comments in an XML document.
They are made of

1. the opening <!--,
2. some text without the sequence --,
3. the closing -->.

For example

<p>Our store is located at</p>

<!-- <address>Eunpyeong-gu, Seoul</address> -->

<address>Gangnam-gu, Seoul</address>

Contrary to programming languages, comments are not ignored by the
parsers and are nodes of the XML tree.

Namespaces Each XML document defines its own element names,
which we collectively call its vocabulary. In case we use external entit-
ies which refer to other XML documents using, by coincidence, the same
names, we end with an ambiguity in the main document. A good way to
avoid these name clashes is to use namespaces. A namespace is a user-
defined annotation of each element names and attribute names. There-
fore, if two XML documents use two different namespaces, that is to say,
two different element name annotations, there is no way to mix their
elements when importing one document into the other, because each ele-
ment name carries an extra special annotation which is different (ideally
unique in the set of documents of interest).

The definition of a namespace can be done at the level of any element
by using a special attribute with the following syntax:

xmlns:prefix = "URL"

where prefix is the space name and URL (Universal Resource Location)
points to a web page describing in natural language (for example, in
English) the namespace. Consider the namespace course in the following:

<?xml version="1.0"?>

<course:short
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xmlns:course="http://konkuk.ac.kr/~rinderkn/Mirror/XML">

<course:date>26 August 2006</course:date>

<course:title>Some XML-centric languages</course:title>

<course:topic course:level="advanced">

We study XML, XPath and XSLT.</course:topic>

</course:short>

The scope of a namespace, that is, the part of the document where it is
usable, is the subtree whose root is the element declaring the namespace.
By default, if the prefix is missing, the element and all its sub-elements
without prefix belong to the namespace. So, the previous example could
be simply rewritten

<?xml version="1.0"?>

<short xmlns="http://konkuk.ac.kr/~rinderkn/Mirror/XML">

<date>26 August 2006</date>

<title>Some XML-centric languages</title>

<topic level="advanced">We study XML, XPath and XSLT.</topic>

</short>

Note that the colon is missing in the namespace attribute: ‘xmlns=...’.
This example illustrates the important fact that what ultimately defines
a namespace is a URL, not a prefix (like course).

As an example of a name clash and how to avoid it, let us consider
a file fruits.xml containing the following HTML fragment:

<table>

<tr>

<td>Bananas</td>

<td>Oranges</td>

</tr>

</table>

HTML will be sketched in a coming subsection, but, for now, suffice it to
say that the elements have an implicit meaning if the file is indeed inter-
preted as HTML. For example, table refers to a typographical layout.

Imagine now a file furniture.xml containing a description of pieces
of furniture, like

<table>

<name>Round table</name>

<wood>Oak</wood>

</table>

Now, the main document main.xml includes both files:
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<?xml version="1.0"?>

<!DOCTYPE eclectic [

<!ENTITY part1 SYSTEM "fruits.xml">

<!ENTITY part2 SYSTEM "furniture.xml">

]>

<eclectic>

&part1;

&part2;

</eclectic>

The problem is that table has a different meaning in the two included
files, so they should not be confused: this is a clash name. The solution
consists in using two different namespaces. First:

<html:table xmlns:html="http://www.w3.org/TR/html5/">

<html:tr>

<html:td>Bananas</html:td>

<html:td>Oranges</html:td>

</html:tr>

</html:table>

Second:

<f:table xmlns:f="http://www.e-shop.com/furnitures/">

<f:name>Round table</f:name>

<f:wood>Oak</f:wood>

</f:table>

But this is a heavy solution. Fortunately, namespaces can be defaulted:

<table xmlns="http://www.w3.org/TR/html5/">

<tr>

<td>Bananas</td>

<td>Oranges</td>

</tr>

</table>

Second:

<table xmlns="http://www.e-shop.com/furnitures/">

<name>Round table</name>

<wood>Oak</wood>

</table>

The two kinds of tables can be safely mixed now. For example
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<mix xmlns:html="http://www.w3.org/TR/html5/"

xmlns:f="http://www.e-shop.com/furnitures/">

<html:table>

...

<f:table>

...

</f:table>

...

<html:table>

</mix>

Note that element mix has no associated namespace (it is neither html

nor f). It is possible to unbind or rebind a prefix namespace (the following
examples are found at http://www.w3.org/TR/REC-xml-names/):

<?xml version="1.1"?>

<x xmlns:n1="http://www.w3.org">

<n1:a/> <!-- valid; the prefix n1 is bound to

http://www.w3.org -->

<x xmlns:n1="">

<n1:a/> <!-- invalid; the prefix n1 is not bound here -->

<x xmlns:n1="http://www.w3.org">

<n1:a/> <!-- valid; the prefix n1 is bound again -->

</x>

</x>

</x>

<?xml version=’1.0’?>

<Beers>

<table xmlns=’http://www.w3.org/1999/xhtml’>

<!-- default namespace is now XHTML -->

<th><td>Name</td><td>Origin</td><td>Description</td></th>

<tr>

<!-- Unbinding XHTML namespace inside table cells -->

<td><brandName xmlns="">Huntsman</brandName></td>

<td><origin xmlns="">Bath, UK</origin></td>

<td><details xmlns="">

<class>Bitter</class>

<hop>Fuggles</hop>

<pro>Wonderful hop, good summer beer</pro>

<con>Fragile; excessive variance pub to pub</con>

</details></td>

</tr>
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</table>

</Beers>

<?xml version="1.0" encoding="UTF-8"?>

<!-- initially, the default namespace is "books" -->

<book xmlns=’http://loc.gov/books’

xmlns:isbn=’http://isbn.org/0-395-36341-6’

xml:lang="en" lang="en">

<title>Cheaper by the Dozen</title>

<isbn:number>1568491379</isbn:number>

<notes>

<!-- make HTML the default namespace

for a hypertext commentary -->

<p xmlns=’http://www.w3.org/1999/xhtml’>

This is also available

<a href="http://www.w3.org/">online</a>.

</p>

</notes>

</book>

An element may have children elements with the same name (like the ele-
ment to in the email example above), but an element may not have attrib-
utes with identical names or identical namespaces (URL) and identical
names. For example, each of the bad empty elements is invalid in the
following:

<!-- http://www.w3.org is bound to n1 and n2 -->

<x xmlns:n1="http://www.w3.org" xmlns:n2="http://www.w3.org" >

<bad a="1" a="2"/> <!-- invalid -->

<bad n1:a="1" n2:a="2"/> <!-- invalid -->

</x>

However, each of the following is valid, the second because default name-
spaces never apply to attribute names:

<!-- http://www.w3.org is bound to n1 and is the default -->

<x xmlns:n1="http://www.w3.org" xmlns="http://www.w3.org" >

<good a="1" b="2"/> <!-- valid -->

<good a="1" n1:a="2"/> <!-- valid -->

</x>

Namespaces will be very important when learning XSLT. Although name-
spaces are declared as attributes, they are present in the XML tree corres-
ponding to the document as a special node, different from the attribute
nodes.
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Processing instructions In some exceptional cases, it may be useful
to include in an XML document some data that are targeted to a specific
XML processor. These data are then embedded in a special element, and
the data themselves are called a processing instruction because they tell
a particular processor, for instance, Saxon, what to do at this point. The
syntax is

<?target data?>

The target is a string supposed to be recognised by a specific XML pro-
cessor and the data is then used by this processor. Note that the data
takes the shape of attribute values, and may be absent. For example:

<?xml version="1.0"?>

Validation All XML processors must check whether the input docu-
ment satisfy the syntactical requirements of a well-formed XML docu-
ment. In particular,

• pairs of tags making up an element must be present, except for
empty elements which are closed with /> (this has to be contrasted
with HTML, which is very lax in this regard),

• the predefined entities must really be predefined (unicodes are auto-
matically checked),

• internal entities must be declared in the prolog, etc.

Validating processors also check that the external entities are indeed
found (their well-formedness is checked after they have been inserted
in the main document). There are several XML parsers available free of
charge over the internet, implemented in several languages. Most of them
are actually libraries (API), so an application processing XML would only
need to be interfaced with one of them. A good standalone, validating
parser is xmllint.

HTML The Hyper-Text Markup Language (HTML) is used to describe
web pages. See the W3C Draft Recommendation at http://www.w3.org/

TR/html5/. Let us skim over this vast language and illustrate it with some
small examples. For instance, all HTML file containing English should at
least follow the pattern

<!DOCTYPE html>

<html lang="en-GB">

<head>

<title>the title of the window</title>
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</head>

<body>

...contents and markup...

</body>

</html>

Elements h1, h2, ..., h6 enable six kinds of headers, of decreasing font
sizes. Consider opening in a web browser the following document:

<!DOCTYPE html>

<html lang="en-GB">

<head>

<title>Comparing heading sizes</title>

</head>

<body>

<h1>The biggest</h1>

<h2>Just second</h2>

<h3>Even smaller</h3>

</body>

</html>

Other useful elements are the following:

• The empty element <br/> is interpreted by user agents as a line
break ;

• element em marks text to be emphasised (for example, by using an
italic font);

• element strong marks text to be emphasised stronger than with em

(for instance, by using a bold font);
• element p delimits a paragraph.

Lists are a common way to typeset closely related sentences, like enu-
merations. There are three kinds of lists:

1. unordered lists;
2. ordered lists;
3. lists of definitions.

Unordered lists are the well-known ‘bullet lists’, where each line is dis-
played after an indentation followed by a bullet, like the following.

• element ul contains an unordered list;
• element li (‘list item’) contains an item in the list.

Try the following recipe:
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<h3>Ingredients</h3>

<ul>

<li>100 g. flour,</li>

<li>10 g. sugar,</li>

<li>1 cup of water,</li>

<li>2 eggs,</li>

<li>salt and pepper.</li>

</ul>

Ordered lists are lists whose items are introduced by an indentation
followed by a number, in increasing order. They require

1. the element ol, which contains the ordered list,
2. elements li, as in unordered lists.

For example,

<h3>Procedure</h3>

<ol>

<li>Mix dry ingredients thoroughly;</li>

<li>Pour in wet ingredients;</li>

<li>Mix for 10 minutes;</li>

<li>Bake for one hour at 300 degrees.</li>

</ol>

A list of definitions is a list whose items are introduced by a few words
in a bold font followed by the contents of the item itself. Consider

hacker
A clever programmer.

nerd
geek

A technically bright but socially misfit person.

The elements involved are

• dl (‘definition list’), which contains the whole list of definitions;
• dt (‘definition term’), which contains every term to be defined;
• dd (‘definition description’), which contains every definition of a

term.

The previous example corresponds to the following HTML excerpt:
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<dl>

<dt><strong>hacker</strong></dt>

<dd>A clever programmer.</dd>

<dt><strong>nerd</strong></dt>

<dt><strong>geek</strong></dt>

<dd>A technically bright but socially misfit person.</dd>

</dl>

A table is a rectangle divided into smaller rectangles, called cells, which
contain some text. When read vertically, cells are said to belong to
columns, whilst horizontally, they belong to rows. A row or a column
can have a header, that is, a cell at their beginning containing a name in
bold face. A table can have a caption, which is a short text describing the
contents of the table and displayed just above it, like a title. Columns can
be divided themselves into subcolumns, when needed. The following ex-
ample is taken from http://www.w3.org/TR/html4/struct/tables.html.

A test table with merged cells
Average Red

height weight eyes
Males 1.9 0.003 40%

Females 1.7 0.002 43%

Males and Females are row headers. The column headers are Aver-
age, Red eyes, height and weight. The column Average spans two
columns; in other words, it contains two subcolumns, height and weight.
The caption reads A test table with merged cells. The corresponding
HTML code is

<table border="1">

<caption><em>A test table with merged cells</em></caption>

<tr>

<th rowspan="2"/>

<th colspan="2">Average</th>

<th rowspan="2">Red<br/>eyes</th>

</tr>

<tr><th>height</th><th>weight</th></tr>

<tr><th>Males</th><td>1.9</td><td>0.003</td><td>40%</td></tr>

<tr>

<th>Females</th>

<td>1.7</td>

<td>0.002</td>

<td>43%</td>
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</tr>

</table>

The meaning of the elements is as follows:

• Element table contains the table; its attribute border specifies the
width of the table borders, that is, of the lines separating the cells
from the rest.

• Element caption contains the caption.
• Element th (‘table header’) contains a row or column header, that

is, the title of the row of column in bold type.
• Element td (‘table data’) contains the data of a cell (if not a

header).
• Element tr (‘table row’) contains a row, that is, a series of td

elements, perhaps starting with a th element.

Notice the attributes rowspan and colspan of the th element. Attribute
rowspan allows us to specify how many rows the current cell spans. For
example, the first row, that is, the one on the top-left corner, is empty
and covers two rows because <th rowspan="2"/>. Attribute colspan al-
lows us to declare how many columns the current cell spans. For example,
the second cell contains the text Average and covers two columns be-
cause <th colspan="2">Average</th>. Notice the line break <br/> in the
third cell (first row, last column) and how height and weight are auto-
matically at the right place

Hyperlinks in HTML are defined by the element ‘a’ with its mandatory
attribute href (‘hyper-reference’). For example, consider the following
hyperlink:

<a href="http://konkuk.ac.kr/~rinderkn/">See my web page.</a>

XHTML The current working draft of HTML is HTML 5. Until it be-
comes a standard supported by web browsers and XSLT processors, it is
best for beginners to use a simpler version of HTML, called XHTML (eX-
tensible Hyper-Text Markup Language), whose W3C Recommandation is
found at http://www.w3.org/TR/xhtml1/. Basically, XHTML is XML, but
the elements which are found in HTML have the same meaning (instead
of none). For example, the previous examples are valid XHTML, with the
provision that a specific DOCTYPE is declared. The pattern is the following:

<?xml version="1.0" encoding="encoding"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
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<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<title>the title of the window</title>

</head>

<body>

...contents and markup...

</body>

</html>

Just like XML documents, XHTML documents can be and should be
validated before being published on the web, for example using the site
at http://validator.w3.org/.

DTD We saw on page 386 that the Document Type Declaration may
contain markup which constrains the XML document it belongs to (ele-
ments, attributes etc.). The content of a Document Type Declaration is
made of a Document Type Definition, abbreviated DTD. So the former
is the container of the latter. It is possible to have all or part of the DTD
in a separate file, usually with the extension ‘.dtd’. We already saw at-
tribute lists on page 390 when setting up internal linking. In general, the
special element ATTLIST can be used to specify any kind of attributes,
not just labels and references. Consider the attribute declarations for
element memo:

<!ATTLIST memo ident CDATA #REQUIRED

security (high | low) "high"

keyword NMTOKEN #IMPLIED>

CDATA stands for character data and represents any string. A named token
(NMTOKEN) is a string starting with a letter and which may contain letters,
numbers and certain punctuation. In order for a document to be val-
idated, which requires more constraints than to be merely well-formed,
all the elements used must be declared in the DTD. The name of each
element must be associated a content model, that is, a description of
what it is allowed to contain, in terms of textual data and sub-elements
(mark-up). This is achieved by means of the DTD ELEMENT declarations.
There are five content models:

1. the empty element :

<!ELEMENT padding EMPTY>

2. elements with no content restriction :
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<!ELEMENT open ALL>

3. elements containing only text :

<!ELEMENT emphasis (#PCDATA)>

which means parsed-character data.

4. elements containing only elements:

<!ELEMENT section (title,para+)>

<!ELEMENT chapter (title,section+)>

<!ELEMENT report (title,subtitle?,(section+ | chapter+))>

where title, subtitle and para are elements.

5. elements containing both text and elements:

<!ELEMENT para (#PCDATA | emphasis | ref)+>

where emphasis and ref are elements.

The definition of a content model is akin to regular expressions. Such an
expression can be made up by combining the following expressions:

• (e1, e2, ..., en) represents the elements represented by e1, fol-
lowed by the elements represented by e2 etc. until en;

• e1 | e2 represents the elements represented by e1 or e2;
• (e) represents the elements represented by e;
• e? represents the elements represented by e or none;
• e+ represents a non-empty repetition of the elements represented

by e;
• e* represents the repetition of the elements represented by e.

Warning: When mixing text and elements, the only possible regular ex-
pression is either (#PCDATA) or (#PCDATA | ...)*

The part of a DTD which is included in the same file as the XML
document it applies to is called the internal subset. See again the example
on page 390. The part of a DTD which is in an independent file (.dtd)
is called the external subset. If there is no internal subset and everything
is in the external subset we have a declaration like

<!DOCTYPE some_root_element SYSTEM "some.dtd">

In order to validate an XML document, its DTD must completely de-
scribe the elements and attributes used. This is not mandatory when
well-formedness is required. Therefore, the example on page 390 is well-
formed but not valid in the sense above, because the elements map and
country are not declared. To validate the document, it is enough, for
example, to add
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<!ELEMENT map (country*)>

<!ELEMENT country EMPTY>

11.2 Introduction

Given one or several XML documents, it may be useful

• to search the documents and output what has been found in a
format suitable for another application or reader, in particular,
XML (filtering in);

• to copy the input, perhaps without certain parts (filtering out),
and/or adding data (updating).

When such needs arise, it is a good idea to use the functional program-
ming languages XQuery or XSLT (eXtensible Stylesheet Language Trans-
formations). Even if both languages share a great deal of common use
cases (to the point of having in common a sublanguage, XPath), the first
application, which is more oriented towards database management, is
more commonly tackled with XQuery, whilst the second usage is often
undertaken with XSLT.

An XSLT processor reads an XML document and an XSLT program,
then applies the transformations defined in XSLT to the document, and
the result is printed, usually in plain text, XML or HTML. The twist is
that an XSLT file is actually an XML document, which enables XSLT
to transform XSLT programs. For example, if we use an element book

in an XML document, XML itself does not necessarily imply that this
element models a book, although some application using the document
perhaps will precisely do that. One can think of XML as merely syntactic
rules, in other words, a formal grammar, with no semantics attached to
the constructs. An XSLT document is thus XML with a performative
declaration.

To enable the interpretation of XML as XSLT, XSLT programs re-
quire the predefined namespace http://www.w3.org/1999/XSL/Transform,
which is often (but not necessarily) named xsl, as shown in

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

</xsl:transform>

The first line states that this is an XML document. The second defines
the interpretation as XSLT by declaring the namespace for XSLT and
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using the root element xsl:transform (xsl:stylesheet is also accepted).
The version of XSLT is set to 2.0, which is the version current at the
time of writing. Moreover, the element xsl:output states that the output
is to be plain text. Other than that, the program says nothing else, so
we might expect the transformation to do nothing. Assume then the
following XML document, cookbook.xml, to be transformed:

<?xml version="1.0" encoding="UTF-8"?>

<cookbook author="Salvatore Mangano">

<title>XSLT Cookbook</title>

<chapter>XPath</chapter>

<chapter>Selecting and Traversing</chapter>

<chapter>XML to Text</chapter>

<chapter>XML to XML</chapter>

<chapter>XML to HTML</chapter>

</cookbook>

The application of the empty transformation to this document yields

XSLT Cookbook

XPath

Selecting and Traversing

XML to Text

XML to XML

XML to HTML

Perhaps surprisingly, something did happen: the contents of the text
nodes of the input XML document were extracted in the same order,
but not the attribute values. (Note that if <xsl:output method="text"/>

were missing, the output would be considered XML and <?xml ... ?>

would be outputted by default.) More precisely, the order corresponds to
a preorder traversal of the corresponding XML tree: this is the implicit
traversal of XSLT processors, also called document order. The rationale
is that, since the aim is often to rewrite a document into another, this
traversal corresponds to the order in which a book is read and written,
cover to cover. Furthermore, the reason why the text nodes are extracted
by default is due to XSLT favouring a filtering style: if part of the input
should be ignored or augmented, the programmer must say so. Finally,
let us remark that there is no need for explicit printing instructions in
XSLT: the programmer assumes that the result is XML or text and the
run-time system ensures automatic serialisation of the result.

Matching Let us complete our empty transformation as follows:
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<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="chapter">A chapter</xsl:template>

</xsl:transform>

Note the predefined element xsl:template defining a template. It bears
the attribute match, whose value is the name of the element we want to
transform. During the preorder traversal, if a chapter element is found
(that is, matched), the contents of the text node of the template (A
chapter) becomes the result. (Let us not confuse the text node and its
contents.) Applying the previous transformation to the document in the
file named cookbook.xml yields

XSLT Cookbook

A chapter

A chapter

A chapter

A chapter

A chapter

Let us match now the root element with the following:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="cookbook">Chapters:</xsl:template>

<xsl:template match="chapter">A chapter</xsl:template>

</xsl:transform>

The result is now:

Chapters:

The reason is that when a template matches a node, called the context
node from within the template, that node is processed (here, the text
Chapters: or A chapter is produced) and the preorder traversal resumes
without visiting the children of the context node. Therefore, after the
element cookbook is matched and done with, the XSLT processor ignores
everything else since it is the root element.

In order to visit and try to match the children of the context node,
one must tell so the processor by using the special empty element



406 CHAPTER 11. INTRODUCTION TO XSLT

<xsl:apply-templates/>

Let us add this element as a child of the template matching the root
element:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="cookbook">

Chapters:

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="chapter">A chapter</xsl:template>

</xsl:transform>

The result is now:

Chapters:

XSLT Cookbook

A chapter

A chapter

A chapter

A chapter

A chapter

It is striking that the text ‘Chapters:’ is not aligned with the title. It
is a sad fact that the handling of whitespace and newlines can be very
confusing in XML and XSLT, in particular when we want or not some
space if the output, like here, is plain text. We will not discuss this thorny
issue here and refer the reader to the book by Kay (2008), page 141. As
for the rest, the title appears after ‘Chapters:’, which is confusing.

If we simply want to get rid of the title, we could simply define an
empty template matching title:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="cookbook">

Chapters:

<xsl:apply-templates/>

</xsl:template>
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<xsl:template match="chapter">A chapter</xsl:template>

<xsl:template match="title"/>

</xsl:transform>

The result is now:

Chapters:

A chapter

A chapter

A chapter

A chapter

A chapter

If we want to retain the title, we need to extract the text from the text
node which is a child of the title element, and put it before ‘Chapters:’.
One way is to apply the templates on title alone using the special attrib-
ute select, whose value is the child’s name, then produce ‘Chapters:’,
and finally apply the templates to the chapters:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="cookbook">

<xsl:apply-templates select="title"/>

Chapters:

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="chapter">A chapter</xsl:template>

</xsl:transform>

The result is now:

XSLT Cookbook

Chapters:

XSLT Cookbook

A chapter

A chapter

A chapter

A chapter

A chapter
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This is not quite it, because we must not apply the templates to all the
children of cookbook, only to the chapters:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="cookbook">

<xsl:apply-templates select="title"/>

Chapters:

<xsl:apply-templates select="chapter"/>

</xsl:template>

<xsl:template match="chapter">A chapter</xsl:template>

</xsl:transform>

The result is now:

XSLT Cookbook

Chapters:

A chapterA chapterA chapterA chapterA chapter

We just hit another quirk with the newlines. What happened is that the
selection (via the attribute select) gathered all the chapter nodes in a
linear structure called a sequence, the templates have been applied to all
of the nodes in it, then each of the results has been serialised, catenated
to the others and, finally, a newline character has been added. The reason
why we had newlines after each ‘A chapter’ before is because each of these
texts constituted a singleton sequence. In order to recover the newlines,
we could use the special element xsl:text, whose purpose is to output
the content of its unique text node as it is, without tweaking blanks and
newlines. Here, we could force a newline after each ‘A chapter’. In XML,
the newline character is the numbered entity &#10;

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="cookbook">

<xsl:apply-templates select="title"/>

Chapters:

<xsl:apply-templates select="chapter"/>

</xsl:template>

<xsl:template match="chapter">

<xsl:text>A chapter&#10;</xsl:text>
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</xsl:template>

</xsl:transform>

The result is now:

XSLT Cookbook

Chapters:

A chapter

A chapter

A chapter

A chapter

A chapter

Still not perfect, but let us abandon this example and spend some time
understanding sequences.

11.3 Transforming sequences

As we already know from part I, the linear structure of choice in func-
tional languages is the stack, also called list. In XSLT, it is the sequence.
The empty sequence is written () and the non-empty sequence is written
(x1, x2, ..., xn), where the xi are items, or x1, x2, ..., xn. The dif-
ference with stacks is twofold. First, sequences are always flat, so when an
item of a sequence is itself a sequence, it is replaced by its contents, if any.
For instance, (1,(),(2,(3)),4) is actually evaluated in (1,2,3,4). In par-
ticular, a singleton sequence is the same as the unique item it contains:
((5)) is 5. Second, no cost is incurred when catenating two sequences (in
contrast with the linear cost in the length of the first stack when caten-
ating two stacks), so the previous evaluation costs 0. The reason is that
catenation of sequences, being frequently needed, is a built-in operation.
Therefore, in XSLT, catenation is the primary operation, not pushing, as
it is the case with stacks.

Just like in Erlang, sequences can contain any kind of items, not just
integers. We will use sequences to hold XML elements and attributes, for
instance. Another thing to know about sequences is that if seq is the
name of a sequence, then $seq represents the sequence: note the dollar
sign. If we write seq in the value of an attribute match or select, it means
the element seq. Furthermore, the first item in $seq is written $seq[1],
the second $seq[2] etc. where the natural number is the position of the
item. If we select an item missing in a sequence, the result is the empty
sequence, for example, if $seq[2] is (), it means that $seq contains at
most one item. It is often very useful to extract a subsequence, similarly
to projecting the substack (the tail) of a given stack. This is done with the
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predefined function position: $seq[position()>1] or $seq[position()

!= 1].

Length Let us recall here a functional program computing the length
of a stack:

len0([ ])→ 0; len0([x |s])→ 1 + len0(s).

In view of a translation to XSLT, let us add to our source language a con-
ditional expression and rewrite the program without pattern matching:

len0(s)→ if s = [ ] then 0 else 1 + len0(tl(s)). (11.1)

where tl(s) (tail) returns the immediate substack of s. Note that we
cannot define tail/1 without pattern matching, so it has to be translated
into a predefined function. In order to start writing the XSLT program,
we need to be more specific about the input. Let us suppose that we
obtain our sequence by selecting the children nodes chapter of the root
element book. In other words, we want to count the number of chapters
in a book. For instance,

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book SYSTEM "book.dtd">

<book>

<author>Priscilla Walmsley</author>

<title>Definitive XML Schema</title>

<chapter>Schema: An Introduction</chapter>

<chapter>A quick tour of XML Schema</chapter>

<chapter>Namespaces</chapter>

<chapter>Schema composition</chapter>

<chapter>Instances and schemas</chapter>

</book>

The DTD is as follows:

<!ELEMENT book (author?,title?,chapter+)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT chapter (#PCDATA)>

The style we recommend in XSLT consists in explicitly typing as
much as we can the data and the templates. In order to do so, we need
to use a tiny part of a standard called XML Schema (Walmsley, 2002), by
means of a namespace, just like we enable XSLT through a namespace.
This explains the canvas of our program:
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<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

...

</xsl:transform>

In all our XSLT programs whose output is text, we would like to have
a newline character at the end to improve readability. Because the root
element is likely to vary, we match the document root, noted /, which
is an implicit node whose only child is the root element. We then apply
any available templates to the root element and put a newline:

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

Now we need to match the root element and call the translation of len0/1.
To translate functions, we will use a special kind of template, called a
named template, which differs from the matching templates we saw earlier.
There are two sides to their usage: their definition and their call.

The canvas for defining a named template is

<xsl:template name="f" as="t">
<xsl:param name="x1" as="t1"/>
...

<xsl:param name="xn" as="tn"/>
...

</xsl:template>

The name of the template is f , each xi is a parameter of type ti, the
type of the value computed by f is t.

The canvas for calling a named template is as follows:

<xsl:call-template name="f">
<xsl:with-param name="x1" select="v1" as="t1"/>
...

<xsl:with-param name="xn" select="vn" as="tn"/>
</xsl:call-template>

The template named f has n parameters x1, x2, . . . , xn, such that the
type of xi is ti and its value is vi. Binding values to parameters in this
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way is featured in programming languages like Ada (named association)
and OCaml (labels), and it allows the programmer to forget about the
parameters order, which is particularly useful when they are numerous.

At this point it is important to know that there exists functions
in XSLT, defined by the element xsl:function, and, although we chose
named templates for the translation, plain XSLT functions would do as
well.

Resuming our translation, we need to call the named template which
will be the translation of len0/1:

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="len0">

<xsl:with-param name="chapters" select="chapter"

as="element(chapter)*"/>

</xsl:call-template>

</xsl:template>

As mentioned previously, we had to name the parameter we pass a value
to, that is, chapters. Perhaps more puzzling is the meaning of the attrib-
ute value element(chapter)*: it is the type of a sequence (possibly empty)
of chapter elements. Although it may not be necessary in this instance to
provide this type because it is implicit in the selection select="chapter",
we recommend to always use the attribute as with xsl:with-param. Fur-
thermore, note that the result of the template matching book is also
typed as xs:integer because it is the same result as that of the called
template len0. (In the template matching the document root (/), we did
not specify the return type because we wanted that template to work
with every transformation.)

Let us focus now on the definition of the called template, that is, the
translation of len0/1 (at last!). We expect the following pattern:

<xsl:template name="len0" as="xs:integer">

<xsl:param name="chapters" as="element(chapter)*"/>

...

</xsl:template>

The parameter named chapters corresponds to s in the definition (11.1)
of len0/1; we changed the name to fit more closely the specialised mean-
ing, limited to chapters here. We need now to translate the conditional
expression if . . . then . . . else . . . into XSLT. Unfortunately, tests in XSLT
are quite verbose in general. Let us introduce three elements that allow
us to write general tests in the style of the switch constructs of Java:

<xsl:choose>
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<xsl:when test="b1">e1</xsl:when>
...

<xsl:when test="bn">en</xsl:when>
<xsl:otherwise>en+1</xsl:otherwise>

</xsl:choose>

The values bi of the test attributes are evaluated (The apparent tauto-
logy is due to the XSLT vocabulary: an attribute value is actually not a
value in general, but an expression.) in order until one, say bj , results in
the boolean true, causing the sequence ej to be evaluated; otherwise the
sequence en+1 (children of xsl:otherwise) is processed. Resuming our
exercise, we fill a bit more the blanks:

<xsl:template name="len0" as="xs:integer">

<xsl:param name="chapters" as="element(chapter)*"/>

<xsl:choose>

<xsl:when test="empty($chapters)">

... <!-- Translation of 0 -->

</xsl:when>

<xsl:otherwise>

... <!-- Translation of 1 + len0(s) -->

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Note the built-in XSLT function empty, which returns true if its argu-
ment is an empty sequence, and false otherwise. The translation of 0 is
not so simple, though! Indeed, the obvious 0 would mean that we actu-
ally produce a text containing the character 0, instead of the expected
integer. There is a very useful XSLT element which may come handy here
– although more versatile than it seems here, as we shall see later. Let us
introduce the sequence constructor :

<xsl:sequence select="..."/>

The selected value must evaluate into a sequence which is then substi-
tuted in place of the element xsl:sequence. One may wonder why this is
so convoluted, and the reason is that the value of the select attributes
belongs to a sublanguage of XSLT, called XPath, and XPath can only
be used for selections or tests (empty is an XPath function). In a select

attribute, 0 means 0, not the text made of the single character 0, and
xsl:sequence allows us to inject in XSLT the XPath values, so we can
construct a sequence made with XPath. Of course, we have to keep in
mind that any item is equivalent to a singleton sequence, in particular
(0) is the same as 0 in XPath. Therefore, the translation of 0 is
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<xsl:when test="empty($chapters)">

<xsl:sequence select="0"/>

</xsl:when>

The expression 1+len0(s) is made of three parts: the stack s, the function
call len0(s) and the addition of 1 to the value of the call. We already know
that stacks are translated as sequences, we also know that function calls
become calls to named templates. It is simple to add 1 to a function
call in XPath, for instance 1 + f($n), but this syntax is not valid outside
a selection or a test and, anyway, we defined a named template, not a
function in XSLT (which must be called in XPath). Therefore, we have
to hold temporarily the value of the recursive call in a variable, say x,
then use xsl:sequence to compute (in XPath) the value of 1 + $x. The
element which defines a variable in XSLT is xsl:variable and it has two
possible forms: either with a select attribute or with children. In the
former case, we have the pattern

<xsl:variable name="x" select="v" as="t">

and the latter is

<xsl:variable name="x" as="t">
... <!-- Children whose value is v and has type t -->

</xsl:variable>

where the value of the variable x is v, of type t. The reason for the dual
syntax is due again to the territory delimited by XPath: if v can be com-
puted in XPath alone, we should use the first form, otherwise we need the
second. In our problem, we need the second form because v is the value
of a recursive call not expressed in XPath, as we use xsl:call-template.
We can now complete the program:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>
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<xsl:template match="book" as="xs:integer">

<xsl:call-template name="len0">

<xsl:with-param name="chapters" select="chapter"

as="element(chapter)*"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="len0" as="xs:integer">

<xsl:param name="chapters" as="element(chapter)*"/>

<xsl:choose>

<xsl:when test="empty($chapters)">

<xsl:sequence select="0"/>

</xsl:when>

<xsl:otherwise>

<xsl:variable name="x" as="xs:integer">

<xsl:call-template name="len0">

<xsl:with-param name="chapters"

as="element(chapter)*"

select="$chapters[position()>1]"/>

</xsl:call-template>

</xsl:variable>

<xsl:sequence select="1 + $x"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

The result of running it on our table of contents is, as expected:

5

After we recover from the sustained effort and the disappointment
from such an incredible verbosity in comparison to Erlang, we may find
out that there exists a built-in function in XPath, named count, which is
basically a translation of len0/1. Nevertheless, our purpose is to address
beginners, so the didactic usefulness primes other considerations.

Let us work on the translation of a better version of len0/1:

len1(s)→ len1(s, 0). len1([ ], n)→ n;
len1([x |s], n)→ len1(s, n+ 1).

Function len1/1 is better than len0/1 because its cost is the same as the
latter and it uses a constant amount of memory, being in tail form. The
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tail form implies that we do not need a variable, because the addition is
performed in XPath (parameter of the recursive call):

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="len2">

<xsl:with-param name="chapters" select="chapter"

as="element(chapter)*"/>

<xsl:with-param name="n" select="0"

as="xs:integer"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="len2" as="xs:integer">

<xsl:param name="chapters" as="element(chapter)*"/>

<xsl:param name="n" as="xs:integer"/>

<xsl:choose>

<xsl:when test="empty($chapters)">

<xsl:sequence select="$n"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="len2">

<xsl:with-param name="chapters"

select="$chapters[position()>1]"

as="element(chapter)*"/>

<xsl:with-param name="n" select="1 + $n"

as="xs:integer"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>
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</xsl:template>

</xsl:transform>

Note how we did not have to define a named template for len0/1.
As a last variation, consider a variant input where the chapters are

all children of a contents element and their names are held in a title

attribute, instead of a text node:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book SYSTEM "book_att.dtd">

<book>

<author>Priscilla Walmsley</author>

<title>Definitive XML Schema</title>

<contents>

<chapter title="Schema: An Introduction"/>

<chapter title="A quick tour of XML Schema"/>

<chapter title="Namespaces"/>

<chapter title="Schema composition"/>

<chapter title="Instances and schemas"/>

</contents>

</book>

Of course, the DTD boot_att.dtd has to be changed:

<!ELEMENT book (author,title,contents)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT contents (chapter+)>

<!ELEMENT chapter EMPTY>

<!ATTLIST chapter title CDATA #REQUIRED>

To solve this problem, we must modify a previous XSLT transformation,
not think from the abstract functional language. First, we should modify
the call to the template so as to select the chapters where they are now:

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="len3">

<xsl:with-param name="elm" select="contents/chapter"

as="element(chapter)*"/>

<xsl:with-param name="n" select="0" as="xs:integer"/>

</xsl:call-template>

</xsl:template>
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The expression contents/chapter is a selection in XPath which means:
‘Gather all the children contents of the context node (book), preserving
their relative order (here, there is only one), then select all the children
named chapter of all those nodes, also preserving their relative order.’
Other than that, there is no need to change the template (apart from
its name, now len3). Notice also that using title attributes made no
difference.

But let us take this opportunity to make slight variations and learn
something new. Let us say that we want the template to be able to work
on any kind of elements, not just chapter, and we would like to use a
default parameter. Indeed, the type of the template parameter chapters

is element(chapter)*, so it is not enough general. The solution is the
type element()*, which means ‘A sequence, possibly empty, of elements.’
Moreover, the original value of the parameter n must always be 0, so
we could make this value a default by adding a select attribute to the
corresponding xsl:param element:

<xsl:template name="len3" as="xs:integer">

<xsl:param name="elm" as="element()*"/>

<xsl:param name="n" as="xs:integer" select="0"/>

...

</xsl:template>

In passing, we renamed the parameter to the neutral elm. Of course, the
call to the template is now shorter:

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="len3">

<xsl:with-param name="elm" select="contents/chapter"

as="element(chapter)*"/>

</xsl:call-template>

</xsl:template>

Note that it is still possible to impose an initial value to n that would not
be 0. Also, it is possible now to reuse the template len3 for computing
the length of any sequence of elements.

In the end, the new transformation is

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
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<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="len3">

<xsl:with-param name="elm" select="contents/chapter"

as="element(chapter)*"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="len3" as="xs:integer">

<xsl:param name="elm" as="element()*"/>

<xsl:param name="n" as="xs:integer" select="0"/>

<xsl:choose>

<xsl:when test="empty($elm)">

<xsl:sequence select="$n"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="len3">

<xsl:with-param name="elm" as="element()*"

select="$elm[position()>1]"/>

<xsl:with-param name="n" as="xs:integer"

select="1 + $n"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Summing Given a stack of integers, we can compute their sum as
follows

sum([x |s])→ sum0([x |s], 0). sum0([ ], n)→ n;
sum0([x |s], n)→ sum0(s, n+ x).

Immediately, we see that there is just a small difference between sum0/2
and len1/2: instead of adding 1, we add x. Thus, we can expect a tiny
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modification of the corresponding XSLT template. Let us assume the
following input:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE numbers SYSTEM "sum.dtd">

<numbers>

<num>18</num>

<num>1</num>

<num>3</num>

<num>5</num>

<num>23</num>

<num>3</num>

<num>2</num>

<num>7</num>

<num>4</num>

</numbers>

with the DTD

<!ELEMENT numbers (num*)>

<!ELEMENT num (#PCDATA)>

The change we would like to make to len3 is

<xsl:call-template name="sum">

<xsl:with-param name="elm" as="element()*"

select="$elm[position()>1]"/>

<xsl:with-param name="n" as="xs:integer"

select="$elm[1] + $n"/>

</xsl:call-template>

Unfortunately, the compiler Saxon returns the following warning about
the change:

The only value that can pass type-checking is an empty sequence.

Required item type of value of parameter $n is xs:integer;

supplied value has item type xs:double

and the wrong result 18135233274, which is just the catenation of the
contents of the text nodes of the num elements. What happened? From
the message, one thing is clear: the problem has to do with the type
system, that is why we did not anticipate it from the untyped sum0/2. It
is also clear that the compiler understands that $n is an integer, therefore
the culprit can only be our modification, $elm[1]. We would like it to
be of type xs:integer too, but is it? The type of $elm is element()*,
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as declared, which means that the items it contains are elements, not
integers, hence the issue. We need to force the type of $elem[1] to become
xs:integer, that is, we cast it. First, we need to select the text node of
$elem[1] and then cast it by using xs:integer like an XPath function:
xs:integer($elm[1]/text()). There is no warning now:

18135233274

The wrong result is still there. It is time to understand why! It is clearly
made of the all text nodes, in document order and serialised without any
separation. We know from the start that, by default, this is what XSLT
is meant to do, therefore we failed to specify that we actually want. A
look back at the first call to sum reveals

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="sum">

<xsl:with-param name="elm" select="contents/chapter"

as="element(chapter)*"/>

</xsl:call-template>

</xsl:template>

Because we do not have chapter elements in the input now, an empty
sequence is selected by contents/chapter. It should be num. But this does
not change the wrong result. The reason is that there is no context node
because there is no book element in the document. Therefore, we should
write:

<xsl:template match="numbers" as="xs:integer">

<xsl:call-template name="sum">

<xsl:with-param name="elm" select="num"

as="element(num)*"/>

</xsl:call-template>

</xsl:template>

This time, the correct result comes out:

66

There is still a subtle error, which becomes apparent when inputting the
empty sequence. (Among other values, we recommend to test programs
with extreme values of the input.) Indeed, the result is then 0, which
is not what is expected if we consider the abstract function sum/1 as a
specification.

sum([x |s])→ sum0([x |s], 0).
In XSLT, we forgot to forbid the empty sequence. This can be achieved
by specifying a type ‘non-empty sequence of elements’: element()+.
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<xsl:template match="numbers" as="xs:integer">

<xsl:call-template name="sum">

<xsl:with-param name="elm" select="num"

as="element(num)+"/>

</xsl:call-template>

</xsl:template>

If we try the input

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE numbers SYSTEM "sum.dtd">

<numbers/>

we obtain now the expected error message

An empty sequence is not allowed as the value of parameter $elm

The transform is complete now:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="numbers" as="xs:integer">

<xsl:call-template name="sum">

<xsl:with-param name="elm" select="num"

as="element(num)+"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="sum" as="xs:integer">

<xsl:param name="elm" as="element()*"/>

<xsl:param name="n" as="xs:integer" select="0"/>

<xsl:choose>

<xsl:when test="empty($elm)">

<xsl:sequence select="$n"/>

</xsl:when>
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<xsl:otherwise>

<xsl:call-template name="sum">

<xsl:with-param name="elm" as="element()*"

select="$elm[position()>1]"/>

<xsl:with-param name="n" as="xs:integer"

select="xs:integer($elm[1]/text()) + $n"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

If we would rather have no output instead of an error message at run-
time, we could check for emptiness before the first call and do nothing.
But there is a shorter way, easily understood on the abstract program:

sum1(s)→ sum2(s, 0). sum2([ ], n)→ nothing();
sum2([x], n)→ x+ n;

sum2([x |s], n)→ sum2(s, x+ n).

The data constructor in case of empty stack, nothing(), will be translated
in XSLT as an empty element:

<xsl:when test="empty($elm)"/>

<xsl:when test="empty($elm[2])">

<xsl:sequence select="xs:integer($elm[1]/text()) + $n"/>

</xsl:when>

The case for the singleton sequence is empty($elm[2]). Indeed, we know
that $elm is not empty, because that is the previous case; therefore, all
we have to do is to check for the existence of $elm[2]: if absent, this
selection results in the empty sequence and, since we know that $elm[1]

exists, the sequence $elm contains exactly one element. Still, there is a
problem remaining with the types: the template matching numbers and
the template named sum have to return a value of type xs:integer, which
is not possible if $elm is empty, in which case, as we just saw, an empty
sequence is returned (because of the empty element xsl:when). There is a
way in XPath to express the type ‘A sequence with no item or exactly one.’
using the operator ‘?’. If we recall that a value can always be implicitly
cast to a sequence containing that value, then xs:integer? means ‘An
integer or an empty sequence.’ Therefore,

<?xml version="1.0" encoding="UTF-8"?>
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<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="numbers" as="xs:integer?">

<xsl:call-template name="sum">

<xsl:with-param name="elm" select="num"

as="element(num)*"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="sum" as="xs:integer?">

<xsl:param name="elm" as="element()*"/>

<xsl:param name="n" as="xs:integer" select="0"/>

<xsl:choose>

<xsl:when test="empty($elm)"/>

<xsl:when test="empty($elm[2])">

<xsl:sequence select="xs:integer($elm[1]/text()) + $n"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="sum">

<xsl:with-param name="elm" as="element()*"

select="$elm[position()>1]"/>

<xsl:with-param name="n" as="xs:integer"

select="xs:integer($elm[1]/text()) + $n"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Skipping We want to make a copy of a given stack, without its last
item. A way to achieve this is to check first whether the stack contains
zero, one or more items. In the first two cases, the result is the empty
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stack; in the last, we know that the first item is not the last, so we keep
it and proceed recursively with the rest:

cutl([x, y |s])→ [x |cutl([y |s])]; cutl(s)→ [ ].

In Erlang, this would be implemented as follows (header omitted):

cutl([X|S=[_|_]]) -> [X|cutl(S)];

cutl(_) -> [].

To see how to express it in XSLT, we need first to set some context of
use. For example, let us say that we have a table of contents complying
with the following DTD, book_bis.dtd:

<!ELEMENT book (author,title,contents)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT contents (chapter+)>

<!ELEMENT chapter EMPTY>

<!ATTLIST chapter title CDATA #REQUIRED>

For example, the input may be

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book SYSTEM "book_bis.dtd">

<book>

<author>Priscilla Walmsley</author>

<title>Definitive XML Schema</title>

<contents>

<chapter title="Schema: An Introduction"/>

<chapter title="A quick tour of XML Schema"/>

<chapter title="Namespaces"/>

<chapter title="Schema composition"/>

<chapter title="Instances and schemas"/>

</contents>

</book>

We want a copy of that XML document without the last chapter:

<?xml version="1.0" encoding="UTF-8"?>

<book>

<author>Priscilla Walmsley</author>

<title>Definitive XML Schema</title>

<contents xmlns:xs="http://www.w3.org/2001/XMLSchema">

<chapter title="Schema: An Introduction"/>
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<chapter title="A quick tour of XML Schema"/>

<chapter title="Namespaces"/>

<chapter title="Schema composition"/>

</contents>

</book>

This is the first time we use XSLT to output XML, acting as a negative
filter, that is, filtering out part of the input. We can start by reusing
some code from previous transforms and then work on the translation of
the function cutl/1 in XSLT, which will be a template named cutl. But
first, the boilerplate and a twist:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

exclude-result-prefixes="xs">

<xsl:output method="xml" version="1.0"

encoding="UTF-8" indent="yes"/>

Note that the output method is no longer text, but xml, as we wish to
output XML. Of course, we then need to state which version of XML
we want (here, 1.0), what the encoding of the file will be (here, UTF-8),
and if we want the resulting XML to be indented (yes, because it greatly
increases legibility, but if we would expect the output to be processed
by another XSLT program, indentation could be dropped). There is an-
other novelty, which is the attribute exclude-result-prefixes="xs" of
xsl:transform. For the sake of clarity, we shall come back to it after we
are finished.

On we go now with the rest of the canvas:

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="element(book)">

<xsl:copy>

<xsl:sequence select="author"/>

<xsl:sequence select="title"/>

<contents>

<xsl:call-template name="cutl">
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<xsl:with-param name="items" select="contents/chapter"

as="element(chapter)*"/>

</xsl:call-template>

</contents>

</xsl:copy>

</xsl:template>

<xsl:template name="cutl" as="item()*">

<xsl:param name="items" as="item()*"/>

...

</xsl:template>

</xsl:transform>

We used a bold typeface to bring forth a new XSLT element, namely
xsl:copy. Perhaps it was expected <book>...</book>, and this would
have worked indeed. Instead, we may prefer avoid copying the element
name too often, in case it changes in future versions. This is where
xsl:copy comes handy: it is a shallow copy of the context node. The con-
text node is the node that was last matched by an element xsl:template,
so it is here book, and ‘shallow’ means that the children are not copied
(we want to copy but also modify the descendants).

Furthermore, notice how we used xsl:sequence with a selection of
an input element (author and title). This is where xsl:sequence shines:
what it does is to refer to the selected elements, without actually copying
them. In that sense, it acts like a pointer, as featured in some imperative
programming languages, like C, and thus saves memory.

Last, but not least, note how the output is constructed by recreating
an XML document; in particular, the juxtaposition of elements denotes
the catenation of the singleton sequences they are (for instance, the two
aforementioned xsl:sequence are written one after the other).

Now we need to translate cutl/1. As we already know, XSLT does not
feature pattern matching, so we should rewrite our abstract functional
program without it:

cutl(t)→ if tl(t) ̸= [ ] then [hd(t) |cutl(tl(t))] else [ ].

where hd(t) (head) evaluates in the first item of the stack t and tl(t) (tail)
in the immediate substack of t. (Of course, hd([ ]) and tl([ ]) could fail, so
we always must check that their argument is not the empty stack.) We
note the two occurrences of tl(t), so, in XSLT, we should use a variable
to hold the value of this call to avoid recomputing it. We start like so:
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<xsl:template name="cutl" as="item()*">

<xsl:param name="items" as="item()*"/>

<xsl:variable name="tail" select="$items[position()>1]"

as="item()*"/>

...

</xsl:template>

Note that we did not specialise the template to process only chapter

elements, but any kind of item, including primitive types, like integers,
but also nodes and, in particular, elements.

Now we need to translate the conditional. We already have seen the
element xsl:choose and proceed to fill the previous ellipsis:

<xsl:choose>

<xsl:when test="not(empty($tail))"> ... </xsl:when>

<xsl:otherwise> ... </xsl:otherwise>

</xsl:choose>

The purpose of XPath functions empty and not is evident. The transla-
tion of the else alternative is the empty sequence in the xsl:otherwise

element. This is easily done without even the xsl:sequence element:

<xsl:choose>

<xsl:when test="not(empty($tail))"> ... </xsl:when>

<xsl:otherwise/>

</xsl:choose>

Indeed, an empty element can always be considered as having an empty
sequence of children. In XSLT, conditionals which have the form of one
xsl:when and an empty xsl:otherwise are better expressed using the
element xsl:if. For instance, our code becomes

<xsl:if test="not(empty($tail))"> ... </xsl:if>

Implicitly, if the test fails, the value of the conditional xsl:if is the empty
sequence. We need now to translate [hd(t) |cutl(tl(t))]. We already have
at our disposal the translation of tl(t), which is the XSLT variable tail.
The translation of hd(t) is simply the singleton sequence <xsl:sequence

select="$items[1]"/>. Instead of pushing on a stack, we catenate two
sequences and this catenation is simply textual juxtaposition:

<xsl:if test="not(empty($tail))">

<xsl:sequence select="$items[1]"/>

<xsl:call-template name="cutl">

<xsl:with-param name="items" select="$tail"
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as="item()*"/>

</xsl:call-template>

</xsl:if>

In the end, the solution is

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="xml" version="1.0"

encoding="UTF-8" indent="yes"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="element(book)">

<xsl:copy>

<xsl:sequence select="author"/>

<xsl:sequence select="title"/>

<contents>

<xsl:call-template name="cutl">

<xsl:with-param name="items" select="contents/chapter"

as="element(chapter)*"/>

</xsl:call-template>

</contents>

</xsl:copy>

</xsl:template>

<xsl:template name="cutl" as="item()*">

<xsl:param name="items" as="item()*"/>

<xsl:variable name="tail" as="item()*"

select="$items[position()>1]"/>

<xsl:if test="not(empty($tail))">

<xsl:sequence select="$items[1]"/>

<xsl:call-template name="cutl">

<xsl:with-param name="items" select="$tail"

as="item()*"/>
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</xsl:call-template>

</xsl:if>

</xsl:template>

</xsl:transform>

At this point, we may wonder why we needed to set the attribute
exclude-result-prefixes="xs" of element xsl:transform. If we remove
it, we obtain the same result except for the element contents:

<contents xmlns:xs="http://www.w3.org/2001/XMLSchema">

...

</contents>

The reason is that when a namespace is declared, all the descendant
elements inherit it, except the namespace associated to XSLT, here named
xsl. Therefore, when we wrote

<contents>

...

</contents>

in the previous transform, the element contents implicitly had the name-
space child node xs. The reason why author and title did not, is that
we used xsl:sequence to reference the input, where that namespace is
absent. The same happens with the elements chapter, which are selec-
ted in the input. The element book was actually copied with xsl:copy,
and we saw that this element does not copy children, amongst whose the
namespace nodes. The default behaviour of the XSLT processor is to set
the inherited namespaces in case they are of some use in the output. In
the present example, xs is useless, so it is best to exclude it from the
(namespace) prefixes in the result: exclude-result-prefixes="xs".

Skipping the penultimate item The purpose of this exercise is to
write an XSLT transform which takes as input a table of contents and
outputs it in XML where the penultimate chapter is missing. If there is
no chapter or only one, the output is identical to the input. The input
should conform to the following DTD, named book_bis.dtd:

<!ELEMENT book (author,title,contents)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT contents (chapter+)>

<!ELEMENT chapter EMPTY>

<!ATTLIST chapter title CDATA #REQUIRED>
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For example, the input may be

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE book SYSTEM "book_bis.dtd">

<book>

<author>Priscilla Walmsley</author>

<title>Definitive XML Schema</title>

<contents>

<chapter title="Schema: An Introduction"/>

<chapter title="A quick tour of XML Schema"/>

<chapter title="Namespaces"/>

<chapter title="Schema composition"/>

<chapter title="Instances and schemas"/>

</contents>

</book>

The corresponding output is

<?xml version="1.0" encoding="UTF-8"?>

<book>

<author>Priscilla Walmsley</author>

<title>Definitive XML Schema</title>

<contents>

<chapter title="Schema: An Introduction"/>

<chapter title="A quick tour of XML Schema"/>

<chapter title="Namespaces"/>

<chapter title="Instances and schemas"/>

</contents>

</book>

The boilerplate XSLT code is the same, except the template, which we
name here cutp. We do not start from an abstract functional program,
but from the previous transform. We will need more cases, so xsl:choose

is back. Perhaps the first difference is the case when tail is empty. This
means that we need to keep the first item, instead of ignoring it:

<xsl:choose>

<xsl:when test="empty($tail)">

<xsl:sequence select="$items[1]"/>

</xsl:when>

...

</xsl:choose>

As for the complementary case, when the tail is not empty, that is to
say, when there are at least two items, we do not know whether the
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first one is the penultimate or not, and the same can be said about the
second. Therefore, we need more information on the structure of the tail,
in particular, whether its tail is, in turn, empty (the tail of the tail of
the complete sequence), in other words, whether the sequence contains
at least three items or not. If it does, then we know that the first item is
not the penultimate, but we still can not say nothing about the others,
so a recursive call is in order; if it does not, then it means that the whole
sequence contains exactly two items, so we put in the result the second
one only, and ignore the first. In the end, we have

<xsl:template name="cutp" as="item()*">

<xsl:param name="items" as="item()*"/>

<xsl:variable name="tail" select="$items[position()>1]"

as="item()*"/>

<xsl:choose>

<xsl:when test="empty($tail)">

<xsl:sequence select="$items[1]"/>

</xsl:when>

<xsl:when test="empty($tail[position()>1])">

<xsl:sequence select="$items[2]"/>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="$items[1]"/>

<xsl:call-template name="cutp">

<xsl:with-param name="items" select="$tail"

as="item()*"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Notice that the case <xsl:when test="empty($items)"/> is actually miss-
ing because it is unnecessary: if $items is empty, then $tail is empty as
well, and the result is thus $items[1], which is the empty sequence.

Reversal The purpose of this exercise is to write an XSLT transform
which takes as input a table of contents with chapters and outputs the
same table of contents in XML where the chapters have been reversed
with respect to the document order (so, for example, the introduction is
listed last). In section 2.2 on page 37, we saw that the straightforward
definition of rev0:

cat([ ], t)→ t; rev0([ ])→ [ ];
cat([x |s], t)→ [x |cat(s, t)]. rev0([x |s])→ cat(rev0(s), [x]).
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We saw that this definition yielded a quadratic cost and therefore should
not be used for reversing stacks. In XSLT, the cost is linear because
catenation has cost zero. We would then write the following translation:

<xsl:template name="rev" as="item()*">

<xsl:param name="items" as="item()*"/>

<xsl:if test="not(empty($items))">

<xsl:call-template name="rev">

<xsl:with-param name="items" as="item()*"

select="$items[position()>1]"/>

</xsl:call-template>

<xsl:sequence select="$items[1]"/>

</xsl:if>

</xsl:template>

Instead of producing an XML document, we could use this opportunity
to see how to produce an XHTML document. Although the purpose may
seem a bit foolish (reversing a table of contents), it is appropriate to
start learning complicated languages such as XSLT and XHTML.

In order to instruct an XSLT processor to produce XHTML, we need
to set some attributes of xsl:transform and xsl:output as follows:

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xhtml="http://www.w3.org/1999/xhtml"

exclude-result-prefixes="xs">

<xsl:output method="xhtml"

doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"

doctype-system=

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"

indent="yes"

omit-xml-declaration="yes"/>

Note that we defined a namespace xhtml for XHTML elements and that
the XHTML version is 1.0 (‘strict’ means that it adheres strictly to XML).
Perhaps the real novelty is setting omit-xml-declaration="yes". Since
XHTML (strict) is XML, the declaration <?xml version="1.0"?> is to be
expected, but some web browsers are confused by this, so we prefer to
be on the safe side and not have that declaration.

Given the previous table of contents, we now would like to obtain

<!DOCTYPE html
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PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8" />

<title>Definitive XML Schema</title>

</head>

<body>

<h2>Definitive XML Schema</h2>

<p>by Priscilla Walmsley</p>

<h3>Reversed table of contents</h3>

<ul>

<li>Instances and schemas</li>

<li>Schema composition</li>

<li>Namespaces</li>

<li>A quick tour of XML Schema</li>

<li>Schema: An Introduction</li>

</ul>

</body>

</html>

which, interpreted by a web browser, would likely render as

Definitive XML Schema

by Priscilla Walmsley

Reversed table of contents

• Instances and schemas
• Schema composition
• Namespaces
• A quick tour of XML Schema
• Schema: An Introduction

First, here is the template matching book:

<xsl:template match="book" as="element(xhtml:html)">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>
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<title><xsl:sequence select="title/text()"/></title>

</head>

<body>

<h2><xsl:value-of select="title"/></h2>

<p>by <xsl:value-of select="author"/></p>

<h3>Reversed table of contents</h3>

<ul>

<xsl:call-template name="rev">

<xsl:with-param name="chap"

select="contents/chapter"/>

</xsl:call-template>

</ul>

</body>

</html>

</xsl:template>

Note first the selection title/text(), which means ‘the text nodes of the
element title, which is the child of the context node (book).’ Second,
we meet a new XSLT element, xsl:value-of, whose purpose is to cre-
ate a text node from the selected items. If we select elements, like here
the unique title element, its descendant text nodes (there is only one
child here) are catenated in document order and put in a new text node.
Therefore, <xsl:sequence select="title/text()"/> has the same result
as <xsl:value-of select="title"/>, although in the later case a new
text node has been created (instead of being shared with the input). As
a remark, we decided to specialise the types to make them fit as closely as
possible the elements being processed, like element(xhtml:html), which
means: ‘One element html in the namespace xhtml.’

Finally, the template doing the reversal is:

<xsl:template name="rev" as="element(xhtml:li)*">

<xsl:param name="chap" as="element(chapter)*"/>

<xsl:if test="not(empty($chap))">

<xsl:call-template name="rev">

<xsl:with-param name="chap" select="$chap[position()>1]"/>

</xsl:call-template>

<li xmlns="http://www.w3.org/1999/xhtml">

<xsl:value-of select="$chap[1]/@title"/>

</li>

</xsl:if>

</xsl:template>

Again, we specialise the types, like element(xhtml:li)*, meaning: ‘Se-
quence (possibly empty) of elements li in the namespace xhtml.’ And
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element(chapter)* is a sequence of chapters, without namespace. But
the two interesting excerpts are set in a bold typeface.

The first one is the declaration of the xhtml namespace in the ele-
ment li: xmlns="http://www.w3.org/1999/xhtml". This is simply neces-
sary to conform with the type of the value of the template. Indeed, this
value should be, as we just saw, a sequence of elements li in the name-
space xhtml. But <li> is actually outside all namespaces, because there
is no default namespace declaration in any ascendant node, contrary
to the template matching book, which we described previously. There,
we had the declaration <html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">, so any descendent element written without a
namespace actually inherits the xhtml namespace. This is not the case in
the template named rev, so an explicit declaration is necessary, otherwise
a type error is raised by the XSLT compiler.

The second noteworthy excerpt is the selection of the xsl:value-of

element, $chap[1]/@title, which means: ‘The title attribute of the
first element of the sequence $chap.’ Here, we cannot substitute the
element xsl:sequence, as with the text node before. Indeed, if we try
<xsl:sequence select="$chap[1]/@title"/>, the result is

...

<li title="Instances and schemas"></li>

<li title="Schema composition"></li>

<li title="Namespaces"></li>

<li title="A quick tour of XML Schema"></li>

<li title="Schema: An Introduction"></li>

...

Let us recall that xsl:sequence is an alias of, or a reference to, the input,
in this case an attribute node, so we should expect a title attribute
in the output. But we wanted the value of the attribute title, not the
attribute itself, hence the need of xsl:value-of. If we wonder why we
really need to create a text node, we must understand that the value of
an attribute is not a text node. This can be seen by changing the selection
to <xsl:sequence select="$chap[1]/title/text()"/>, in which case the
result is

...

<li></li>

<li></li>

<li></li>

<li></li>

<li></li>
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...

Attributes are special and often a source of confusion for beginners.

Comma-separated values The purpose of this exercise is to write an
XSLT transform which takes as input a sequence of elements containing
each one text node and output their contents in the same order, separated
by commas and ended by a period. If the input sequence is empty, the
result is the empty sequence. More precisely, let us assume the following
DTD:

<!ELEMENT numbers (hexa+)>

<!ELEMENT hexa (#PCDATA)>

and the conforming input

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE numbers SYSTEM "csv.dtd">

<numbers>

<hexa>0</hexa>

<hexa>1</hexa>

<hexa>A</hexa>

<hexa>B</hexa>

<hexa>C</hexa>

</numbers>

Then we want

0,1,A,B,C.

The algorithm is simple enough: if the input sequence is empty, the
result is the empty sequence; if the input is a singleton sequence, the
result is the item it contains, followed by a period; otherwise, the first
item of the result is the first in the input, followed by a comma and
the value of a recursive call on the tail. Probably, the difficulty is to
implement this scheme with XSLT. Here is how:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
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<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/" as="text()*">

<xsl:call-template name="csv">

<xsl:with-param name="items" select="numbers/hexa/text()"/>

</xsl:call-template>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template name="csv" as="text()*">

<xsl:param name="items" as="item()*"/>

<xsl:choose>

<xsl:when test="empty($items)"/>

<xsl:when test="empty($items[position()>1])">

<xsl:value-of select="($items[1],’.’)" separator=""/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="($items[1],’,’)" separator=""/>

<xsl:call-template name="csv">

<xsl:with-param name="items"

select="$items[position()>1]"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Note first that we merged the two templates that match the document
root (/) and the root element (numbers) because we do not reconstruct an
XML document. Furthermore, we may remark on the type text()*, which
means ‘A sequence (possibly empty) of text nodes.’ The remaining titbits
are the xsl:value-of elements, in particular a new attribute, separator.
Its value must be a string which is used to separate the selected items. By
default, that string is ’ ’, that is why we set it here to the empty string.
Otherwise, we would obtain: ‘0 ,1 ,A ,B ,C .’. Note that the value of
the attribute separator is the contents of a string, so if we use "”", we are
not specifying the empty string and produce instead: ‘0”,1”,A”,B”,C”.’.

At this point it is perhaps pertinent to draw the relationships between
the different types we have encountered, and learn a few more. Consider
the tree in figure 11.3 on the facing page. The ascendant reading of an
edge from a node x to a node y is ‘x is a [subtype of] y.’ For instance,
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item()

attribute() node()

element() text() primitive

xs:integer xs:float xs:string xs:boolean

Figure 11.3: XPath subtypes

an element() is a node(). This models a subtyping relationship, which
means that in any context where a node() is correct, a element() is
also correct. This relationship is transitive, so anywhere an item() is
expected, a text() is valid, which can be seen at work in the parameter
of the template named csv. As an illustration, let us consider a slight
variation of the input, where the content of interest is stored as attribute
values, like so:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE numbers SYSTEM "csv_att.dtd">

<numbers>

<hexa val="0"/>

<hexa val="1"/>

<hexa val="A"/>

<hexa val="B"/>

<hexa val="C"/>

</numbers>

The DTD csv_att.dtd is

<!ELEMENT numbers (hexa+)>

<!ELEMENT hexa EMPTY>

<!ATTLIST hexa val CDATA #REQUIRED>

It is then enough to change the selection of the parameter item as follows:

<xsl:with-param name="items" select="numbers/hexa/@val"/>

The type of the selection is attribute()*, which is a subtype of item()*,
therefore is a suitable value for the parameter of template csv and the
result is the same as with the first XML input (no attributes).
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While we are interested in the data types, let us pay attention to the
selections of the elements xsl:value-of, for instance ($items[1],’.’).
Statically, the type of $items[1] is item(), although we know, from
the initial template call, that it is actually text(). The type of ’.’ is
xs:string. The sequence in question then has the type item()*, because
xs:string is a subtype of item(), as seen in figure 11.3 on the previous
page. Since the result of the template is of type text()*, the strings it
contains will be cast into text nodes, thus allocating memory. The seri-
aliser is the back-end of the code generated by the XSLT compiler (the
front-end is the XML parser) and its purpose is to produce text from all
the values obtained. In this case, it will then destructure all these text
nodes to generate strings (either displayed on a terminal or written in a
file). If we want to avoid this boxing of strings in text nodes and their
subsequent unboxing, we could plan ahead and opt for a return type
xs:string*, so

<xsl:template match="/" as="xs:string*">

...

</xsl:template>

<xsl:template name="csv" as="xs:string*">

...

</xsl:template>

As a result of this change, we obtain ‘0, 1, A, B, C.’. The extra spaces
come from the fact that we forgot that the elements xsl:value-of cre-
ate text nodes and the implicit serialisation of these (by casting to
xs:string*) yields blank separators, here rendered as ‘ ’. The morale
of this excursus is to keep working with non-primitive types, that is, at-
tributes and nodes, if the input contains attributes and nodes, and let
the serialiser manage the linearisation for the output. (It is possible to
use XSLT for string processing, although this is not the main application
domain of the language, in which case working with xs:string* makes
sense.)

Let us give this exercise a last spin by remarking that the algorithm
may be conceived as working in parallel on the sequence items, as long
as we know how to distinguish the last item because it must be treated
differently (it is followed by a period instead of a comma). But ‘parallel’
does not necessarily imply a temporal meaning, like multithreading, and
can be also thought as processing in isolation, then fusion of the par-
tial results, which is what a map does. We saw maps when introducing
functional iterators in Erlang, on page 333:

map(F,[X1,X2,. . .,Xn]) ≡ [F(X1),F(X2),. . .,F(Xn)].
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A simple definition is

map(_, []) -> [];

map(F,[X|S]) -> [F(X)|map(F,S)].

Note that map is a higher-order function and XSLT only features first-or-
der templates and functions. Nevertheless, we can implement maps by
using a kind a template we already have been using since the introduc-
tion to XSLT, starting on page 404: the matching template. The XSLT
processor (by which we mean the run-time produced by the XSLT com-
piler) implicitly performs a preorder traversal of the input XML tree;
when it finds an element e, it evaluates the corresponding matching tem-
plate and carries on with the traversal. A matching template works as a
rewrite rule for an implicit function in our abstract functional language,
each rule being tried in turn when encountering a node in the XML tree.

Since we often select some children of the context node and apply
to them the same treatment (as if in parallel), we need a mechanism to
gather the results for each child into one sequence. In the running exer-
cise, we wish to select a sequence of hexa elements, children of numbers,
and expect a template matching hexa. We also want to group the results,
just like a map would do. This is achieved twofold by the definition of a
template

<xsl:template match="hexa" as="text()*">

...

</xsl:template>

which is analogous to the definition of the functional parameter F above
and by

<xsl:apply-templates select="hexa"/>

which is analogous to calling map in Erlang.
The only problem remaining is to find out if the context node hexa is

the last in the sequence upon which all templates were applied. This is
where XPath comes handy in providing a function last(), which returns
the position of the last item matched in the same sequence as the context
node. Here is what the transform looks like now:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text" encoding="UTF-8"/>
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<xsl:template match="numbers" as="text()*">

<xsl:apply-templates select="hexa"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="hexa" as="text()*">

<xsl:sequence select="text()"/>

<xsl:choose>

<xsl:when test="position() eq last()">

<xsl:value-of select="’.’"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="’,’"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

This reminds us that any item implicitly carries information about itself,
including its position in a sequence, but also the position of the last
item in that sequence. Notice that we do not need any parameter in the
template matching hexa, because, inside, the context node is one of the
original elements hexa, and we do not need to know which one is it or
what are the others (think parallel processing, if you feel inclined to do
so). For example,

<xsl:sequence select="text()"/>

means: ‘Reference the text node of the context node,’ (as opposed to
copying it with xsl:value-of).

We will use matching templates in the forthcoming section about the
transformation of trees, but we need first more practice to understand
better named templates, because they are closer to the concept of first-
order function in our abstract functional language.

Shuffling The purpose of this exercise is to write an XSLT transform
which takes as input two sequences of elements and output one sequence
containing the items of each sequence shuffled, or, more precisely, the
first item of the resulting sequence is the first item of the first sequence,
the second item is the first item of the second sequence, the third item is
the second item of the first sequence, the fourth item is the second item
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of the second sequence etc. An enlightening analogy is interleaving two
hands from a deck of cards.

If the first items of both sequences are taken out at the same time,
then comes a moment when either both sequences are empty or only one
of them is. The problem is actually underspecified: nothing is said about
what to do if the two sequences are not of the same length. Actually, in
the latter case, we will ignore the remaining items.

The DTD we have in mind is the following

<!ELEMENT persons (names,notes)>

<!ELEMENT names (name*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT notes (note*)>

<!ELEMENT note (#PCDATA)>

Then, this input:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE persons SYSTEM "persons.dtd">

<persons>

<names>

<name>Alan Turing</name>

<name>Kurt Gödel</name>

<name>Donald Knuth</name>

<name>Robin Milner</name>

</names>

<notes>

<note>Defined a simple theoretical model of computers</note>

<note>Proved the incompleteness of arithmetics</note>

<note>Prolific author and creator of TeX</note>

<note>Proposed a model of concurrency</note>

</notes>

</persons>

yields this output:

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<name>Alan Turing</name>

<note>Defined a simple theoretical model of computers</note>

<name>Kurt Gödel</name>

<note>Proved the incompleteness of arithmetics</note>

<name>Donald Knuth</name>
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<note>Prolific author and creator of TeX</note>

<name>Robin Milner</name>

<note>Proposed a model of concurrency</note>

</persons>

The following input:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE persons SYSTEM "persons.dtd">

<persons>

<names>

<name>Alan Turing</name>

<name>Kurt Gödel</name>

</names>

<notes>

<note>Defined a simple theoretical model of computers</note>

<note>Proved the incompleteness of arithmetics</note>

<note>Prolific author and creator of TeX</note>

<note>Proposed a model of concurrency</note>

</notes>

</persons>

yields this output:

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<name>Alan Turing</name>

<note>Defined a simple theoretical model of computers</note>

<name>Kurt Gödel</name>

<note>Proved the incompleteness of arithmetics</note>

</persons>

This input:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE persons SYSTEM "persons.dtd">

<persons>

<names>

<name>Alan Turing</name>

<name>Kurt Gödel</name>

<name>Donald Knuth</name>

<name>Robin Milner</name>

</names>

<notes>
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<note>Defined a simple theoretical model of computers</note>

</notes>

</persons>

yields this output:

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<name>Alan Turing</name>

<note>Defined a simple theoretical model of computers</note>

</persons>

Following the strategy outlined above, we expect a template named
shuffle to have two parameters, one for the names and one for the
notes:

<xsl:template match="persons" as="element(persons)">

<xsl:copy>

<xsl:call-template name="shuffle">

<xsl:with-param name="names" select="names/name"/>

<xsl:with-param name="notes" select="notes/note"/>

</xsl:call-template>

</xsl:copy>

</xsl:template>

<xsl:template name="shuffle" as="element()*">

<xsl:param name="names" as="element(name)*"/>

<xsl:param name="notes" as="element(note)*"/>

...

</xsl:template>

Note that we use xsl:copy to copy the context node persons and that
we had to use the return type element()* because we cannot express in
XPath: ‘A sequence of mixed elements name and note.’ The body of that
template follows our plan. If the parameters are both not empty, we do
something, otherwise an implicit empty sequence will be produced. This
test is performed in XPath using the Boolean connector and as follows:

<xsl:template name="shuffle" as="element(persons)*">

<xsl:param name="names" as="element(name)*"/>

<xsl:param name="notes" as="element(note)*"/>

<xsl:if test="not(empty($names)) and not(empty($notes))">

<xsl:sequence select="$names[1]"/>

<xsl:sequence select="$notes[1]"/>
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<xsl:call-template name="shuffle">

<xsl:with-param name="names"

select="$names[position()>1]"/>

<xsl:with-param name="notes"

select="$notes[position()>1]"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

Another possibility, when confronted to dangling items, is to append
them to the already outputted items. For instance, given the first input
above yields now

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<name>Alan Turing</name>

<note>Defined a simple theoretical model of computers</note>

<name>Kurt Gödel</name>

<note>Proved the incompleteness of arithmetics</note>

<name>Donald Knuth</name>

<note>Prolific author and creator of TeX</note>

<name>Robin Milner</name>

<note>Proposed a model of concurrency</note>

</persons>

The second input above leads to

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<name>Alan Turing</name>

<note>Defined a simple theoretical model of computers</note>

<name>Kurt Gödel</name>

<note>Proved the incompleteness of arithmetics</note>

<note>Prolific author and creator of TeX</note>

<note>Proposed a model of concurrency</note>

</persons>

And the last input above results in

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<name>Alan Turing</name>

<note>Defined a simple theoretical model of computers</note>

<name>Kurt Gödel</name>
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<name>Donald Knuth</name>

<name>Robin Milner</name>

</persons>

Here is a solution:

<xsl:template name="shuffle" as="element()*">

<xsl:param name="names" as="element(name)*"/>

<xsl:param name="notes" as="element(note)*"/>

<xsl:choose>

<xsl:when test="empty($notes)">

<xsl:sequence select="$names"/>

</xsl:when>

<xsl:when test="empty($names)">

<xsl:sequence select="$notes"/>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="($names[1],$notes[1])"/>

<xsl:call-template name="shuffle">

<xsl:with-param name="names"

select="$names[position()>1]"/>

<xsl:with-param name="notes"

select="$notes[position()>1]"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Note how we placed $notes[1] after $names[1] in XPath with

<xsl:sequence select="($names[1],$notes[1])"/>

instead of working at the level of XSLT, as previously:

<xsl:sequence select="$names[1]"/>

<xsl:sequence select="$notes[1]"/>

As a variation, it is possible to achieve the same result by extracting
one element at a time, instead of two. Of course, the program will be
about twice as slow, but it is interesting nevertheless:

<xsl:template name="shuffle" as="element()*">

<xsl:param name="names" as="element(name)*"/>

<xsl:param name="notes" as="element(note)*"/>

<xsl:choose>
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<xsl:when test="empty($names)">

<xsl:sequence select="$notes"/>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="$names[1]"/>

<xsl:call-template name="shuffle">

<xsl:with-param name="names" select="$notes"/>

<xsl:with-param name="notes"

select="$names[position()>1]"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

The point is to swap the arguments in the recursive call. Of course, the
parameters’ names are not pertinent anymore, and a neutral renaming
would be fitting. In our abstract functional language, we would write

shuffle([ ], t)→ t; shuffle([x |s], t)→ [x |shuffle(t, s)].

This is actually almost the same definition as that of cat/1 (catenation):

cat([ ], t)→ t; cat([x |s], t)→ [x |cat(s, t)].

Maximum The aim of this exercise is to write an XSLT transform
which takes as input a sequence of integers and outputs the maximum of
these numbers as plain text. If an item is not castable to xs:integer, a
dynamic type error is raised and the execution is stopped. If an item is
an empty text node, for example, <num/>, it is skipped. If the sequence
contains no integer, not text is outputted, because the maximum is un-
defined. The root element is numbers and the elements containing the
numbers are named num. Any element other than num is ignored.

The DTD we have in mind is the following:

<!ELEMENT numbers (num,foo?)*>

<!ELEMENT num (#PCDATA)>

<!ELEMENT foo (#PCDATA)>

If the input document is

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE numbers SYSTEM "numbers.dtd">

<numbers>

<num/>
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<num>18</num>

<num>-1</num>

<num>3</num>

<num>5</num>

<num/>

<num>23</num>

<foo>hello</foo>

<num>-3</num>

<num>2</num>

<num/>

<num>7</num>

<num>4</num>

<num></num>

</numbers>

the result is

23

First, let us set the types in the following schema:

<xsl:template match="numbers" as="xs:integer?">

...

</xsl:template>

<xsl:template name="max" as="xs:integer?">

<xsl:param name="int" as="xs:integer*"/>

<xsl:param name="cur" as="xs:integer?"/>

...

</xsl:template>

Let’s recall the type operator ‘?’ meaning ‘One or none’, so xs:integer?

is either an empty sequence or a sequence containing one integer. This
precaution is necessary because we are not certain that the input contains
at least an integer (we even allowed for dummy elements foo, as a look
back at the DTD confirms). The parameter int contains the remaining
integers to examine, whilst cur is the current maximum, if any. That is
why we should initialise the latter with the contents of the first number:

<xsl:template match="numbers" as="xs:integer?">

<xsl:call-template name="max">

<xsl:with-param name="int"

select="num[position()>1]/text()"/>

<xsl:with-param name="cur" select="num[1]/text()"/>
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</xsl:call-template>

</xsl:template>

Note that had we written $num[1]/text(), the selection would have been
empty, as there is no variable num, but, instead, we meant the child
element num. Next, we selected the text nodes, although the expected
types are xs:integer* and xs:integer?. In fact, a cast at run-time will
be performed. In the case of cur, if the cast fails, the empty sequence
will result; otherwise, an integer (that is, a sequence containing a single
integer). In the case of int, a cast is attempted for each element in the
sequence and the resulting sequences are catenated.

There are several ways to solve this problem. We could make the
following cases:

• if there are no integers to examine, the result is the current integer,
if any;

• if there is an actual, current integer, and if it is greater than the
first integer to examine, we start over while discarding the latter;

• otherwise, the first integer to examine becomes the current max-
imum and we start over and discard the previous maximum.

This plan is implemented as follows:

<xsl:template name="max" as="xs:integer?">

<xsl:param name="int" as="xs:integer*"/>

<xsl:param name="cur" as="xs:integer?"/>

<xsl:choose>

<xsl:when test="empty($int)">

<xsl:sequence select="$cur"/>

</xsl:when>

<xsl:when test="not(empty($cur)) and $cur ge $int[1]">

<xsl:call-template name="max">

<xsl:with-param name="int"

select="$int[position()>1]"/>

<xsl:with-param name="cur" select="$cur"/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="max">

<xsl:with-param name="int"

select="$int[position()>1]"/>

<xsl:with-param name="cur" select="$int[1]"/>
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</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Notice how we checked for the presence of a current maximum with
not(empty($cur)) and the XPath Boolean operator ‘greater than or equal
to’ is ge. We may further remark that, in both recursive calls, the para-
meter int has the same value $int[position()>1], so we might want to
share the code as follows:

<xsl:template name="max" as="xs:integer?">

<xsl:param name="int" as="xs:integer*"/>

<xsl:param name="cur" as="xs:integer?"/>

<xsl:choose>

<xsl:when test="empty($int)">

<xsl:sequence select="$cur"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="max">

<xsl:with-param name="int" select="$int[position()>1]"/>

<xsl:with-param name="cur">

<xsl:choose>

<xsl:when test="not(empty($cur)) and $cur ge $int[1]">

<xsl:sequence select="$cur"/>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="$int[1]"/>

</xsl:otherwise>

</xsl:choose>

</xsl:with-param>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

This template contains less duplication and is more logically structured,
but it is longer, which means that the usual reflexes gained from ex-
perience in other programming languages may be counterproductive in
XSLT. Note in passing that this answer illustrates that xsl:with-param

may have children instead of a select attribute.
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Reducing The purpose of this exercise is to write an XSLT transform
which takes as input a flat document tree, that is, the document root
has children but no grand-children. The children carry an attribute and
the output should be the same document without those children being
consecutively repeated. This is the same as the function red/1 we saw in
figure 2.22 on page 70:

red([ ])→ [ ];
red([x, x |s])→ red([x |s]);

red([x |s])→ [x | red(s)].

In XSLT, we need more constraints on the input and we must be take
into account data types. Let us opt for the following DTD:

<!ELEMENT numbers (num*)>

<!ELEMENT num EMPTY>

<!ATTLIST num val NMTOKEN #REQUIRED>

For example, this valid input

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE numbers SYSTEM "numbers_bis.dtd">

<numbers>

<num val="8"/>

<num val="1"/>

<num val="two"/>

<num val="two"/>

<num val="two"/>

<num val="2"/>

<num val="one"/>

<num val="2"/>

<num val="4"/>

<num val="4"/>

</numbers>

results in

<?xml version="1.0" encoding="UTF-8"?>

<numbers>

<num val="8"/>

<num val="1"/>

<num val="two"/>

<num val="2"/>

<num val="one"/>
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<num val="2"/>

<num val="4"/>

</numbers>

If we start from red/1, we need to remove the pattern matching and use
instead conditionals. First, we separate the patterns depending on the
number of items:

red([ ])→ [ ];
red([x])→ [x];

red([x, x |s])→ red([x |s]);
red([x, y |s])→ [x | red([y |s])].

Now, we can remove pattern matching:

red(t)→ if t = [ ] or tl(t) = [ ] then t
else if hd(t) = hd(tl(t)) then red(tl(t)) else [hd(t) | red(tl(t))].

where hd(t) is the head of stack t and tl(t) is the tail of t, that is, its
immediate substack. In XSLT, we may define a variable by means of the
element xsl:variable, so we can improve the translation by computing
only once the translation of red(tl(t)). We also know that hd(t) trans-
lates as $t[1], where t is the translation of t, and tl(t) translates as
$t[position()>1] or $t[position()!=1]. Here is the full transform:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="xml" version="1.0" encoding="UTF-8"

indent="yes"/>

<xsl:template match="/">

<xsl:apply-templates select="numbers"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="numbers" as="element(numbers)">

<xsl:copy>

<xsl:call-template name="red">

<xsl:with-param name="t" select="num"/>

</xsl:call-template>
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</xsl:copy>

</xsl:template>

<xsl:template name="red" as="element(num)*">

<xsl:param name="t" as="element(num)*"/>

<xsl:choose>

<xsl:when test="empty($t[position()>1])">

<xsl:sequence select="$t"/>

</xsl:when>

<xsl:otherwise>

<xsl:if test="$t[1]/@val ne $t[2]/@val">

<xsl:sequence select="$t[1]"/>

</xsl:if>

<xsl:call-template name="red">

<xsl:with-param name="t" select="$t[position()>1]"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Note how we do not cast the attribute value to xs:integer, for example
with xs:integer($t[1]/@val) ne xs:integer($t[2]/@val), because we
want to allow any kind of value for comparison.

Merging The purpose of this exercise is to write an XSLT transform
which takes as input two sequences of elements which are sorted by in-
creasing values of the same integer attribute, and it outputs one sequence
containing all the items sorted increasingly. We can reuse for this the
function mrg/2 in figure 4.1 on page 116, which merges two ordered
stacks:

mrg([ ], t)→ t;
mrg(s, [ ])→ s;

mrg([x |s], [y |t])→ [y |mrg([x |s], t)], if x ≻ y;
mrg([x |s], t)→ [x |mrg(s, t)].

We envisage the following simple DTD list.dtd:

<!ELEMENT lists (list,list)>

<!ELEMENT list (item*)>

<!ELEMENT item EMPTY>

<!ATTLIST item val CDATA #REQUIRED>
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Given the following XML document

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE lists SYSTEM "list.dtd">

<lists>

<list>

<item val="1"/>

<item val="7"/>

<item val="13"/>

<item val="15"/>

<item val="28"/>

<item val="33"/>

</list>

<list>

<item val="8"/>

<item val="9"/>

<item val="16"/>

<item val="19"/>

</list>

</lists>

the output is

<?xml version="1.0" encoding="UTF-8"?>

<lists>

<item val="1"/>

<item val="7"/>

<item val="8"/>

<item val="9"/>

<item val="13"/>

<item val="15"/>

<item val="16"/>

<item val="19"/>

<item val="28"/>

<item val="33"/>

</lists>

Here, we can translate mrg/2 in XSLT without explicitly getting rid of
pattern matching:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
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xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="xml" version="1.0"

encoding="UTF-8" indent="yes"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="lists" as="element(lists)">

<xsl:copy>

<xsl:call-template name="merge">

<xsl:with-param name="seq1" select="list[1]/item"/>

<xsl:with-param name="seq2" select="list[2]/item"/>

</xsl:call-template>

</xsl:copy>

</xsl:template>

<xsl:template name="merge" as="element(item)*">

<xsl:param name="seq1" as="element(item)*"/>

<xsl:param name="seq2" as="element(item)*"/>

<xsl:choose>

<xsl:when test="empty($seq1)">

<xsl:sequence select="$seq2"/>

</xsl:when>

<xsl:when test="empty($seq2)">

<xsl:sequence select="$seq1"/>

</xsl:when>

<xsl:when test="xs:integer($seq1[1]/@val)

lt xs:integer($seq2[1]/@val)">

<xsl:sequence select="$seq1[1]"/>

<xsl:call-template name="merge">

<xsl:with-param name="seq1"

select="$seq1[position()>1]"/>

<xsl:with-param name="seq2" select="$seq2"/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="$seq2[1]"/>

<xsl:call-template name="merge">

<xsl:with-param name="seq1" select="$seq1"/>

<xsl:with-param name="seq2"
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select="$seq2[position()>1]"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

If we would like instead produce text, we only have the changes

...

<xsl:output method="text"/>

...

<xsl:template match="lists" as="xs:integer*">

<xsl:call-template name="merge">

<xsl:with-param name="seq1" select="list[1]/item"

as="xs:integer*"/>

<xsl:with-param name="seq2" select="list[2]/item"

as="xs:integer*"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="merge" as="xs:integer*">

<xsl:param name="seq1" as="xs:integer*"/>

<xsl:param name="seq2" as="xs:integer*"/>

...

</xsl:template>

...

11.4 Transforming trees

After an extensive training with the transformation of sequences, it is
time that we tackle the general case, that is, trees. As we have mentioned
at the beginning of this chapter, XML trees are unranked, which means
that an element node can have a variable number of children, if not
invalidated by a DTD. This is in contrast with binary trees, for instance,
whose nodes can only have two or no children.

Size The purpose of this exercise is to write an XSLT transform which
takes as input a table of contents and computes the number of sections.
But, contrary to a previous exercise, the table is not flat here, more
precisely, the DTD we have in mind is as follows:
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<!ELEMENT book (author, chapter+)>

<!ATTLIST book title CDATA #REQUIRED>

<!ELEMENT author EMPTY>

<!ATTLIST author first NMTOKEN #REQUIRED

last NMTOKEN #REQUIRED>

<!ELEMENT chapter (section*)>

<!ATTLIST chapter title CDATA #REQUIRED>

<!ELEMENT section (section*)>

<!ATTLIST section title CDATA #REQUIRED>

An example of valid XML document is

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE book SYSTEM "book_deep.dtd">

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>

<chapter title="A quick tour of XML Schema">

<section title="An example schema"/>

<section title="The components of XML Schema">

<section title="Declarations vs. definitions"/>

<section title="Global vs. local components"/>

</section>

<section title="Elements and attributes">

<section title="The tag/type distinction"/>

</section>

</chapter>

<chapter title="Instances and schemas">

<section title="Using the instance attributes"/>

<section title="Schema processing">

<section title="Validation"/>

<section title="Augmenting the instance"/>

</section>

</chapter>

</book>

Of course, we expect the result

10

Instead of going back to our abstract functional language, or Erlang,
and then translating to XSLT, let us try to figure out the algorithm in
plain English and move to write the transform.
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The idea is to match the root element, then select the first level
of sections, just below the chapters. This sequence of nodes section is
passed to a template named count, whose job is to count all the sections
in it. If this sequence of sections is empty, the answer is 0. Otherwise,

1. we call recursively count on the subsections of the first section;

2. this number plus 1 is the number of sections in the first section
(including itself) of the sequence;

3. finally we call recursively count on the rest of the sequence (that is,
the remaining sections) and add this number to the previous one:
the total is the result.

Note that the two recursive calls can be interchanged and the case de-
scribed (call first on the children of the first node, then on the following
siblings), is depth-first traversal of the tree, which we write first:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

exclude-result-prefixes="xs">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="count">

<xsl:with-param name="sections" select="chapter/section"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="count" as="xs:integer">

<xsl:param name="sections" as="element(section)*"/>

<xsl:choose>

<xsl:when test="empty($sections)">

<xsl:sequence select="0"/>

</xsl:when>

<xsl:otherwise>
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<xsl:variable name="subsec" as="xs:integer">

<xsl:call-template name="count">

<xsl:with-param name="sections"

select="$sections[1]/section"/>

</xsl:call-template>

</xsl:variable>

<xsl:variable name="subseq" as="xs:integer">

<xsl:call-template name="count">

<xsl:with-param name="sections"

select="$sections[position()>1]"/>

</xsl:call-template>

</xsl:variable>

<xsl:sequence select="1 + $subsec + $subseq"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Beware of selecting $sections[1]/section, but not sections[1]/section,
which is empty, because section is a child element of the context node,
whereas $section is the content of the variable section. Perhaps it is wise
to avoid using variables which are also element names in the input. Note
also that because we must call named templates at the XSLT level, not in
XPath, we have to define variables subsec and subseq to hold the results
of the two recursive calls. Had we use XSLT functions (xsl:function),
we would have called them in XPath. For the sake of uniformity, let us
stick to named templates, even though, in some contexts, they may add
verbosity to an already verbose language.

If we want to visit the siblings before the children, we just need to
swap the declarations of the variables:

...

<xsl:variable name="subseq" as="xs:integer">

...

</xsl:variable>

<xsl:variable name="subsec" as="xs:integer">

...

</xsl:variable>

...

This makes no difference because the parts of the tree traversed by the
two calls are complementary. It is nevertheless instructive to draw the
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XML tree and follow the (descending) calls with one colour on the left
side of the nodes, and the (ascending) results with another colour on the
right side.

Instead of counting the sections in a bottom-up fashion, we can
thread a counter during our traversal and increment it each time we
encounter a section; the final result is then the current count when we
are back at the root. (The counter is a kind of accumulator.) We have

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:apply-templates/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="count">

<xsl:with-param name="sections" select="chapter/section"/>

<xsl:with-param name="current" select="0"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="count" as="xs:integer">

<xsl:param name="sections" as="element(section)*"/>

<xsl:param name="current" as="xs:integer"/>

<xsl:choose>

<xsl:when test="empty($sections)">

<xsl:sequence select="$current"/>

</xsl:when>

<xsl:otherwise>

<xsl:variable name="subsec" as="xs:integer">

<xsl:call-template name="count">

<xsl:with-param name="sections"

select="$sections[1]/section"/>

<xsl:with-param name="current"

select="$current + 1"/>



462 CHAPTER 11. INTRODUCTION TO XSLT

</xsl:call-template>

</xsl:variable>

<xsl:call-template name="count">

<xsl:with-param name="sections"

select="$sections[position()>1]"/>

<xsl:with-param name="current" select="$subsec"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Note how the case of the empty sequence $sections yields the current
count instead of 0, as opposed to previous versions.

For the sake of practising with the XSLT syntax, we might remark
that the variable subsec is only used to initialise the parameter current of
second recursive call. We could avoid creating that variable if we expand
its recursive call as a child of the parameter in question:

<xsl:template name="count" as="xs:integer">

<xsl:param name="sections" as="element(section)*"/>

<xsl:param name="current" as="xs:integer" select="0"/>

<xsl:choose>

<xsl:when test="empty($sections)">

<xsl:sequence select="$current"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="count">

<xsl:with-param name="sections"

select="$sections[position()>1]"/>

<xsl:with-param name="current" as="xs:integer">

<xsl:call-template name="count">

<xsl:with-param name="sections"

select="$sections[1]/section"/>

<xsl:with-param name="current"

select="$current + 1"/>

</xsl:call-template>

</xsl:with-param>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>
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Note the use of a default value for parameter current, thus avoiding its
initialisation in the first call (in the template matching element book).

Summing The purpose of this exercise is to write an XSLT transform
which takes as input a document made of one kind of element with one
kind of attribute whose value is a positive integer, and computes the sum
of all these numbers. More precisely, we think of the following DTD:

<!ELEMENT numbers (num+)>

<!ELEMENT num (num*)>

<!ATTLIST num val CDATA #REQUIRED>

and, for instance, of the following input:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE numbers SYSTEM "numbers_tree.dtd">

<numbers>

<num val="18"/>

<num val="1">

<num val="1"/>

<num val="2"/>

</num>

<num val="3">

<num val="4">

<num val="1"/>

<num val="1"/>

</num>

</num>

<num val="5">

<num val="23"/>

<num val="3"/>

<num val="2">

<num val="7">

<num val="4"/>

<num val="4"/>

</num>

</num>

</num>

</numbers>

The expected result is then

79
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The key is to understand the difference between this exercise and
the exercise where we had to count the number of sections in a table of
contents. In the latter, we counted 1 for each section. In the former, we
simply take the value of the attribute val instead of 1:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text"/>

<xsl:template match="numbers">

<xsl:call-template name="sum">

<xsl:with-param name="numbers" select="num"/>

</xsl:call-template>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template name="sum" as="xs:integer">

<xsl:param name="numbers" as="element(num)*"/>

<xsl:param name="current" as="xs:integer" select="0"/>

<xsl:choose>

<xsl:when test="empty($numbers)">

<xsl:sequence select="$current"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="sum">

<xsl:with-param name="numbers"

select="$numbers[position()>1]"/>

<xsl:with-param name="current" as="xs:integer">

<xsl:call-template name="sum">

<xsl:with-param name="numbers"

select="$numbers[1]/num"/>

<xsl:with-param name="current"

select="$current + xs:integer($numbers[1]/@val)"/>

</xsl:call-template>

</xsl:with-param>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>
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</xsl:transform>

Mirroring The purpose of this exercise is to write an XSLT transform
which takes as input a table of contents with sections only and output
the same table in XML where the sections have been reversed, level by
level, which means that the result tree is the image of the input tree in
a mirror. We already defined an abstract function mir/1 doing exactly
that appears in figure 7.25 on page 218:

mir(ext())→ ext(); mir(int(x, t1, t2))→ int(x,mir(t2),mir(t1)).

The DTD we have in mind have in mind here is the following:

<!ELEMENT book (author, section+)>

<!ATTLIST book title CDATA #REQUIRED>

<!ELEMENT author EMPTY>

<!ATTLIST author first NMTOKEN #REQUIRED

last NMTOKEN #REQUIRED>

<!ELEMENT section (section*)>

<!ATTLIST section title CDATA #REQUIRED>

An example of valid input is the following table of contents:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE book SYSTEM "book_simple.dtd">

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>

<section title="[1] A quick tour of XML Schema">

<section title="[1.1] An example schema"/>

<section title="[1.2] The components of XML Schema">

<section title="[1.2.1] Declarations vs. definitions"/>

<section title="[1.2.2] Global vs. local components"/>

</section>

<section title="[1.3] Elements and attributes">

<section title="[1.3.1] The tag/type distinction"/>

</section>

</section>

<section title="[2] Instances and schemas">

<section title="[2.1] Using the instance attributes"/>

<section title="[2.2] Schema processing">
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<section title="[2.2.1] Validation"/>

<section title="[2.2.2] Augmenting the instance"/>

</section>

</section>

</book>

Note that each section title has been numbered in order to better under-
stand the corresponding output:

<?xml version="1.0" encoding="UTF-8"?>

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>

<section title="[2] Instances and schemas">

<section title="[2.2] Schema processing">

<section title="[2.2.2] Augmenting the instance"/>

<section title="[2.2.1] Validation"/>

</section>

<section title="[2.1] Using the instance attributes"/>

</section>

<section title="[1] A quick tour of XML Schema">

<section title="[1.3] Elements and attributes">

<section title="[1.3.1] The tag/type distinction"/>

</section>

<section title="[1.2] The components of XML Schema">

<section title="[1.2.2] Global vs. local components"/>

<section title="[1.2.1] Declarations vs. definitions"/>

</section>

<section title="[1.1] An example schema"/>

</section>

</book>

The difference with the function mir/1 is that XML trees are un-
ranked and there are no external nodes. The case mir(ext()) corresponds
to empty sequence of subsections and its right-hand side ext() translates
then as an empty sequence as well, which means that the structure of
the named template is

<xsl:template name="mir" as="element(section)*">

<xsl:param name="sections" as="element(section)*"/>

<xsl:if test="not(empty($sections))">

...

</xsl:if>

</xsl:template>
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This is a typical use-case for xsl:if, instead of the general xsl:choose.
Next, we focus on the second rewrite rule, whose right-hand side is
int(x,mir(t2),mir(t1)). In XSLT, the parameter is a sequence of sections,
that is, a forest, because we are dealing with unranked trees, so the
children of the root make up a forest, not a pair (t1, t2) like in binary
trees. Therefore, we need to generalise the mirroring to a stack. If we
simply reverse it, this is not good because the children need reversing
too, and so the grand-children etc. In other words, we need to traverse
the whole tree, thus we should expect to perform two recursive calls: one
horizontally (to process the current level $sections), and one vertically
(to process the children of a node in the current level, usually the first).

The previous canvas then should be filled like so:

<xsl:template name="mir" as="element(section)*">

<xsl:param name="sections" as="element(section)*"/>

<xsl:if test="not(empty($sections))">

<xsl:call-template name="mir">

<xsl:with-param name="sections"

select="$sections[position()>1]"/>

</xsl:call-template>

<section>

<xsl:sequence select="$sections[1]/@title"/>

<xsl:call-template name="mir">

<xsl:with-param name="sections"

select="$sections[1]/section"/>

</xsl:call-template>

</section>

</xsl:if>

</xsl:template>

This template can be conceived as interleaving the reversal and the re-
cursive mirroring of the children of the root. Note how <xsl:sequence

select="$sections[1]/@title"/> is needed to rebuild the attribute of
the mirrored image <section>...</section> of the first section. Recall
that attribute nodes must be defined before the other kinds of nodes
amongst the children (see page 383), that is, immediately after the open-
ing tag <section>. The complete transform is

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

exclude-result-prefixes="xs">
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<xsl:output method="xml" version="1.0"

encoding="UTF-8" indent="yes"/>

<xsl:template match="/">

<xsl:apply-templates select="book"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="element(book)">

<xsl:copy>

<xsl:sequence select="@title"/>

<xsl:sequence select="author"/>

<xsl:call-template name="mir">

<xsl:with-param name="sections" select="section"/>

</xsl:call-template>

</xsl:copy>

</xsl:template>

<xsl:template name="mir" as="element(section)*">

<xsl:param name="sections" as="element(section)*"/>

<xsl:if test="not(empty($sections))">

<xsl:call-template name="mir">

<xsl:with-param name="sections"

select="$sections[position()>1]"/>

</xsl:call-template>

<section>

<xsl:sequence select="$sections[1]/@title"/>

<xsl:call-template name="mir">

<xsl:with-param name="sections"

select="$sections[1]/section"/>

</xsl:call-template>

</section>

</xsl:if>

</xsl:template>

</xsl:transform>

Again, we have an illustration of the necessity of the attribute setting
exclude-result-prefixes="xs", or else the rebuilt section would need-
lessly inherit the namespace xs.

Now, let us answer the same question when the table of contents
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contains chapters, which in turn contain sections, and we do not want
the chapters to be reversed, only the sections. More precisely, the DTD
we want is book_deep.dtd:

<!ELEMENT book (author, chapter+)>

<!ATTLIST book title CDATA #REQUIRED>

<!ELEMENT author EMPTY>

<!ATTLIST author first NMTOKEN #REQUIRED

last NMTOKEN #REQUIRED>

<!ELEMENT chapter (section*)>

<!ATTLIST chapter title CDATA #REQUIRED>

<!ELEMENT section (section*)>

<!ATTLIST section title CDATA #REQUIRED>

and a valid input would be

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE book SYSTEM "book_deep.dtd">

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>

<chapter title="[I] A quick tour of XML Schema">

<section title="[I.1] An example schema"/>

<section title="[I.2] The components of XML Schema">

<section title="[I.2.1] Declaration vs. definition"/>

<section title="[I.2.2] Global vs. local components"/>

</section>

<section title="[I.3] Elements and attributes">

<section title="[I.3.1] The tag/type distinction"/>

</section>

</chapter>

<chapter title="[II] Instances and schemas">

<section title="[II.1] Using the instance attributes"/>

<section title="[II.2] Schema processing">

<section title="[II.2.1] Validation"/>

<section title="[II.2.2] Augmenting the instance"/>

</section>

</chapter>

</book>

We want the result
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<?xml version="1.0" encoding="UTF-8"?>

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>

<chapter title="[I] A quick tour of XML Schema">

<section title="[I.3] Elements and attributes">

<section title="[I.3.1] The tag/type distinction"/>

</section>

<section title="[I.2] The components of XML Schema">

<section title="[I.2.2] Global vs. local components"/>

<section title="[I.2.1] Declaration vs. definition"/>

</section>

<section title="[I.1] An example schema"/>

</chapter>

<chapter title="[II] Instances and schemas">

<section title="[II.2] Schema processing">

<section title="[II.2.2] Augmenting the instance"/>

<section title="[II.2.1] Validation"/>

</section>

<section title="[II.1] Using the instance attributes"/>

</chapter>

</book>

We mentioned that we had to write

<section>

<xsl:sequence select="$sections[1]/@title"/>

...

</section>

to copy the attribute of the first section. Instead, we would like to write
<section title="$sections[1]/@title">, but the attribute value is then
considered as plain text, not as a selection. Therefore, the problem boils
down to performing a selection in an attribute which is neither test

nor select. The answer lies with an XPath operator {...}, which means
‘Consider the text between braces as XPath, not plain text.’ In other
words, we could write

<section title="{$sections[1]/@title}">

...

</section>

Clearly, we do not need to rewrite the template named mir because sec-
tions are to be processed in the same way as before, although it may be
interesting to use this new XPath operator for the sake of learning. Other
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than that, all we need is a new named template to handle the chapters
by reconstructing them in the same order, but with mirrored section

children (if any). This means that we can reuse the same structure as
mir, but without the reversal:

<xsl:template match="book" as="element(book)">

<xsl:copy>

<xsl:sequence select="@title"/>

<xsl:sequence select="author"/>

<xsl:call-template name="mk_chap">

<xsl:with-param name="chapters" select="chapter"/>

</xsl:call-template>

</xsl:copy>

</xsl:template>

<xsl:template name="mk_chap" as="element(chapter)*">

<xsl:param name="chapters" as="element(chapter)*"/>

<xsl:if test="not(empty($chapters))">

<chapter title="{$chapters[1]/@title}">

<xsl:call-template name="mir">

<xsl:with-param name="sections"

select="$chapters[1]/section"/>

</xsl:call-template>

</chapter>

<xsl:call-template name="mk_chap">

<xsl:with-param name="chapters"

select="$chapters[position()>1]"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

Note that the xsl:copy element admit no select attribute: it only per-
forms a shallow copy of the context node. Here it is clear that the context
node is book, because xsl:copy is a child of the template matching book.
But what if it is in a named template? How do we know the context
node there, since we are not in a matching template? The answer is that
the context node is the last matched node in the control flow up to the
present instruction. For instance, in the template named mir, the context
node is the root element book.

Because the order of the chapters must be left unchanged, it is in-
teresting to use a template matching chapter to process them and call
it with <xsl:apply-templates select="chapter"/>, instead of using the
bulky template named mk_chap. It means:
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1. select the elements chapter which are children of the context node;
2. for each element in the resulting sequence, in parallel, apply the

first template in the stylesheet which matches chapter;
3. when finished, gather all the results in one sequence, in the same

order as the original chapters.

As we saw on page 441, a matching template is like a map, the parallel
application of a template to the items of a sequence. In other words, when
parallel processing of elements is envisaged, we use xsl:apply-templates,
otherwise sequential processing is chosen, that is xsl:call-template.
(Please keep in mind that ‘parallel’ does not imply that an implementa-
tion of an XSLT processor must be multi-threaded, only that it could be.
The function map in Erlang is clearly sequential, for instance, although
it could be programmed using concurrent, even distributed, processes.)
We have to rewrite the template matching book and the template named
mk_chap, which becomes a template matching chapter:

<xsl:template match="book" as="element(book)">

<xsl:copy>

<xsl:attribute name="title" select="@title"/>

<xsl:sequence select="author"/>

<xsl:apply-templates select="chapter"/>

</xsl:copy>

</xsl:template>

<xsl:template match="chapter" as="element(chapter)">

<xsl:copy>

<xsl:attribute name="title" select="@title"/>

<xsl:call-template name="mir">

<xsl:with-param name="sections" select="section"/>

</xsl:call-template>

</xsl:copy>

</xsl:template>

Note how the structure of the new template does not mimic anymore
that of the template named mir, thus is shorter. Also, we introduced a
new XSLT element:

<xsl:template match="book" as="element(book)">

<xsl:copy>

<xsl:attribute name="title" select="@title"/>

...
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This is an alternative to using xsl:sequence as before. Also, we have now
an element xsl:copy per matching template, the context node being book

in one case, and chapter, in the other.
Comparing the contents of the template matching chapters with the

following element in the template named mir,

...

<section title="{$sections[1]/@title}">

<xsl:call-template name="flip">

<xsl:with-param name="sections"

select="$sections[1]/section"/>

</xsl:call-template>

</section>

...

it becomes apparent that both actions are the same: make a shallow
copy of an element and mirror its children. Therefore it would be ad-
vantageous if the template matching chapters also matched sections.
Because we used xsl:copy and xsl:attribute, it becomes possible to
have a common template matching chapters and sections: <xsl:template
match="chapter|section">, whose interpretation is as follows: ‘Match
either a chapter or a section.’

Here is the difference with the previous answer:

<xsl:template match="chapter|section" as="element()*">

<xsl:copy>

<xsl:attribute name="title" select="@title"/>

<xsl:call-template name="mir">

<xsl:with-param name="sections" select="section"/>

</xsl:call-template>

</xsl:copy>

</xsl:template>

<xsl:template name="mir" as="element(section)*">

<xsl:param name="sections" as="element(section)*"/>

<xsl:if test="not(empty($sections))">

<xsl:call-template name="mir">

<xsl:with-param name="sections"

select="$sections[position()>1]"/>

</xsl:call-template>

<xsl:apply-templates select="$sections[1]"/>

</xsl:if>

</xsl:template>
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Note how we have to apply templates to the first section in mir (see
code in bold), instead of calling recursively mir (this call is now done
in the template matching chapters and sections). Since the template
applies to only one section, parallelism is lost, but code sharing is gained
nonetheless.

The elements xsl:call-template and xsl:apply-templates differ also
is that the former always results in a call while the latter may be a non-
operation if the select attribute evaluates to an empty sequence. In other
words, <xsl:apply-templates select="..."/> does nothing if the value
of "..." is the empty sequence, whereas <xsl:call-template name="t">

always calls the template named t, even if the parameters are empty
sequences.

It is possible for a matching template to have parameters. Just put
some xsl:param elements just after <xsl:template match="..."> (this is
the definition) and xsl:with-param just after xsl:apply-templates (this
is the application). This is the same syntax as xsl:call-template.

Let us then change the call to template mir into a template applic-
ation with a parameter and remove the definition of mir entirely. The
shortest transform to achieve the same effects as the previous ones is

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

exclude-result-prefixes="xs">

<xsl:output method="xml" version="1.0"

encoding="UTF-8" indent="yes"/>

<xsl:template match="/">

<xsl:apply-templates select="book"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="element(book)">

<xsl:copy>

<xsl:attribute name="title" select="@title"/>

<xsl:sequence select="author"/>

<xsl:apply-templates select="chapter"/>

</xsl:copy>

</xsl:template>

<xsl:template match="chapter|section" as="element()*">
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<xsl:copy>

<xsl:attribute name="title" select="@title"/>

<xsl:call-template name="mir">

<xsl:with-param name="sections" select="section"/>

</xsl:call-template>

</xsl:copy>

</xsl:template>

<xsl:template name="mir" as="element(section)*">

<xsl:param name="sections" as="element(section)*"/>

<xsl:if test="not(empty($sections))">

<xsl:call-template name="mir">

<xsl:with-param name="sections"

select="$sections[position()>1]"/>

</xsl:call-template>

<xsl:apply-templates select="$sections[1]"/>

</xsl:if>

</xsl:template>

</xsl:transform>

Height The purpose of this exercise is to write an XSLT transform
which takes as input a table of contents and outputs its height.

• The height of a table of contents is the largest height of its chapters.

• The height of a chapter (respectively, section) is 1 plus the largest
height of its sections (respectively, subsections).

• The height of an empty sequence is 0.

For instance, a book with no chapters has height 0 (it is empty). A book
made only of chapters with no sections at all has height 1 (it is flat). We
will use the same DTD as in the previous exercise:

<!ELEMENT book (author, chapter+)>

<!ATTLIST book title CDATA #REQUIRED>

<!ELEMENT author EMPTY>

<!ATTLIST author first NMTOKEN #REQUIRED

last NMTOKEN #REQUIRED>

<!ELEMENT chapter (section*)>

<!ATTLIST chapter title CDATA #REQUIRED>

<!ELEMENT section (section*)>

<!ATTLIST section title CDATA #REQUIRED>
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The same input

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE book SYSTEM "book_deep.dtd">

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>

<chapter title="[I] A quick tour of XML Schema">

<section title="[I.1] An example schema"/>

<section title="[I.2] The components of XML Schema">

<section title="[I.2.1] Declaration vs. definition"/>

<section title="[I.2.2] Global vs. local components"/>

</section>

<section title="[I.3] Elements and attributes">

<section title="[I.3.1] The tag/type distinction"/>

</section>

</chapter>

<chapter title="[II] Instances and schemas">

<section title="[II.1] Using the instance attributes"/>

<section title="[II.2] Schema processing">

<section title="[II.2.1] Validation"/>

<section title="[II.2.2] Augmenting the instance"/>

</section>

</chapter>

</book>

yields the result

3

The above definition is a parallel algorithm, because the heights of
the chapters and sections can be computed separately. Therefore, let us
write the transform using matching templates only and we reuse the
template named max for finding the maximum of two integers.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
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<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates select="book"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="max">

<xsl:with-param name="int" as="xs:integer*">

<xsl:apply-templates select="chapter"/>

</xsl:with-param>

<xsl:with-param name="cur" select="0"/>

</xsl:call-template>

</xsl:template>

<xsl:template match="chapter|section" as="xs:integer">

<xsl:variable name="sub" as="xs:integer">

<xsl:call-template name="max">

<xsl:with-param name="int" as="xs:integer*">

<xsl:apply-templates select="section"/>

</xsl:with-param>

<xsl:with-param name="cur" select="0"/>

</xsl:call-template>

</xsl:variable>

<xsl:sequence select="1 + $sub"/>

</xsl:template>

<xsl:template name="max" as="xs:integer?">

<xsl:param name="int" as="xs:integer*"/>

<xsl:param name="cur" as="xs:integer?"/>

<xsl:choose>

<xsl:when test="empty($int)">

<xsl:sequence select="$cur"/>

</xsl:when>

<xsl:when test="not(empty($cur)) and $cur ge $int[1]">

<xsl:call-template name="max">

<xsl:with-param name="int"

select="$int[position()>1]"/>

<xsl:with-param name="cur" select="$cur"/>

</xsl:call-template>

</xsl:when>
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<xsl:otherwise>

<xsl:call-template name="max">

<xsl:with-param name="int"

select="$int[position()>1]"/>

<xsl:with-param name="cur" select="$int[1]"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Same question but this time, instead of computing in parallel de
heights of the children of a given node, let us compute them sequentially
with a named template. The purpose is to avoid computing a sequence
of heights and then taking their maximum. Instead, we would compute
the current height along the traversal.

Two parameters are needed: a parameter cur representing the height
of the sequence so far (the initial value is 0) and a parameter seq holding
the rest of the sequence whose height we want to know. Then

1. we compute the height of the sequence of the children of $seq[1];

2. we add 1 to obtain the height of $seq[1];

3. the maximum of this value and $cur is the value of cur in the recurs-
ive call with $seq[position()>1]. If $seq is empty, the maximum
height of the nodes is $cur. (This scheme is similar to counting the
number of sections.)

This is written in XSLT as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates select="book"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>
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<xsl:template match="book" as="xs:integer">

<xsl:call-template name="height">

<xsl:with-param name="seq" select="chapter"/>

<xsl:with-param name="cur" select="0"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="height" as="xs:integer">

<xsl:param name="seq" as="element()*"/>

<xsl:param name="cur" as="xs:integer"/>

<xsl:choose>

<xsl:when test="empty($seq)">

<xsl:sequence select="$cur"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="height">

<xsl:with-param name="seq"

select="$seq[position()>1]"/>

<xsl:with-param name="cur" as="xs:integer">

<xsl:variable name="sub" as="xs:integer">

<xsl:call-template name="height">

<xsl:with-param name="seq"

select="$seq[1]/section"/>

<xsl:with-param name="cur" select="0"/>

</xsl:call-template>

</xsl:variable>

<xsl:choose>

<xsl:when test="$cur gt $sub">

<xsl:sequence select="$cur"/>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="1 + $sub"/>

</xsl:otherwise>

</xsl:choose>

</xsl:with-param>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>
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In the previous question, the height is computed bottom-up, that is,
the increments on the height are performed just before the recursive calls
end and new calls initialise the height parameter to 0. Instead, we can
propose an alternate design where the height is incremented top-down,
that is, the height parameter is added 1 just before the recursive calls
start:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:apply-templates select="book"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="xs:integer">

<xsl:call-template name="height">

<xsl:with-param name="seq" select="chapter"/>

<xsl:with-param name="lvl" select="0"/>

</xsl:call-template>

</xsl:template>

<xsl:template name="height" as="xs:integer">

<xsl:param name="seq" as="element()*"/>

<xsl:param name="lvl" as="xs:integer"/>

<xsl:choose>

<xsl:when test="empty($seq)">

<xsl:sequence select="$lvl"/>

</xsl:when>

<xsl:otherwise>

<xsl:variable name="sub" as="xs:integer">

<xsl:call-template name="height">

<xsl:with-param name="seq" select="$seq[1]/section"/>

<xsl:with-param name="lvl" select="1 + $lvl"/>

</xsl:call-template>

</xsl:variable>

<xsl:variable name="nxt" as="xs:integer">
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<xsl:call-template name="height">

<xsl:with-param name="seq"

select="$seq[position()>1]"/>

<xsl:with-param name="lvl" select="$lvl"/>

</xsl:call-template>

</xsl:variable>

<xsl:choose>

<xsl:when test="$nxt gt $sub">

<xsl:sequence select="$nxt"/>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="$sub"/>

</xsl:otherwise>

</xsl:choose>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:transform>

Numbering The purpose of this exercise is to write an XSLT transform
which takes as input a table of contents and outputs it in XHTML, first
without numbering chapters and sections, then numbering them. The
DTD is still the same:

<!ELEMENT book (author, chapter+)>

<!ATTLIST book title CDATA #REQUIRED>

<!ELEMENT author EMPTY>

<!ATTLIST author first NMTOKEN #REQUIRED

last NMTOKEN #REQUIRED>

<!ELEMENT chapter (section*)>

<!ATTLIST chapter title CDATA #REQUIRED>

<!ELEMENT section (section*)>

<!ATTLIST section title CDATA #REQUIRED>

The valid input is still

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE book SYSTEM "book_deep.dtd">

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>
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<chapter title="[I] A quick tour of XML Schema">

<section title="[I.1] An example schema"/>

<section title="[I.2] The components of XML Schema">

<section title="[I.2.1] Declaration vs. definition"/>

<section title="[I.2.2] Global vs. local components"/>

</section>

<section title="[I.3] Elements and attributes">

<section title="[I.3.1] The tag/type distinction"/>

</section>

</chapter>

<chapter title="[II] Instances and schemas">

<section title="[II.1] Using the instance attributes"/>

<section title="[II.2] Schema processing">

<section title="[II.2.1] Validation"/>

<section title="[II.2.2] Augmenting the instance"/>

</section>

</chapter>

</book>

The expected result (without numbering) is then

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8"/>

<title>Definitive XML Schema</title>

</head>

<body>

<h2>Definitive XML Schema</h2>

<p>by Priscilla Walmsley</p>

<h3>Table of contents</h3>

<ul>

<li>[I] A quick tour of XML Schema

<ul>

<li>[I.1] An example schema</li>

<li>[I.2] The components of XML Schema
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<ul>

<li>[I.2.1] Declaration vs. definition</li>

<li>[I.2.2] Global vs. local components</li>

</ul>

</li>

<li>[I.3] Elements and attributes

<ul>

<li>[I.3.1] The tag/type distinction</li>

</ul>

</li>

</ul>

</li>

<li>[II] Instances and schemas

<ul>

<li>[II.1] Using the instance attributes</li>

<li>[II.2] Schema processing

<ul>

<li>[II.2.1] Validation</li>

<li>[II.2.2] Augmenting the instance</li>

</ul>

</li>

</ul>

</li>

</ul>

</body>

</html>

which, interpreted by a web browser, would likely render as

Definitive XML Schema

by Priscilla Walmsley

Table of contents

I A quick tour of XML Schema

I.1 An example schema
I.2 The components of XML Schema

I.2.1 Declaration vs. definition
I.2.2 Global vs. local components

I.3 Elements and attributes

I.3.1 The tag/type distinction
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II Instances and schemas

II.1 Using the instance attributes
II.2 Schema processing

II.2.1 Validation
II.2.2 Augmenting the instance

The following solution should not be difficult by now:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xhtml="http://www.w3.org/1999/xhtml">

<xsl:output method="xhtml"

doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"

doctype-system=

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"

indent="yes"

omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:apply-templates select="book"/>

<xsl:text>&#10;</xsl:text>

</xsl:template>

<xsl:template match="book" as="element(xhtml:html)">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<title><xsl:value-of select="@title"/></title>

</head>

<body>

<h2><xsl:value-of select="@title"/></h2>

<p>by <xsl:value-of select="author/@first,author/@last"/>

</p>

<h3>Table of contents</h3>

<ul><xsl:apply-templates select="chapter"/></ul>

</body>

</html>

</xsl:template>
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<xsl:template match="section|chapter" as="element(xhtml:li)">

<li xmlns="http://www.w3.org/1999/xhtml">

<xsl:value-of select="@title"/>

<xsl:if test="not(empty(section))">

<ul><xsl:apply-templates select="section"/></ul>

</xsl:if>

</li>

</xsl:template>

</xsl:transform>

Perhaps it is worth noting <xsl:value-of select="@title"/>, since the
titles are attribute values, so we need xsl:value-of to create a text
node, just like for "author/@first,author/@last", which is the same
as "(author/@first,author/@last)". Also possible here woud have been
"author/@*", which means ‘All attribute values of the element author,
child of the context node.’

Now, let us add a number between square brackets after the XHTML
<li> tag, which is the position of the item in the list, like so:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8"/>

<title>Definitive XML Schema</title>

</head>

<body>

<h2>Definitive XML Schema</h2>

<p>by Priscilla Walmsley</p>

<h3>Table of contents</h3>

<ul>

<li>[1] [I] A quick tour of XML Schema

<ul>

<li>[1] [I.1] An example schema</li>

<li>[2] [I.2] The components of XML Schema

<ul>

<li>[1] [I.2.1] Declaration vs. definition</li>



486 CHAPTER 11. INTRODUCTION TO XSLT

<li>[2] [I.2.2] Global vs. local components</li>

</ul>

</li>

<li>[3] [I.3] Elements and attributes

<ul>

<li>[1] [I.3.1] The tag/type distinction</li>

</ul>

</li>

</ul>

</li>

<li>[2] [II] Instances and schemas

<ul>

<li>[1] [II.1] Using the instance attributes</li>

<li>[2] [II.2] Schema processing

<ul>

<li>[1] [II.2.1] Validation</li>

<li>[2] [II.2.2] Augmenting the instance</li>

</ul>

</li>

</ul>

</li>

</ul>

</body>

</html>

The added numbers have been set in a bold typeface. The only other
change lies in the template matching chapters and sections:

<xsl:template match="section|chapter" as="element(xhtml:li)">

<li xmlns="http://www.w3.org/1999/xhtml">

<xsl:value-of select="(’[’,position(),’] ’,@title)"

separator=""/>

<xsl:if test="not(empty(section))">

<ul><xsl:apply-templates select="section"/></ul>

</xsl:if>

</li>

</xsl:template>

The separator attribute must be set to the empty string, so the items
in the selection (strings and integer) are converted to one text node
without the default blank separator. For example, the result of evaluating
<xsl:value-of select="1,2,3"> is the string ’1 2 3’.
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Finally, we can complete the numbering so it becomes what is ex-
pected in a table of contents. Let us resume with an input without any
numbers:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE book SYSTEM "book_deep.dtd">

<book title="Definitive XML Schema">

<author first="Priscilla" last="Walmsley"/>

<chapter title="A quick tour of XML Schema">

<section title="An example schema"/>

<section title="The components of XML Schema">

<section title="Declarations vs. definitions"/>

<section title="Global vs. local components"/>

</section>

<section title="Elements and attributes">

<section title="The tag/type distinction"/>

</section>

</chapter>

<chapter title="Instances and schemas">

<section title="Using the instance attributes"/>

<section title="Schema processing">

<section title="Validation"/>

<section title="Augmenting the instance"/>

</section>

</chapter>

</book>

and, for making things a little bit easier, the output will number the
chapters with Arabic numbers, like the sections:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns:xhtml="http://www.w3.org/1999/xhtml"

xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head><meta http-equiv="Content-Type"

content="text/html; charset=UTF-8"/>

<title>Definitive XML Schema</title>

</head>
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<body>

<h2>Definitive XML Schema</h2>

<p>by Priscilla Walmsley</p>

<h3>Table of contents</h3>

<ul>

<li>[1] A quick tour of XML Schema

<ul>

<li>[1.1] An example schema</li>

<li>[1.2] The components of XML Schema

<ul>

<li>[1.2.1] Declarations vs. definitions</li>

<li>[1.2.2] Global vs. local components</li>

</ul>

</li>

<li>[1.3] Elements and attributes

<ul>

<li>[1.3.1] The tag/type distinction</li>

</ul>

</li>

</ul>

</li>

<li>[2] Instances and schemas

<ul>

<li>[2.1] Using the instance attributes</li>

<li>[2.2] Schema processing

<ul>

<li>[2.2.1] Validation</li>

<li>[2.2.2] Augmenting the instance</li>

</ul>

</li>

</ul>

</li>

</ul>

</body>

</html>

The idea is to add a parameter prefix to the template matching chapters
and sections, which receives the prefix numbering of the parent. For in-
stance, when matching the section entitled ‘Declarations vs. definitions’,
the parameter value is the sequence (1,’.’,2,’.’), so we simply caten-
ate the position of the section amongst its siblings, that is, 1. Then we
create a text node to format [1.2.1]. Here is the change:
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<xsl:template match="chapter|section" as="element(xhtml:li)">

<xsl:param name="prefix" as ="item()*"/>

<xsl:variable name="current" select="($prefix,position())"/>

<li xmlns="http://www.w3.org/1999/xhtml">

<xsl:value-of select="(’[’,$current,’] ’,@title)"

separator=""/>

<xsl:if test="not(empty(section))">

<ul>

<xsl:apply-templates select="section">

<xsl:with-param name="prefix"

select="($current,’.’)"/>

</xsl:apply-templates>

</ul>

</xsl:if>

</li>

</xsl:template>

Note that the first application of this template is left unchanged:

...

<ul><xsl:apply-templates select="chapter"/></ul>

...

because, in XSLT, an empty sequence is implicitly passed, which is here
convenient.

Sorting leaves The purpose of this exercise is to write an XSLT trans-
form which takes as input a document representing a binary tree whose
leaves contain an integer and sort these in nondecreasing order. The
integers in the sorted sequence must be separated by commas and ter-
minated by a period in the resulting text. For instance, the following
XML document

<?xml version="1.0" encoding="UTF-8"?>

<num>

<num>

<num val="9"/>

<num>

<num>

<num val="33"/>

</num>

<num val="15"/>
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</num>

</num>

<num>

<num>

<num val="13"/>

<num val="8"/>

</num>

<num>

<num>

<num>

<num val="9"/>

<num val="0"/>

</num>

<num val="16"/>

</num>

<num val="19"/>

</num>

</num>

</num>

yields the following output:

0,8,9,9,13,15,16,19,33.

The format of the output should remind us of the comma-separated
values (CSV), on page 437, and the ordering of the merging of ordered
sequences, on page 454. Then, a first idea could be to traverse the tree
and collect the numbers in ordered sequences which are merged together
with the template named merge until one remains and, finally, we use
the template named csv. More precisely, this traversal can be performed
in parallel: the recursive template applications on the children yield two
ordered sequences, which are merged; if the context node is the root
element, then we call csv. In other words, the mergers are performed
purely in a bottom-up fashion (that is, after the end of the recursive
calls). Therefore, we start with

<xsl:template match="/" as="text()*">

<xsl:call-template name="csv">

<!-- The following cast is needed. -->

<xsl:with-param name="items" as="xs:integer*">

<xsl:apply-templates select="num"/>

</xsl:with-param>

</xsl:call-template>
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<xsl:text>&#10;</xsl:text>

</xsl:template>

Note how the type annotation xs:integer* is necessary when invoking
the template csv, whose type is

<xsl:template name="csv" as="text()*">

<xsl:param name="items" as="item()*"/>

...

</xsl:template>

The rest is

<xsl:template match="num" as="xs:integer*">

<xsl:choose>

<xsl:when test="empty(@val)">

<xsl:call-template name="merge">

<xsl:with-param name="fst" as="xs:integer*">

<xsl:apply-templates select="num[1]"/>

</xsl:with-param>

<xsl:with-param name="snd" as="xs:integer*">

<xsl:apply-templates select="num[2]"/>

</xsl:with-param>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="@val"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

The template merge needs to be simplified and generalised because it was
too specialised:

<xsl:template name="merge" as="element(item)*">

<xsl:param name="seq1" as="element(item)*"/>

<xsl:param name="seq2" as="element(item)*"/>

...

</xsl:template>

We need it to receive integers now:

<xsl:template name="merge" as="xs:integer*">

<xsl:param name="fst" as="xs:integer*"/>

<xsl:param name="snd" as="xs:integer*"/>
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<xsl:choose>

<xsl:when test="empty($fst)">

<xsl:sequence select="$snd"/>

</xsl:when>

<xsl:when test="empty($snd)">

<xsl:sequence select="$fst"/>

</xsl:when>

<xsl:when test="$fst[1] lt $snd[1]">

<xsl:sequence select="$fst[1]"/>

<xsl:call-template name="merge">

<xsl:with-param name="fst"

select="$fst[position()>1]"/>

<xsl:with-param name="snd" select="$snd"/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:sequence select="$snd[1]"/>

<xsl:call-template name="merge">

<xsl:with-param name="fst" select="$fst"/>

<xsl:with-param name="snd"

select="$snd[position()>1]"/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Exercise Is example 2.2 in the book of Mangano (2006), page 39, really
in tail form?



Chapter 12

OCaml

Let us start by presenting a subset of the functional core of OCaml (pre-
viously known as Objective Caml). Contrary to previous chapters, the
following introduction will be more formal, relying on a systematic clas-
sification of the syntactic constructs and their semantics. The reader is
advised to keep in mind that what follows is a very concise and limited
introduction to OCaml, with the aim to show what a semi-formal defini-
tion of a programming language looks like. Afterwards, we will show how
OCaml can be used to parse other languages, presenting along the way
the basic theoretical concepts borrowed from compiler construction and
formal language theory.

A sentence, or global definition, is defined by the following cases,
where e denotes an expression, x and f are variables and let and rec are
keywords:

• global definition let x = e
• global recursive definition let rec f = e

Global definitions can be optionally followed by two semicolons: these
are necessary when inputting the sentences in the toplevel loop (promp-
ted after running the command ocaml from a Unix shell). In contrast
with Erlang, note that the keyword rec is necessary to enable recursion.
A program is a sequence of sentences. When we write that e is an ex-
pression, we mean that e denotes a part of a sentence which is classified
as an expression according to its syntax. We say that e is a metavariable
because, being a name, it is a variable, but that variable does not belong
to the language being described (OCaml) and, instead, exists only in the
descriptive language. In other words, it is not an OCaml program but
a notation to refer to fragments of OCaml programs, perhaps an infin-
ity. For instance, the metavariable x denotes a set of OCaml variables

493
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and we must not confuse it with the OCaml variable x. Similarly, the
metavariable e1 denotes an infinity of expressions.

Expressions An expression e is recursively defined by the following
cases:

• variable f, g, h (function); x, y, z (other).
• function (or abstraction) fun x→ e
• call (or application) e1 e2
• arithmetic operator (+) (-) (/) (*)
• arithmetic operation e1 + e2 or e1 - e2 or e1 / e2 or e1 * e2
• unit or integer constant () or 0 or 1 or 2 etc.
• parentheses (e)
• local definition let x = e1 in e2

Note that what we print nicely as ‘→’ is actually written -> in the
source code. Here is an example of a program, where the keywords are
set in bold for greater clarity:

let x = 0

let id = fun x → x

let y = 2 in id y

let x = (fun x → fun y → x + y) 1 2

let z = x+1

Let us remark the following:

• Variables must start with a lowercase character.

• The arrow is right-associative, so the expression

fun x1 → fun x2 → . . .→ fun xn → e

is equivalent to fun x1 → (fun x2 → (. . .→ (fun xn → e)) . . .).

• Function calls are left-associative, so the expression e1 e2 e3 . . . en
is equivalent to (((. . . (e1 e2) e3) . . .) en).

• Function calls have higher priority than operator calls, for example,
f 3 + 4 is equivalent to (f 3) + 4.

• Operator calls have higher syntactic priority than abstractions, for
instance, funx→ x+ y is equivalent to funx→ (x+ y).

A program, that is, a series of global definitions, can always be rewritten
into a single sentence by means of nested local definitions. The previous
program is thus equivalent to
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let x = 0 in

let id = fun x → x in

let _ = let y = 2 in id y in

let x = (fun x → fun y → x + y) 1 2

in x+1

The symbol ‘_’ denotes a variable whose name is globally unique, that
is, it is different from any other, but purposefully omitted. Without loss
of generality, we will consider programs reduced to a single expression.
The meaning of a program is the evaluation of x+1.

Abstract syntax

As with any programming language, before considering the evaluation
of OCaml, we must specify the notion of scope of variables, that is to
say, what is denoted by a given variable at a particular location in the
source file. With this aim, a graphical representation of programs (let us
remember that expressions are enough) as trees proves very handy.

Expression Tree

x x

fun x→ e

fun

x e

e1 e2

$

e1 e2

Intuitively, the method for constructing abstract syntax trees consists in
first parenthesising fully the expression making up the program. Each
parenthesis corresponds to a subexpression and each subexpression cor-
responds to a subtree. The tree is built from the root, down to the leaves,
by traversing subexpressions from the outermost to the innermost, that
is, the most embedded ones. For instance, consider figure 12.1 on the
following page. Again, note that x and x are different: the former is a
metavariable, standing for any OCaml variable, whilst the latter is a
particular OCaml variable.

Static scoping and environment A sentence associates an expres-
sion e to a variable x: we speak of binding, which we write x C→ e. A sub-
program then defines a set of bindings called an environment. A binding
is static if we can determine at compile-time, that is, by examining the
source code, what expression a given variable refers to. For instance, in



496 CHAPTER 12. OCAML

*

+

1 2

/

5 1
(a) (1+2)*(5/1)

let

x 1 *

+

1 2

/

5 1
(b) let x = 1 in

(1+2)*(5/1)

let

x 1 +

let

x 2 x

x

(c) let x = 1 in ((let

x = 2 in x) + x)

Figure 12.1: Concrete and abstract syntax

let x = 0 in

let id = fun x → x in

let y = id x in

let x = (fun x → fun y → x + y) 1 2

in x+1

the variable x in the expression x+1 denotes the expression bound to the
variable x in the previous line, not the first. Bindings are ordered in the
environment by the order of their definitions. Thus

1. the environment is initially empty: {};

2. with let x = 0 in ..., it becomes {x C→ 0};

3. with let id = fun x → x in ..., it is {id C→ fun x→ x; x C→ 0};

4. let y = id x in ... yields {y C→ id x; id C→ fun x→ x; x C→ 0};

5. with let x = ..., it is {x C→ . . .; y C→ id x; id C→ fun x→ x; x C→ 0}.

The binding x C→ 0 is therefore hidden, or out of scope, in x+1. We will
write ρ(x) the first binding of x in the environment ρ, if any.

Free variables The local definition let x = e1 in e2 binds e1 to x,
which we write x C→ e1, in e2. It may be the case that, in e2, another
local definition binds the same variable. To clearly understand that situ-
ation, we proceed as follows on the abstract syntax tree of the program.
From each variable occurrence, we move up, towards the root. If we en-
counter a let binding that variable, we create an oriented edge between
the variable location and that let, and we stop. Otherwise, if we reach
the root (no such let has been found), and the variable is said to be free
in the expression. We note L(e) the set of the variables free in e. See
for instance figure 12.2a on the next page. A similar situation arises
with functions. Indeed, in the body e of fun x→ e, the parameter x may
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let

x 1 +

let

x 2 x

x

(a) let x = 1 in (let

x = 2 in x) + x

fun

y +

x $

fun

x x

y

(b) fun y → x +

(fun x → x) y

Figure 12.2: Graphical representation of bindings

shadow (hide) another variable x bound at an upper level in the tree. We
must then consider that fun is a binder, just like let. See figure 12.2b
for an example.

Closed expressions A closed expression is an expression without free
variables. Only a closed program can be evaluated (executed). Indeed,
what would be the value of the program reduced to the simple expres-
sion x? That is why the first static analysis performed by compilers con-
sists in determining the variables which are free in expressions. If the
program is not closed, it is rejected. In the case of x, the OCaml compiler
prints

Unbound value x

and stops. It is useful that this open expression is rejected at compile-
time and does not cause a run-time error.

12.1 Evaluation

The evaluation of an expression, therefore of a program, is a partial
function from expressions to values. A partial function models the fact
that an evaluation may not terminate or can be interrupted because of an
error. The values v of OCaml are almost a strict subset of the expressions,
defined recursively by the following cases:

• unit or integer constant () or 0 or 1 or 2 etc.
• closure ⟨fun x→ e, ρ⟩,

where ρ is an environment.
For the operators: ⟨(+), ρ⟩ etc.

A closure is a pair made of a function and an environment. This
means in particular that functions are values, that is, they can be the
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result of the evaluation of an OCaml program – indeed, this is the char-
acteristic feature of a functional language.

In order to define the evaluation, we must modify the concept of
binding: a binding will now associate a variable to a value – and not
an expression anymore. Evaluation, and perhaps the resulting value, will
depend on the environment at the occurrence of the expression. Let us
note (x C→ v)⊕ ρ the environment resulting from extending the environ-
ment ρ with the binding x C→ v, shadowing any other binding for x that
might exist in ρ.

For each expression e, let us define an evaluation rule in an environ-
ment ρ, yielding the value v, as follows:

• x Look up the first value bound to x in ρ.

• fun x→ e The value is ⟨fun x→ e, ρ⟩.

• + - / * The value is ⟨(+), ρ⟩ etc.

• e1 + e2 etc. Evaluate e1 and e2 in ρ, and sum, etc.

• () or 0 or 1 or 2 etc. The value is () or 0 or 1 etc.

• (e) Evaluate e into v in ρ.

• let x = e1 in e2 Evaluate e1 into v1 in ρ;
evaluate e2 into v in (x C→ v1)⊕ ρ.

• e1 e2 Evaluate e1 and e2 into v1 and v2 in ρ
(order left unspecified);
v1 must be of the form ⟨fun x→ e, ρ′⟩;
evaluate e in (x C→ v2)⊕ ρ′:
the value is v.

Example The environment is initially empty: ρ = {}. Let us evaluate

let x = 0 in

let id = fun x → x in

let y = id x in

let x = (fun x → fun y → x + y) 1 2

in x+1

• The evaluation of let x = 0 in ... imposes the prior evaluation
of 0, which, obviously, yields 0. Then, we create the binding x C→ 0,
we add it to ρ, which results in {x C→ 0}, and we evaluate the
subexpression elided with this new environment.
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• The evaluation of let id = fun x → x in ... is performed within
the environment {x C→ 0}. The value v is then the closure ⟨fun x→
x, {x C→ 0}⟩. We extend the current environment with id C→ v and
we evaluate the subexpression with it.

• The evaluation of let y = id x in ... is done within the environ-
ment {id C→ ⟨fun x→ x, {x C→ 0}⟩; x C→ 0}.

– We evaluate first (id x) in the current environment (we used
parentheses for better readability). In order to do so, we eval-
uate id and x separately. These are both variables, thus we
look them up in the environment to retrieve the first corres-
ponding binding: id C→ ⟨fun x → x, {x C→ 0}⟩, and x C→ 0. We
need to evaluate x in the environment (x C→ 0) ⊕ {x C→ 0},
which yields 0.

– We create the binding y C→ 0, we add it to the current environ-
ment and we evaluate the elided subexpression with the new
environment.

• The evaluation of let x = (fun x → fun y → x + y) 1 2 in ...

uses the environment {y C→ 0; id C→ ⟨fun x→ x, {x C→ 0}⟩; x C→ 0}.

Formal definition If we note !e"ρ the value obtained by evaluating
the expression e in the environment ρ, then we can resume the evaluation
of OCaml programs as follows:

!n"ρ = ṅ, with n an OCaml integer and ṅ ∈ N;

!e1+ e2"ρ = !e1"ρ+ !e2"ρ, etc.;

!(e)"ρ = !e"ρ;

!x"ρ = ρ(x), (the first binding of x in ρ);

!fun x→ e"ρ = ⟨fun x→ e, ρ⟩;
!let x = e1 in e2"ρ = !e2"((x C→ !e1"ρ)⊕ ρ);

!e1 e2"ρ = !e"((x C→ !e2"ρ)⊕ ρ′),
where !e1"ρ = ⟨fun x→ e, ρ′⟩.

The evaluation consists in applying the equations from left to right, until
termination or an error occurs.

We establish directly that !(fun x→ e2) e1"ρ = !let x = e1 in e2"ρ,
that is, the local binding is not necessary, at least as long as there is no
type system.
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Applications If closures are values, they can be the value of a function
call. For instance,

let add = fun x → fun y → x + y in

let incr = add 1

in incr 5

The call (add 1) is a partial application, as opposed to a complete applic-
ation like (add 1 5): a partial application results in a closure. Like all
applications, operations can also be partially evaluated:

let incr = (+) 1 in incr 5

where the parentheses in (+) mean that the operator has to be considered
in prefix position, not infix, as usual.

Termination We can already compute with our tiny subset of OCaml
everything that is computable with the underlying computer. For in-
stance, we can write the following non-terminating program:

let omega = fun f → f f in omega omega

We have the evaluation

!let omega = fun f → f f in omega omega"ρ

= !omega omega"((omega C→ !fun f → f f"ρ)⊕ ρ)
= !f f"((f C→ ⟨fun f → f f, ρ⟩) ⊕ ρ)
= idem.

Recursion To demonstrate the expressive power of OCaml, let us see
how we can simulate recursive function by means of the auto-applicative
function omega. First, let us define a function fix, traditionally called the
Y combinator :

let omega = fun f → f f

let fix = fun g → omega (fun h → fun x → g (h h) x)

It is tedious to show that, for all function f and variable x,

!(fix f )x"ρ = !f (fix f )x"ρ.

In other words, we have (fix f ) ≡ f (fix f ). Moreover, by definition, the
fixed point p of a function f satisfies the equation p = f(p). Therefore,
the fixed point of a function f, if it exists, is the value of (fix f).
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It is possible to define the semantics (the evaluation) of a family of
fixed-point operators (and not just one as previously) by declaring that
such operators must satisfy

!fix e"ρ = !e1"(f C→ !fix (fun f → e1)"ρ⊕ ρ′),

where !e"ρ = ⟨fun f → e1, ρ′⟩.
Let us consider the following definitions:

let pre_fact =

fun f → fun n → if n=1 then 1 else n * f(n-1)

let fact = fix pre_fact

We see that fact is the fixed point of pre_fact, if it exists, that is,

!fact"ρ = !pre_fact fact"ρ

= !fun n → if n=1 then 1 else n * fact(n-1)"ρ

Therefore, fact is the factorial function. We can then predefine the fixed-
point operator fix (not necessarily the one we used above) and allow the
programmer to use it directly, but, instead, we are going to extend our
description of the subset of OCaml with a native recursive binder:

!let rec f = e1 in e2"ρ = !let f = fix (fun f → e1) in e2"ρ.

Extensions

Let us add the following expressions:

• Boolean constants true or false
• Boolean operators (&&) or (||) or not
• n-tuple e1, . . . , en
• conditional if e0 then e1 else e2
• local recursive binding let rec f = e1 in e2

Note that parentheses are recommended around tuples.

Irrefutable patterns Let us distinguish the variables occurring after
let and fun, because they are irrefutable patterns, noted p:

• function fun p→ e
• local definition let [rec] p = e1 in e2

An irrefutable pattern p is defined recursively by the following cases:
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• variable f, g, h (functions) and x, y, z (others).
• unit ()
• n-tuple p1, . . . , pn
• parentheses (p)
• underscore _

Note that, from the syntactic point of view, irrefutable patterns are
special cases of expressions, except the underscore, which is a special
case avoiding the creation of a binding.

Additional rules for expressions The comma takes priority over the
arrow: (fun x→ x, y) is equivalent to fun x→ (x, y). In order to alleviate
the notation fun p1 → . . . → fun pn → e, we define the equivalent
constructs:

• let [rec] f = fun p1 p2 . . . pn → e (new expression)
• let [rec] f p1 p2 . . . pn = e (new sentence)

For example, we would write

let mult = fun x y → x * y in

let eq x y = (x = y) in

let rec fact n = if eq n 1 then 1 else mult n (fact(n-1))

in fact 9

We also extend the syntax to alleviate certain expressions. By definition,

let p1 = e1 and p2 = e2 . . . and pn = en in e

is equivalent to
let p1, . . . , pn = e1, . . . , en in e.

Similarly, let us introduce mutually recursive definitions:

let rec p1 = e1 and p2 = e2 . . . and pn = en in e.

Furthermore, the sentence e is equivalent to let _ = e. Let us consider
the case where the irrefutable patterns are variables:

let x = e1 and y = e2 in e, where x ̸= y.

If x is free in e2, that is, x ∈ L(e2), then the previous construct is defined
as being equivalent to

let z = x in
let x = e1 in
let y = let x = z in e2

in e
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where z ̸∈ L(e1) ∪ L(e2) ∪ L(e), in order to avoid being captured by e1,
e2 or e. It is thus not an elementary construct.

The multiple let rec (with and) can always be reduced to a simple
let rec (with in) by parameterising one of the definitions by the other.
Consider the following sentence

let rec x = e1 and y = e2 in e

where x ̸= y. It is equivalent, by definition, to

let rec x = fun y → e1 in
let rec y = let x = x y in e2 in
let x = x y

in e

Therefore, it is not an elementary construct either.
The addition of new expressions to the language forces us to extend

the values as well, which are now defined by

• unit or constants () or 0 or true etc.
• closure ⟨fun x→ e, ρ⟩, where ρ is an environment.

For the operators: ⟨(+), ρ⟩ etc.
• n-tuple v1, . . . , vn

Curryfied functions A function is curryfied – after the name of the
logician Curry – if it returns a closure, thus enabling partial applications.
By the way, let us not forget that an OCaml function always takes exactly
one argument: if we wish to simultaneously pass multiple values, we have
to employ a data structure, for example, a tuple. In the following, the
sentences are input one by one into the OCaml toplevel, which runs on
top of a virtual machine, like the Erlang shell does, therefore they are
terminated with a special token, two semicolons:

# let add x y = x + y;;

val add : int → int → int

# let add’ (x,y) = x + y;;

val add’ : int × int → int

The function add is curryfied and add’ is not.
Earlier, we saw a static analysis which yields the variables that are

free in a given expression. Moreover, the evaluation of a closed expression
cannot fail for lack of a necessary binding. Most compilers reject open
programs, but, by doing so, they sometimes reject innocent programs,
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like if true then 1 else x, where x is unbound. In order to accept this kind
of example, the compiler should be able to predict the control flow, here,
which branch of the conditional is used for all possible evaluations. In the
case above, this is trivial, but, in general, the problem is undecidable.

12.2 Types

Types are terms associated to expressions, either by the programmer
or the compiler, and they summarise some invariant properties which
can be automatically composed and checked. A type t is a term defined
recursively by the following cases:

• simple char, bool, int, string, float, unit
• Cartesian product t1 × . . . × tn
• functional t1 → t2
• parenthesised (t)
• free variable α, β, γ etc.
• parameterised α list

Until now, we have not encountered values of the type float, char or
string, but they are fairly obvious.

We write ×, α, β etc. what is written *, ’a, ’b etc. in ascii.
The Cartesian product takes multiple arguments, instead of being

binary like in mathematics, because (×) is not associative in OCaml:
t1 × t2 × t3 ̸= (t1 × t2)× t3 ̸= t1 × (t2 × t3).

The arrow is used in types too, where it is also right-associative:
t1 → t2 → . . .→ tn is equivalent to t1 → (t2 → (. . . (tn−1 → tn)) . . .).

The Cartesian product has priority over the arrow: t1 × t2 → t3 is
equivalent to (t1 × t2)→ t3.

The OCaml compiler associates a type to each expression in a pro-
gram: this is called static type inference. For the simple constants, we
have

Type Values Some functions

unit ()
bool true false && || not

int 1 2 max_int etc. + - * / etc.
float 1.0 2. 1e4 etc. +. -. *. /. cos etc.
char ’a’ ’\n’ ’\097’ etc. Char.code Char.chr etc.
string "a\tb\010c\n" etc. (^) s.[i] etc.
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Operations on floating point numbers are written differently from their
equivalent counterparts on integers. Moreover, we extend the syntax of
the sentences to allow the binding of a type to a name, or type aliasing,
just as we have aliasing on expressions:

• type binding type q = t
• recursive types type q1 = t1 [and q2 = t2 . . . ]
• type variable q

We can now write, for instance, the following:

type abscissa = float

type ordinate = float

type point = abscissa × ordinate

Type inference Tuples contain data of the same type and their arity
is part of their type, for instance, the pair (1,2) has type int × int, and the
triplet (1,2,3) has type int × int × int, thus are incompatible. Consider
also the following different types:

# let middle x y = (x+y)/2;;

val middle : int → int → int

# let middle (x,y) = (x+y)/2;;

val middle : int × int → int

Polymorphism Projections are polymorphic on tuples of same arity,
so fun (x, y, z)→ x has type (α× β × γ)→ α. Consider the session:

# let compose f g = fun x → f (g x);;

val compose : (α→ β)→ (γ → α)→ γ → β = ⟨fun⟩

# let rec power f n = if n " 0 then fun x → x

else compose f (power f (n-1));;

val power : (α→ α) → int → (α→ α) = ⟨fun⟩

The type of the function compose is inferred as follows:

• the first argument f is an arbitrary function, hence of type α→ β;

• the second argument g is a function whose result is the argument
of f, therefore of type α;

• the domain of g is arbitrary, hence g has type γ → α;
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• the function compose has an argument x which is passed to g, hence
has type γ; finally, the result of compose is returned by f, hence of
type β.

The equality operator in OCaml is polymorphic and thus is built in:
# (=);;

- : α→ α→ bool = ⟨fun⟩

We must be very careful that it coincides with our intended notion of
equality, because the compiler will always accept it on non-functional
values. It consists in the syntactical equality: two values are equal if they
have the same structure and if their respective parts are equal, recursively.
In particular, it will not apply to functions – this is different from Erlang,
where the abstract syntax trees of the functions are compared at run-
time.

# 1 = 1 && [1;2] = [1;2] && "yes" = "yes";;
- : bool = true

# (fun x → x) = (fun x → x);;

Exception: Invalid_argument "equal: functional value".

12.3 Pattern matching

Let us extend further the expressions with matchings against patterns:

match e with p1 → e1 | . . . | pn → en, where the pi are patterns.

Patterns are recursively defined by the following cases:

• variable f, g, h (functions) and x, y, z (others).
• unit or constant () or 0 or true etc.
• n-tuple p1, . . . , pn
• parentheses (p)
• underscore _

Note that irrefutable patterns are patterns. Typically, pattern matching
is used to define functions case by case, as commonly done in mathem-
atics. For example,

let rec fib n = match n with 0 → 1

| 1 → 1

| _ → fib(n-1) + fib(n-2)
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As in mathematics, the cases are ordered by the order of writing and the
previous definition is read as follows: ‘If the value of n has the shape 0,
then fib(n) has the value 1; else, if the value of b has the shape 1, then
fib(n) has the value 1; otherwise, fib(n) has the value of fib(n-1) +

fib(n-2).’ What is the meaning of the relation ‘v has the shape p’? Or,
equivalently, ‘p matches v’?

• A constant, including (), has the shape of itself in a pattern;

• a n-tuple has the shape of a n-tuple in a pattern;

• any value has the shape of a variable in a pattern or of the under-
score ‘_’.

Note that patterns do not match closures, which means that the e in
‘match e with’ must not have a closure as a value. In the case of constants,
including (), matching coincides with equality.

Matching is the evaluation of a match construct. Informally, the eval-
uation of ‘match e with p1 → e1 | . . . | pn → en’ begins with that of e
in v. Next, v is compared to the patterns pi in the order of writing. If pi
is the first pattern to match v, then the value of the matching is the
value of ei. For instance, here is the curryfied definition of the logical
disjunction:

let disj = fun (x,y) → match (x,y) with (false, false) → false

| _ → true

Variant types Variant types are a generalisation of enumerations. For
instance, Boolean values can be (re)defined as

type boolean = True | False

let t = True and f = False

Note that data constructors, like True or False, must begin with an
uppercase letter. Pattern matching enables the examination of the values
of a variant type:

let int_of_boolean b = match b with True → 1 | False → 0

Data constructors can also carry information beyond their mere name,
for instance, a pack of playing cards can be defined as

type card = Card of ordinary | Joker

and ordinary = suit × face

and suit = Heart | Diamond | Spade | Club

and face = Ace | King | Queen | Jack | Simple of int
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Let us define the cards and functions creating them:

# let jack_of_spade = Card (Spade, Jack);;

val jack_of_spade : card = Card (Spade, Jack)

# let card f c = Card (c,f);;

val card : face → suit → card = ⟨fun⟩

# let king = card King;;

val king : suit → card = ⟨fun⟩

let value c = match c with Card Ace → 14

| Card King → 13

| Card Queen → 12

| Card Jack → 11

| Card (Simple k) → k

| Joker → 0

A pattern can capture several cases at once:

let is_smaller c = match c with Card (Simple _) → true

| _ → false

Incomplete patterns We have already seen that, when a value v is
matched with p1 → e1 | . . . | pn → en, the expression ei of the first
pattern pi which matches v is evaluated in the current environment ex-
tended with the bindings introduced by pi, if any. The pattern matching
is incomplete if there exists at least a value which cannot be matched by
any pattern. In that case, a warning is printed at compile-time because
it is strongly advised to avoid incomplete pattern matchings.

# let simple c = match c with Card (_, Simple k) → k;;

Characters 15-51

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched: Joker

val simple : card → int = ⟨fun⟩

Linearity Contrary to Erlang, a variable cannot be bound twice or
more in the same pattern, because this would imply a default equality to
be used during pattern matching. Such a pattern is said to be non-linear.

# fun (x,y) → match (x,y) with (Card z, z) → true;;

Characters 40-41

This variable is bound several times in this matching.
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Lists Lists can be defined as a polymorphic, recursive variant type:

type α mylist = Nil | Cons of α × α mylist

The data constructors Nil and Cons are traditional in the community
of functional languages. The former denotes the empty list; the latter
represents a non-empty list. A non-empty list is then modelled as a pair
whose first component is an element (of type α) of the list and the second
component is the remainder of the list, or a sublist (of type α mylist).
For instance:

let empty= Nil

let singleton1 = Cons (’a’, empty)

let singleton2 = Cons (7, empty)

let long = Cons (1, Cons (2, Cons (3, singleton2)))

By default, the OCaml system predefines a type α list, whose con-
structor for the empty list is [], and those of the non-empty list is ::,
used in infix position. The function catenating two lists is also predefined
and noted (@). Note that it is not a constructor. Here are equivalent lists:

let l = 1::(2::3::(4::[]))

let l = 1::2::3::4::[]

let l = [1;2;3;4]

The standard library supplies a module List with useful functions on lists.
For example, the reversal of a list:

let rec reverse l = match l with

[] → []

| h::l → (reverse l) @ [h]

or, more efficiently, using an accumulator:

let reverse l =

let rec rev_aux acc l = match l with

[] → acc

| h::t → rev_aux (h::acc) t

in rev_aux [] l

12.4 Exceptions

Exceptions are values of the same type exn. They behave in the following
manner.
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• The predefined type exn is an open variant type, that is, it is ex-
tensible;

• throwing an exception stops the current evaluation and returns an
exceptional value of type exn;

• an exception can be matched if the expression where it was raised is
embedded in a construct ‘try e with m’, or if any pending function
call was embedded in such a way.

– If the evaluation of e results in a normal value, that value is
the value of the try block, without considering the patterns
in m;

– otherwise, the exception is matched against the patterns in m;
if one of those patterns, say pi, matches the exception, then
ei is evaluated, else the exception is propagated backwards in
the control flow (call graph) until a handler matches it or the
execution stops with an error. Note that the patterns for ex-
ceptions need not be complete, whence a source of potential
problems because the programmer has to keep track of the set
of exceptions potentially raised by a given expression. (Con-
trary to Java, exceptions in OCaml are no part of the type of
functions, because this would be deemed cumbersome in the
presence of higher-order functions, like List.map.)

• It is possible to observe an exception, that is, to match it and reraise
it: try f x with Failure s as x → prerr_string s; raise x.

Let us consider an example, the linear search in a list:

exception Not_found

let rec find key l =

match l with

(h,v)::t → if h = key then v else find key t

| [] → raise Not_found

let k = try

find "Louis" [("Georges",14); ("Louis",5)]

with Not_found → 10

Formally, we write

Definition (sentence) exception C [of t]

Raising (expression) raise e
Matching (expression) try e with p1 → e1 | . . . | pn → en
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Notice the analogy with the pattern matching on non-exceptional values.

12.5 Operational semantics

The operational semantics of a programming language is a mathematical
description that ascribes meaning to programs by defining the effect of
each construct on the state of an abstract machine, each state depending
on the previous one. It defines a set of values and an evaluation rela-
tionship between programs and values, the latter containing the results.
Evaluation is defined inductively on the abstract syntax of the language
under consideration, that is to say, the value of a construct solely depends
on its shape and those of its subparts. In other words again, the value
of an abstract syntax tree (AST) depends on the pattern matched by its
root and the value of its immediate subtrees. Formally, an interpreter is
the implementation of an operational semantics, which, by construction,
is defined in terms of the syntax of the language being interpreted and
on the semantics of the implementation language.

A basic calculator Let us quickly envisage a simple calculator as an
OCaml interpreter whose values are integers: type value = int;; We need
first to define the concrete syntax of the language by means of a context-
free grammar expressed in Backus-Naur Form:

Expression ::= integer

| Expression BinOp Expression

| "(" Expression ")"

BinOp ::= "+" | "-" | "*" | "/"

Next, we define the abstract syntax in OCaml as follows:

type expr = Const of int | BinOp of bin_op × expr × expr
and bin_op = Add | Sub | Mult | Div

Note that we will sometimes use the font for the abstract syntax trees for
the source code. For example (1+7)*9 (mixed fonts) instead of (1+7)*9.

For the sake of brevity, and because we want to focus on the eval-
uation, we left out the definition of the lexemes denoted by integer in
the grammar above. For example, the syntax analysis would transform
the concrete syntax excerpt "(1+2)*(5/1)" or "(1 +2)*(5 / 1)" into the
term BinOp (Mult, BinOp (Add, Const 1, Const 2), BinOp (Div, Const 5,
Const 1)), which is the preorder traversal of the abstract syntax tree
shown in figure 12.3 on the next page.

The interpreter, that is, the evaluation function is then
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let rec eval e = match e with
Const n → n

| BinOp (op,e1,e2) → let v1 = eval e1 and v2 = eval e2
in match op with Add → v1 + v2

| Sub → v1 - v2
| Mult → v1 * v2
| Div → v1 / v2

Let us consider again the example "(1+2)*(5/1)". Let e be the corres-
ponding AST. Its evaluation is the value of the call (eval e), whose data
flow is represented in figure 12.4 on the facing page with upwards ar-
rows – pointing to partial results until the root is reached and the final
value computed. The control flow is descendant (the root is examined
before the subtrees) and the data flow is ascending (the value of the root
depends on the values of the immediate subtrees).

Inference rules Another, more mathematical representation consists
in the definition of a relationship e ! v, called judgement, which reads:
‘The expression e is evaluated into the value v’, by means of inference
rules. These are logical implications P1 ∧P2 ∧ . . .∧Pn ⇒ C conveniently
laid out as

P1 P2 . . . Pn

C

The propositions Pi are the premises and C is the conclusion. When
there are no premises, then C is an axiom and simply noted C. The
computational reading of the rule is: in order to evaluate C, we need
first to evaluate the Pi in an unspecified order.

Rules and axioms can contain variables which are not explicitly quan-
tified by ∀ or ∃, in which case they are implicitly and universally quanti-
fied at the head of the rule. For instance, the axiom A(x) means ∀x.A(x),
and the rule

P1(x) P2(y)

P (x, y)

BinOp

Mult BinOp

Add Const

1

Const

2

BinOp

Div Const

5

Const

1

Figure 12.3: Abstract syntax tree of (1+2)*(5/1)
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BinOp 3*5=15

Mult BinOp 1+2=3

Add Const 1

1

Const 2

2

BinOp 5/1=5

Div Const 5

5

Const 1

1

Figure 12.4: Evaluation of (1+2)*(5/1)

signifies ∀x, y.(P1(x) ∧ P2(y) ⇒ P (x, y)). Given a set of inference rules
about one or more relationships, we implicitly define those as the smallest
relationships satisfying the rules.

Operational semantics of a calculator A metavariable is a variable
of the descriptive language – here, formal logic – and not a variable of
the described language – here, the expressions inputted in the calculator.

• Expressions, that is, the values of type expr, are noted e;
• values are written v (v ∈ Z);
• the mathematical integers associated to their OCaml representa-

tion n are noted ṅ (ṅ ∈ Z).

Therefore, e, v, n and ṅ are metavariables and judgements comply with
the pattern e! v. Here are the rules:

Const n! ṅ const
e1 ! v1 e2 ! v2

BinOp (Add, e1, e2)! v1 + v2
add

e1 ! v1 e2 ! v2

BinOp (Sub, e1, e2)! v1 − v2
sub

e1 ! v1 e2 ! v2

BinOp (Mult, e1, e2)! v1 × v2
mult

e1 ! v1 e2 ! v2

BinOp (Div, e1, e2)! v1/v2
div

Implementation The systematic way to program an operational se-
mantics in OCaml consists in matching the patterns given by the conclu-
sions of the inference rules, as suggested below:

e1 ! v1 e2 ! v2

BinOp (Sub, e1, e2)! v1 − v2
sub

which becomes

| BinOp (Sub,e1,e2) → let v1 = eval e1 and v2 = eval e2 in v1 - v2
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Note that we grouped all the rules with BinOp in the conclusion,
in order to create a single pattern. We should keep in mind that the
evaluation of pattern matchings in OCaml is fully specified (they are
checked in order), whereas there is no such notion in the operational
semantics: the rules are not ordered.

Determinacy It is important that an expression cannot evaluate to
more than one value and that property is called determinacy. Formally,
the determinacy of an operational semantics e! v is formally expressed
as the proposition

If e! v and e! v′, then v = v′.

In order to prove it, we proceed by structural induction on the proof
trees of e ! v and e ! v′, while selecting the rules depending on the
shape of e.

Local bindings In order to simplify the writing of expressions, we wish
to name sub-expressions, as in the following excerpt of concrete syntax:

let x = 1+2*7 in 9*x*x - x + 2

In that aim, we add identifiers (x) and local bindings (let ... in ...) to the
concrete syntax of expressions. Note that we use the term ‘variable’ to
qualify the identifiers in the abstract syntax for historical reasons (since
these really denote constants and do not vary), but a variable is a name,
not the object it denotes.

The concrete syntax is:

Expression ::= ... | ident /* identifier */

| "let" ident "=" Expression "in" Expression

Notice that we should define the set of lexemes denoted by ident, but
we don’t. The extension to the abstract syntax is:

type expr = ... | Var of string | Let of string × expr × expr

Variables are written x. We should not confuse x, a meta variable
meaning ‘any variable’, with Var "x" (a particular AST of the described
language) and "x" or x (pieces of source code of the preceding variable).

Let us see now what operational semantics we ascribe to these ex-
pressions with variables.
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Environments An environment associates variables to values (by con-
struction, these are their values). One of such an association is called a
binding. More precisely, a binding is a pair (x, v), which we will some-
times write instead x C→ v, as if it were an environment reduced to a
single variable in its domain. An environment is a partial function from
variables to values.

The empty environment in OCaml is

let empty_env = fun _ → raise Not_found

The addition of a binding x C→ v to an environment ρ is noted (x C→ v)⊕ρ.
If x was already bound in ρ, that is, if ρ(x) was defined, then this new
binding hides the older, that is to say that (x C→ v ⊕ ρ)(x) = v, even if
ρ(x) ̸= v. A naïve but direct implementation would be

let extend (x,v) env = fun y → if x = y then v else env y

Judgements take now the form ρ ⊢ e ! v and they feature the environ-
ment ρ in the context, that is, the left-hand side of the judgements:

ρ ⊢ Const n! ṅ const

x ∈ dom ρ

ρ ⊢ Var x! ρ(x)
var

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ BinOp (Add, e1, e2)! v1 + v2
add

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ BinOp (Sub, e1, e2)! v1 − v2
sub

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ BinOp (Mult, e1, e2)! v1 × v2
mult

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ BinOp (Div, e1, e2)! v1/v2
div

ρ ⊢ e1 ! v1 x C→ v1 ⊕ ρ ⊢ e2 ! v2

ρ ⊢ Let (x, e1, e2)! v2
let

We can now translate these inference rules into OCaml, which results
in a slight modification of the first version:
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let rec eval env e = match e with
Const n → n

| BinOp (op,e1,e2) → let v1 = eval e1 and v2 = eval e2
in (match op with Add → v1 + v2

| Sub → v1 - v2
| Mult → v1 * v2
| Div → v1 / v2)

| Var x → env x
| Let (x,e1,e2) → let v1 = eval env e1

in eval (extend (x,v1) env) e2

Note the encoding of x C→ v1⊕ρ by extend (x,v1) env, and how the evalu-
ation of the initial expression must take place in the empty environment.
The values of the semantics are in Z, whereas, in the interpreter, they
have the type int, hence can overflow. We will not discuss this issue here.

An example Let us consider an example with variables: let x = 1 in
(1+2)*(5/x). Let e be the AST corresponding to that expression. Fig-

ure 12.5 shows its evaluation, that is, how (eval empty_env e) is com-
puted. Note that, we write ∅ instead of empty_env, and env instead of
(extend ("x",1) empty_env).

In order to simplify further the presentation of the evaluations, we
can use an auxiliary function, from character strings to expressions, cor-
responding to the composition of the lexical and syntactical analyses. We
will write it ⟨⟨_⟩⟩: string → expr, where the underscore is a placeholder
for the actual argument, but we will omit the quotes of the string itself:

⟨⟨let x = 1 in let y = 2 in x + y⟩⟩
= Let ("x", Const 1, Let ("y", Const 2, BinOp (Add, Var "x", Var "y"))).

Metavariables e may occur in the concrete syntax to designate char-
acter strings produced by the grammar rule Expression, like so:

⟨⟨let x = 2 in e⟩⟩ = Let ("x",Const 2, ⟨⟨e⟩⟩).

∅ Let 15

”x” ∅ Const 1

1

env BinOp 3*5=15

Mult env BinOp 1+2=3

Add env Const 1

1

env Const 2

2

env BinOp 5/1=5

Div env Const 5

5

env Var env ”x” = 1

”x”

Figure 12.5: Evaluation of let x = 1 in (1+2)*(5/x)
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To simplify further, we will write e in stead of ⟨⟨e⟩⟩. Actually, we can
easily write a formal definition of the syntax analysis on programs whose
syntax is already correct:

⟨⟨n⟩⟩ = Const (int_of_string n) = Const n = ṅ,

⟨⟨e1 + e2⟩⟩ = BinOp (Add, e1, e2),

⟨⟨e1 - e2⟩⟩ = BinOp (Sub, e1, e2),

⟨⟨e1 * e2⟩⟩ = BinOp (Mult, e1, e2),

⟨⟨e1 / e2⟩⟩ = BinOp (Div, e1, e2),

⟨⟨x⟩⟩ = Var x,

⟨⟨let x = e1 in e2⟩⟩ = Let (x, e1, e2),

⟨⟨(e)⟩⟩ = e.

More legible rules Here are the inference rules revisited in the light
of the previous simplifications:

ρ ⊢ ⟨⟨n⟩⟩! ṅ const
x ∈ dom ρ

ρ ⊢ ⟨⟨x⟩⟩! ρ(x)
var

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨e1 + e2⟩⟩! v1 + v2
add

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨e1 - e2⟩⟩! v1 − v2
sub

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨e1 * e2⟩⟩! v1 × v2
mult

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨e1 / e2⟩⟩! v1/v2
div

ρ ⊢ e1 ! v1 x C→ v1 ⊕ ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨let x = e1 in e2⟩⟩! v2
let

Another evaluation Given the following excerpt of concrete syntax,
‘let x = 1 in ((let x = 2 in x) + x)’, the abstract syntax tree generated by
the parser is shown in figure 12.6 on the following page. We combine
the inference rules to evaluate the expression: we obtain a proof tree (of
the evaluation of the expression into the value 3), also called derivation,
shown in figure 12.7 on page 519. The proof tree is built bottom-up,
that is, from the root to the leaves (beware that proof trees are laid
out on the page with their root below their leaves), depending on the
shape of the conclusions, and we deduce step by step equations involving
metavariables denoting variables. Next, these equations are solved and
provide us with the sought value, that is, the result of the evaluation.
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Let v be the value of the term ⟨⟨let x = 1 in ((let x = 2 in x) + x)⟩⟩.
The only rule having a conclusion of that form is let. We therefore apply
an instance of it, in an empty environment:

∅ ⊢ ⟨⟨1⟩⟩! 1 "x" C→ 1 ⊢ ⟨⟨let x = 2 in x + x⟩⟩! v

∅ ⊢ ⟨⟨let x = 1 in ((let x = 2 in x) + x)⟩⟩! v

The second premise can only be a conclusion of the rule add:

"x" C→ 1 ⊢ ⟨⟨let x = 2 in x⟩⟩! v1 "x" C→ 1 ⊢ ⟨⟨x⟩⟩! 1

"x" C→ 1 ⊢ ⟨⟨(let x = 2 in x) + x⟩⟩! v1 + 1

and the deduced equation is simply v = v1 + 1.
The first premise can only be the conclusion of the rule let:

"x" C→ 1 ⊢ ⟨⟨2⟩⟩! 2 "x" C→ 2⊕ "x" C→ 1 ⊢ ⟨⟨x⟩⟩! 2

"x" C→ 1 ⊢ ⟨⟨let x = 2 in x⟩⟩! 2

Thus, v1 = 2. By substituting v1 by its value, we draw v = 2 + 1 = 3.

Formalising errors During the evaluation presented above, several
problems might have arisen: x could have valued 0 (division by zero) or
"x" ̸∈ dom ρ. In the former case, the rule is

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨e1 / e2⟩⟩! v1/v2
div

We can formalise the correct cases and the division error:

ρ ⊢ e1 ! v1 ρ ⊢ e2 ! v2 v2 ̸= 0

ρ ⊢ ⟨⟨e1 / e2⟩⟩! v1/v2

ρ ⊢ e2 ! 0

ρ ⊢ ⟨⟨e1 / e2⟩⟩! error

To formalise error, we replace the relationship ρ ⊢ e ! v by ρ ⊢ e ! r,
where r is a result : results are values or errors. Moreover, from now on,

Let

”x” Const

1

BinOp

Add Let

”x” Const

2

Var

”x”

Var

”x”

Figure 12.6: AST of let x = 1 in ((let x = 2 in x) + x)
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∅ ⊢ ⟨⟨1⟩⟩! 1
”x” C→ 1 ⊢ ⟨⟨2⟩⟩! 2 ”x” C→ 2⊕ ”x” C→ 1 ⊢ ⟨⟨x⟩⟩! 2

”x” C→ 1 ⊢ ⟨⟨let x = 2 in x⟩⟩! 2 ”x” C→ 1 ⊢ ⟨⟨x⟩⟩! 1

”x” C→ 1 ⊢ ⟨⟨(let x = 2 in x) + x⟩⟩! 2 + 1

∅ ⊢ ⟨⟨let x = 1 in ((let x = 2 in x) + x)⟩⟩! 3

Figure 12.7: Proof tree of let x = 1 in ((let x = 2 in x) + x)

we consider that values in the semantics have the type int instead of the
mathematical set Z, because we do not need so much abstraction and
this will get us closer to the implementation, that is, the interpreter.

type value = int;;
type error = DivByZero | FreeVar of string ;;
type result = Val of value | Err of error;;

The rules which can produce errors are

ρ ⊢ e2 ! Val 0

ρ ⊢ ⟨⟨e1 / e2⟩⟩! Err DivByZero
div-zero

x ̸∈ dom ρ

ρ ⊢ ⟨⟨x⟩⟩! Err (FreeVar x)
free-var

ρ ⊢ e1 ! Val v1 ρ ⊢ e2 ! Val v2

ρ ⊢ ⟨⟨e1 / e2⟩⟩! Val (v1 / v2)
div

ρ ⊢ e1 ! Val v1 ρ ⊢ e2 ! Val v2

ρ ⊢ ⟨⟨e1 * e2⟩⟩! Val (v1 * v2)
mult

ρ ⊢ e1 ! Val v1 ρ ⊢ e2 ! Val v2

ρ ⊢ ⟨⟨e1 + e2⟩⟩! Val (v1 + v2)
add

ρ ⊢ e1 ! Val v1 ρ ⊢ e2 ! Val v2

ρ ⊢ ⟨⟨e1 - e2⟩⟩! Val (v1 - v2)
sub

ρ ⊢ ⟨⟨n⟩⟩! Valn const
x ∈ dom ρ

ρ ⊢ ⟨⟨x⟩⟩! Val (ρ(x))
var

ρ ⊢ e1 ! Val v1 x C→ v1 ⊕ ρ ⊢ e2 ! Val v2

ρ ⊢ ⟨⟨let x = e1 in e2⟩⟩! Val v2
let
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ρ ⊢ e1 ! Err z ρ ⊢ e2 ! r

ρ ⊢ ⟨⟨e1 * e2⟩⟩! Err z
add-err1

ρ ⊢ e1 ! r ρ ⊢ e2 ! Err z

ρ ⊢ ⟨⟨e1 + e2⟩⟩! Err z
add-err2

Let us remark first that we need two rules because two premises can be
evaluated into errors, and the semantics does not express the commut-
ative property of the addition over integers. The other cases are similar.
Second, in case of multiple errors, only one will be propagated and the
evaluation order, having been left unspecified on purpose, we cannot say
a priori which error will be propagated.

For the sake of simplicity, let us use the exceptions of OCaml to
implement the propagation of errors, and, thereby, avoid the type result.

exception Err of error

let rec eval env e = match e with ...

| Var x → (try env x with Not_found → raise (Err (FreeVar x)))
| BinOp (Div,e1,e2) →

let v1 = eval env e1 and v2 = eval env e2
in if v2 = 0 then raise (Err DivByZero) else v1/v2

| ...

(The underlined code is the difference with the previous version.) Notice
that we could speed up error handling by evaluating first e2, then e1 if
and only if v2 <> 0. The interpreter enforces then a particular order of
evaluation for the arguments of the division operation, but this order
must not be relied upon by the user. In general terms, if the order of
evaluation is specified, like in Java, then there is no ambiguity, otherwise,
the ambiguity might be used by the implementors of the compiler for
optimisations.

The operational semantics sometimes seems not to say anything, but
it can express the dependencies between evaluations (see rule let), and
the evaluations in case of errors: contrast the rule

ρ ⊢ e1 ! r1 ρ ⊢ e2 ! Val 0

ρ ⊢ ⟨⟨e1 / e2⟩⟩! Err DivByZero
div-zero

Free variables It is possible to determine whether some variables are
free in an expression before evaluation, thereby avoiding the error FreeVar
at run-time. That kind of analysis is a particular case of static analysis,
that is, taking place at compile-time.
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Let

”x” Const

1

BinOp

Add Let

”x” Const

2

Var

”x”

Var

”x”

Figure 12.8: Free variables bound by upward edges in the AST

Let F the function which associates an expression to its free variables.
We can write F⟨⟨_⟩⟩ instead of F(⟨⟨_⟩⟩). It is defined by the following
equations, where the priority of ‘\’ is higher than that of ‘∪’, and o
denotes a character string generated by the grammatical rule BinOp:

F⟨⟨n⟩⟩ = ∅,

F⟨⟨x⟩⟩ = {x},
F⟨⟨e1 o e2⟩⟩ = F(e1) ∪ F(e2),

F⟨⟨let x = e1 in e2⟩⟩ = F(e1) ∪ F(e2)\{x}.

Let us revisit the example let x = 1 in ((let x = 2 in x) + x). We have:

F⟨⟨let x = 1 in ((let x = 2 in x) + x)⟩⟩
= F⟨⟨1⟩⟩ ∪ F⟨⟨(let x = 2 in x) + x⟩⟩\{"x"}
= ∅ ∪ (F⟨⟨let x = 2 in x⟩⟩ ∪ F⟨⟨x⟩⟩)\{"x"}
= (F⟨⟨2⟩⟩ ∪ F⟨⟨x⟩⟩\{"x"} ∪ {"x"})\{"x"}
= (∅ ∪ {"x"}\{"x"} ∪ {"x"})\{"x"}
= ∅.

The expression does not contain any free variable. By definition, such
an expression is said to be closed. Moreover, since the expression does
not contain any division, we have proved that no error will occur during
evaluation.

Graphical representation of bindings Until now, the data con-
structor Let is the only one that adds bindings to the environment: it
is said to be ‘binding’. Let us resume the previous example. From each
occurrence of a variable (Var), let us move up towards the root: if we find
a Let binding that variable, we create an edge from it to its binding Let;
if, once the root has been reached, no Let has been found, the variable
is free in the expression. The example is seen in figure 12.8.
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Testing zero Let us come back once again to our language and let us
add a conditional construct with test against zero.

• The extension to the concrete syntax is

Expression ::= ... | "ifz" Expression "then" Expression

"else" Expression

• The extension to the abstract syntax is

type expr = ... | Ifz of expr × expr × expr

• The syntax analysis (in the absence of error) is

⟨⟨ifz e1 then e2 else e3⟩⟩ = Ifz (e1, e2, e3).

• The free variables are found with

F⟨⟨ifz e1 then e2 else e3⟩⟩ = F(e1) ∪ F(e2) ∪ F(e3).

The operational semantics is extended with the following rules:

ρ ⊢ e1 ! 0 ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨ifz e1 then e2 else e3⟩⟩! v2
if-then

ρ ⊢ e1 ! ṅ ṅ ̸= 0 ρ ⊢ e3 ! v3

ρ ⊢ ⟨⟨ifz e1 then e2 else e3⟩⟩! v3
if-else

Functions Let us add to the calculator function abstractions and their
corresponding calls, called applications in the λ-calculus.

• The concrete syntax is extended like so:

Expression ::= ...

| "fun" ident "->" Expression /* abstraction */

| Expression Expression /* application */

• The abstract syntax becomes:

type expr = ... | Fun of string × expr | App of expr × expr

where

– Fun (x, e) denotes a function which associates the expression e,
called the body, to the variable x, called the parameter (which
may or may not be free in e);
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Figure 12.9: Variables bound in F⟨⟨fun y→ x + (fun x→ x) y⟩⟩

– App (e1, e2) represents the application of an expression e1,
which is expected to be evaluated into an abstraction, to an
expression e2, called the argument.

• The syntax analysis needs to record the fact that abstraction (re-
spectively, application) has a lower (respectively, higher) priority
than operators. All we can do here is say:

⟨⟨fun x→ e⟩⟩ = Fun (x, e),

⟨⟨e1 e2⟩⟩ = App (e1, e2).

We want the language of our calculator to have the same semantics as
the subset of OCaml which its syntax coincides. The implementation
of an interpreter or a compiler in the same language it interprets or
compile is called bootstrapping. For instance, the OCaml compiler itself
is bootstrapped, a first compiler being written in C.

What operational semantics can be ascribed to abstraction and ap-
plication?

First, we need to extend the computation of the free variables of an
expression to abstractions and applications, like so:

{

F⟨⟨fun x→ e⟩⟩ = F(e)\{x}
F⟨⟨e1 e2⟩⟩ = F(e1) ∪ F(e2)

For example, F⟨⟨fun y→ x + (fun x→ x) y⟩⟩ = {x}. Graphically, this is
represented as in figure 12.9, where the free variable is framed.

Abstraction and application Let us try first the following semantics
for the abstraction:

ρ ⊢ ⟨⟨fun x→ e⟩⟩! ⟨⟨fun x→ e⟩⟩ abs-dyn
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let x = 1 in
let f = fun y → x + y in
let x = 2

in f x

(a)

let x = 1 in
let f = fun y → x + y in
let x = 2

in (fun y → x + y) x

(b)

Figure 12.10: Two equivalent programs under rule abs-dyn

Let

”x” Const

1

Let

”f” Fun

”y” BinOp

Add Var

”x”

Var

”y”

Let

”x” Const

2

App

Var

”f”

Var

”x”

Figure 12.11: AST of the program in figure 12.10a

The rule abs-dyn implies that the programs in figure 12.10 are equival-
ent. Consider in figure 12.11 the abstract syntax tree of the program
in figure 12.10a and, in figure 12.12, that of figure 12.10b. The
variable x under the fun has been captured by the third let. (A fact de-
noted by a dashed line to the now incorrect binder.) This means that,
with our semantics abs-dyn, the value of a variable may change over the
course of the evaluation, depending on the current environment: this is
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Figure 12.12: AST of the program in figure 12.10b
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called dynamic binding. Few programming languages feature it, notably
Lisp, TEX and cpp macros, because programs tend to be more difficult
to understand and maintain. In general, static binding – also called lex-
ical scoping – is preferred: the value of the free variables in the body of
functions is fixed at the declaration site. The first program would then
result in 3 and the second in 4. We must come up with a semantics for
the abstraction which respects referential transparency (that is, the fact
that a variable can be replaced by its value between parentheses, without
altering the meaning of the embedding expression) and static binding.

Semantics for the application If functions are values, they can be
returned by functions, that is, they can be the value of an application.
For instance:

let add = fun x → fun y → x + y in
let incr = add 1

in incr 5

That kind of application is said to be partial, as opposed to complete, like
(add 1 5). We have to find a semantics for the application that enables
partial applications.

Closures and typing The general solution to the above design con-
straints on the abstraction and the application consists in evaluating
functions into a new kind of value called closure. A closure Clos (x, e, ρ)
is made of a functional expression Fun (x, e) and an environment ρ. We
then have to redefine the type of values, like so:

type value = Int of int | Clos of string × expr × (string → value);;

and also the implementation of the OCaml function eval. Note that expres-
sions can make inconsistent assumptions with regards to their context,
what is called typing errors, in particular, arithmetic operations must
have integer operands and only functions can be called.

Semantics for abstraction and application

ρ ⊢ ⟨⟨fun x→ e⟩⟩! Clos (x, e, ρ) abs

ρ ⊢ e1 ! Clos (x0, e0, ρ0)
ρ ⊢ e2 ! v2 x0 C→ v2 ⊕ ρ0 ⊢ e0 ! v0

ρ ⊢ ⟨⟨e1 e2⟩⟩! v0
app
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The implementation of rule App should evaluate e1 before e2 in order to
check if e1 indeed is evaluated into a closure – otherwise, we save time
by signalling an error at an early stage. As for rule Abs, we can restrict
the environment ρ in a closure Clos (x, e, ρ) to the free variables of the
function Fun (x, e):

ρ ⊢ ⟨⟨fun x→ e⟩⟩ as f ! Clos (x, e, ρ|F(f)) abs-opt

where ρ|d is ρ restricted to the domain d and ‘e as x’ binds the metav-
ariable x to the expression e.

Evaluation strategies In the rule App, the expression e1 is first eval-
uated into a closure to which is passed the value v1 of e1: that strategy
is called call by value, or strict semantics, in use in programming lan-
guages like OCaml and Java. Other languages, notably Haskell and Clean,
feature a strategy called call by name or lazy evaluation, which consists
in passing the non-evaluated argument e1 to the closure, to be evaluated
only if the result requires it. An optimisation of call by name is call by
need, whereby the same expression is not recomputed, as their values are
cached by the run-time.

Non-termination In theory, we can already use our calculator to com-
pute anything computed by the underlying computer. For instance, we
already have the power of recursion thanks to the auto-application, as
demonstrated by the following non-terminating program:

let omega = fun f → f f in omega omega

The operational style we followed up to this point evaluates an expression
into its value, but this is not practical when studying the termination of
computations. For the previous program, this issue would manifest itself
as the occurrence in the derivation of

ρ ⊢ ⟨⟨f ⟩⟩! v1 "f" C→ v1 ⊕ ρ ⊢ ⟨⟨f f ⟩⟩! v

ρ ⊢ ⟨⟨f f ⟩⟩! v

The first premise states that ρ("f") = v1, hence ρ = "f" C→ v1 ⊕ ρ,
therefore the conclusion and the second premise are identical, implying
that the evaluation never ends.

A programming language featuring a conditional construct and re-
cursion or auto-application enables the specification of all computations
available to the underlying computer: it is Turing-complete. This prop-
erty is very useful, but it entails the existence of non-terminating pro-
grams and the nonexistence of programs which can recognise them all
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(by Gödel’s incompleteness theorem). A very rough sketch of the idea is
as follows. Let us use reductio ad absurdum and suppose the existence of
a predicate for termination. Let f be the function such that for all func-
tion g, if g always terminates (that is, for all x, g(x) is defined), then f(g)
does not terminate; otherwise, f(g) terminates. Therefore, f(f) does not
terminate is f terminates, and f(f) terminates if f does not terminate.
This is a contradiction from which we deduce that the hypothesis is false
and there is no termination predicate.

Recursive functions To bring to the fore the expressiveness of our
toy language, let us define functions with the help of the auto-applicative
function omega. First, let us define a function fix, traditionally called the
Y combinator :

let omega = fun f → f f in
let fix = fun g → omega (fun h → fun x → g (h h) x) in
...

Note the underlined code (technically, an η-expansion), necessary to deal
with a strict semantics. It is possible, albeit rather tedious, to show that
the evaluation of (fix f x) has the pattern

. . .

. . . ρ ⊢ ⟨⟨f (fix f) x⟩⟩! v

. . .
···

ρ ⊢ ⟨⟨(fix f) x⟩⟩! v

In other words, for all x, (fix f) x = f (fix f) x, that is, (fix f) = f (fix f).
Also, by definition, the fixed point p of a function f satisfies p = f(p).
Therefore, the fixed point of a function f, if it exists, is (fix f).

Factorial revisited Let

let pre_fact = fun f → fun n → ifz n then 1 else n * f (n-1) in
let fact = fix pre_fact in ...

Therefore, fact is the fixed point of pre_fact, if any, that is to say

fact = pre_fact fact = fun n → ifz n then 1 else n * fact (n-1).

Therefore, fact is the factorial function, because it satisfies the defining
recurrent equations.
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Local recursive binding For additional flexibility, let us extend the
syntax with a local recursive binding, as follows:

• Concrete syntax
Expression ::= ...

| "let rec" ident "=" Expression "in" Expression

• Abstract syntax
type expr = ... | LetRec of string × expr × expr;;

• Syntax analysis
⟨⟨let rec x = e1 in e2⟩⟩ = LetRec (x, e1, e2)

• Free variables
F⟨⟨let rec x = e1 in e2⟩⟩ = (F(e1) ∪ F(e2))\{x}

We can define the operational semantics of that construct in two ways.
The first consists in not considering it as elementary (native), and ex-
press its semantics in terms of another construct and, in this instance,
assuming that the operator fix is predefined:

ρ ⊢ ⟨⟨let x = fix (fun x→ e1) in e2⟩⟩! v

ρ ⊢ ⟨⟨let rec x = e1 in e2⟩⟩! v
let-rec

The second way consists in considering that construct as different from
the others:

x C→ v1 ⊕ ρ ⊢ e1 ! v1 x C→ v1 ⊕ ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨let rec x = e1 in e2⟩⟩! v2
let-rec

The straightforward implementation of the latter rule is

let rec eval env e = match e with ...

| LetRec (x,e1,e2) →
let rec env’ = extend (x,v1) env
and v1 = eval env’ e1
in eval env’ e2

For technical reasons linked to the type system of OCaml (the so-called
value restriction on recursive values), we actually have to write:

let rec eval env e = match e with ...

| LetRec (x,e1,e2) →
let rec env’ = fun x → extend (x, v1()) env x
and v1 = fun () → eval env’ e1
in eval env’ e2
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A multiple let rec (with and) can always be reduced to a simple let rec
(with in) by parameterising one of the definitions by the other. Let

let rec x = e1 and y = e2 in e

where x ̸= y. It is equivalent, by definition, to

let rec x = fun y → e1 in
let rec y = let x = x y in e2 in
let x = x y

in e

We can then encode the simple let rec with fix, or else consider it as
native to the interpreted language. In both cases, there is no need to
extend the operational semantics.

Nevertheless, we should think about generalising our syntactic equi-
valence to n variables:

let rec x1 = e1 and x2 = e2 and . . . and xn = en in e

Parallel definitions We can add to our language the construct

let x = e1 and y = e2 in e

where x ̸= y. If x ∈ F(e2), we define it as being equivalent to

let z = x in
let x = e1 in
let y = let x = z in e2

in e

where z ̸∈ F(e1)∪F(e2)∪F(e), in order to avoid capture by e1, e2, or e.
Therefore, there is no need to extend the operational semantics to cope
with this construct: an equivalence between abstract syntax trees is suffi-
cient to provide the meaning. Nevertheless, we should care to generalise
that equivalence:

let x1 = e1 and x1 = e2 and . . . and xn = en in e

Occam’s razor The observation of the rules let, on the one hand,
and abs and app, on the other hand, leads us to realise that the rule let

can be removed without consequence on the expressivity of the language.
More precisely, we will prove that the constructs let x = e1 in e2 and
(fun x → e2) e1 are equivalent from the standpoint of evaluation, that
is to say, one yields a value v if and only if the other yields v as well.
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The rule app can be rewritten by swapping e1 and e2:

ρ ⊢ e2 ! Clos (x0, e0, ρ0) ρ ⊢ e1 ! v1 x0 C→ v1 ⊕ ρ0 ⊢ e0 ! v0

ρ ⊢ ⟨⟨e2 e1⟩⟩! v0

By substituting fun x→ e2 in stead of e2, we draw

ρ ⊢ ⟨⟨fun x→ e2⟩⟩! Clos (x0, e0, ρ0)
ρ ⊢ e1 ! v1 x0 C→ v1 ⊕ ρ0 ⊢ e0 ! v0

ρ ⊢ ⟨⟨(fun x→ e2) e1⟩⟩! v0

The axiom abs states ρ ⊢ ⟨⟨fun x→ e2⟩⟩! Clos (x, e2, ρ), hence x = x0,
e2 = e0 and ρ = ρ0, which implies, by substituting in the penultimate
rule and renaming v0 into v2:

ρ ⊢ ⟨⟨fun x→ e2⟩⟩! Clos (x, e2, ρ)
ρ ⊢ e1 ! v1 x C→ v1 ⊕ ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨(fun x→ e2) e1⟩⟩! v2

Since an axiom is, by definition, true, we can remove it from a premise:

ρ ⊢ e1 ! v1 x C→ v1 ⊕ ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨(fun x→ e2) e1⟩⟩! v2

The rule let is

ρ ⊢ e1 ! v1 x C→ v1 ⊕ ρ ⊢ e2 ! v2

ρ ⊢ ⟨⟨let x = e1 in e2⟩⟩! v2
let

The premisses are the same as in the previous rule, therefore the conclu-
sions are identical, which was to be demonstrated. It is thus possible, in
theory, to do without the local bindings in our language, either at the
level of the semantics, or the abstract syntax. (This situation will change
when type inference will come into play later on.)

In general, when a programming construct is found to have the same
semantics as a combination of other constructs, it is best to retain that
construct in the abstract syntax because this allows the lexer to assign
physical locations to the corresponding lexemes, in view of possible error
messages. Indeed, the other option, consisting in producing the abstract
syntax tree of the combination at parse-time, loses that information,
although the semantics is likely simpler, like stating

ρ ⊢ ⟨⟨(fun x→ e2) e1⟩⟩! v2

ρ ⊢ ⟨⟨let x = e1 in e2⟩⟩! v2
let
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Imperative programming Until now, variables were actually con-
stants: once assigned, their value remain unchanged during the course
of evaluation. In this section, we are going to show how we can model
variables whose values do really vary over time, that is, they mutate. The
programming style based on the use of such variables is called imperative,
or effectful.

Even though, for the sake of the presentation, we wish to have all
variable become mutable, we nevertheless would like to be able to dis-
tinguish at the level of the concrete syntax their mutations by means
of assignments. For example let x = 1 in let y = (x := x + 2) in x is
evaluated into Int 3, and x := x + 2 is an assignment.

A functional model for mutable variables In order to model mut-
able variables in a purely functional setting, we have to introduce the
new concepts of address and store (or memory). An address is an ele-
ment of a numerable, infinite set – very much like variables. A store σ
binds addresses a to values v. An environment ρ has to be redefined
now to bind a variable x to its address a, and not to its value directly
as before. This is how we can hide a binding by another in the store
without changing the environment, which effectfully models assignments
in a functional manner. Therefore, we do not need a native notion for
assignment in the semantics: as far as the interpreter is concerned, if it
is itself written in a functional language, that language can remain pure.

Next, we either introduce the notion of instruction, as found in pro-
gramming languages like C and Java, or we extend the expressions, as
does OCaml. In the latter case, we need to add a special value which is
the result of the evaluation of an assignment: the value Unit. For instance,
x := 2 is evaluated into Unit.

For the sake of generality and simplicity, it is good to also add an
expression which is evaluated immediately into Unit. We will note it (),
after the convention in OCaml, like let f = fun x→ 1 in f (). Note that we
must distinguish the value Unit and the corresponding expression, which
we will denote by U in the abstract syntax.

• Concrete syntax
Expression ::= ... | ident ":=" Expression | ()

• Abstract syntax
type expr = ... | Assign of string × expr | U;;

• Syntax analysis
⟨⟨x := e⟩⟩ = Assign (x, e), and ⟨⟨()⟩⟩ = U.
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• Free variables
F⟨⟨x := e⟩⟩ = {x} ∪ F(e), and F⟨⟨()⟩⟩ = ∅.

• Operational semantics

We need to revisit our judgement and inference rules and have
instead ρ/σ ⊢ e ! v/σ′, meaning: ‘Given the context made of
the environment ρ and the store σ, the evaluation of e yields the
value v and a new store σ′.’

First, here are the simpler inference rules (to contrast with var above):

ρ/σ ⊢ ⟨⟨()⟩⟩! Unit/σ unit
x ∈ dom ρ ρ(x) ∈ dom σ

ρ/σ ⊢ ⟨⟨x⟩⟩! σ ◦ ρ(x)/σ
var

In order to access the content of a variable, we thus have to go through
the environment and the store, and that is why we must make sure that
x ∈ dom ρ and ρ(x) ∈ dom σ. Our new judgement ρ/σ ⊢ e! v/σ′ must
satisfy the following property:

if codom ρ ⊆ dom σ, then dom σ ⊆ dom σ′,

that is to say, the evaluation may hide a binding by another in the store,
or add a new binding, but cannot retract any – it is monotonic. Again, in
other words, when the evaluation is over, variables still have an associated
value, potentially different from their initial value.

Proof by induction on the length of the derivations The opera-
tional semantics enables a kind of proof called ‘by induction on the length
of the derivation (or the height of the proof trees)’. By derivation, we
either mean a proof tree which is isomorphic to a list, or a subtree of the
proof tree, in which case the proper measure would be the height. The
sketch of this technique is as follows. First, the property to establish is
checked on the axioms (derivation of length 1). Second, we assume that
the property is true for all the derivations of length n− 1, and we prove
that all the derivations of length n by examining all available rules, and
imagining that they are the roots of a proof of length n. By the induction
hypothesis, the premisses satisfy the property, because their derivation
has a length strictly lower than n.

Let us try an example by considering the following property:

If ρ/σ ⊢ e! v/σ′ and codom ρ ⊆ dom σ, then dom σ ⊆ dom σ′.
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It is clearly satisfied by all the axioms. Assignments hide the binding of
a variable in the store:

ρ/σ ⊢ e! v/σ′ x ∈ dom ρ ρ(x) ∈ dom σ′

ρ/σ ⊢ ⟨⟨x := e⟩⟩! Unit/(ρ(x) C→ v ⊕ σ′)
assign

That rule satisfies the property at hand. Indeed, by the induction hypo-
thesis (on the length of the derivation), the first premisse implies that, if
codom ρ ⊆ dom σ, then dom σ ⊆ dom σ′. The third premisse then im-
plies dom ρ(x) C→ v ⊕ σ′ = dom σ′, thus dom σ ⊆ dom (ρ(x) C→ v ⊕ σ′).
We need σ because it may be the case that the evaluation of e hides
bindings of σ other than ρ C→ v, and we must consider these possible
occlusions. For instance,

let x = 1 in let y = 2 in let z = (x := (y := 3)) in y

is evaluated into Int 3.
The rule let introduces a new binding in the environment and the

store, which obeys the invariant above:

ρ/σ ⊢ e1 ! v1/σ1 a ̸∈ dom σ1
(x C→ a⊕ ρ)/(a C→ v1 ⊕ σ1) ⊢ e2 ! v2/σ2

ρ/σ ⊢ ⟨⟨let x = e1 in e2⟩⟩! v2/σ2
let

Indeed, if codom ρ ⊆ dom σ, then, by the induction hypothesis (on the
length of the derivation of the first premisse), we have dom σ ⊆ dom σ1,
thus, by transitivity, codom ρ ⊆ dom σ1, whence codom (x C→ a⊕ ρ) ⊆
dom (a C→ v1⊕σ1). From the induction hypothesis on the third premisse,
this entails that dom (a C→ v1 ⊕ σ1) ⊆ dom σ2. But a ̸∈ dom σ1 implies
dom σ1 ⊂ dom (a C→ v1 ⊕ σ1), therefore dom σ ⊂ dom σ2. In particular,
there is no equality.

Garbage collection When we introduced the environments in the se-
mantics, we saw that local bindings could mask other bindings. With
the addition of stores, we realise that local bindings can hide and add
bindings in the store which are not accessible from the environment. In
both cases, bindings in the environment or the store become definitively
inaccessible, therefore the space the corresponding value occupy in the
memory of the computer is lost for the rest of the evaluation. That is why
the compilers of certain programming languages, like OCaml, Java and
Ada, generate a code that dynamically performs an accessibility analysis
on the data, and it devolves back to the underlying process the space
used by the inaccessible cells: this is the garbage collector.
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Order of evaluation We need to fix the order of evaluation of the
arithmetic operands in the semantics in order to keep track, in the store,
of the effects of the assignments which may have taken place during the
evaluation of the operands:

ρ/σ ⊢ ⟨⟨n⟩⟩! ṅ/σ const

ρ/σ ⊢ e1 ! v1/σ1 ρ/σ1 ⊢ e2 ! v2/σ2

ρ/σ ⊢ ⟨⟨e1 + e2⟩⟩! v1 + v2/σ2
add

(The other arithmetic rules would follow the same schema.) It is nev-
ertheless always possible that the documentation of the compiler states
that the order is left unspecified, leaving room for the compiler’s imple-
mentors to modify the order as they see fit, for example to perform some
platform-dependent optimisations.

The semantics with mutation for the abstraction and the application
is as follows:

ρ/σ ⊢ ⟨⟨fun x→ e⟩⟩! Clos (x, e, ρ)/σ abs

ρ/σ ⊢ e1 ! Clos (x0, e0, ρ0)/σ1 ρ/σ1 ⊢ e2 ! v2/σ2
a ̸∈ dom σ2 (x0 C→ a⊕ ρ0)/(a C→ v2 ⊕ σ2) ⊢ e0 ! v0/σ3

ρ/σ ⊢ ⟨⟨e1 e2⟩⟩! v0/σ3
app

In comparison with the semantics without mutation, the order of evalu-
ation is here fixed in the semantics: e1 is evaluated before e2, in order
to check first that e1 is indeed evaluated into a closure (if not, we save
time by signalling an error as early as possible). Furthermore, the fact
that a ̸∈ codom ρ allows us to forget the assignments on the parameter,
for example, let f = fun x → x := x + 1 in f 3.

The semantics with mutation of the native recursive expressions is
as follows.

a ̸∈ dom σ
(x C→ a⊕ ρ)/(a C→ v1 ⊕ σ) ⊢ e1 ! v1/σ1

(x C→ a⊕ ρ)/σ1 ⊢ e2 ! v2/σ2

ρ/σ ⊢ ⟨⟨let rec x = e1 in e2⟩⟩! v2/σ2
let-rec

Sequences and general iterators We can now add to our language
the sequence construct, and a general iterator.

• Concrete syntax
Expression ::= ...

| Expression ";" Expression

| "while" Expression "do" Expression "done"
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• Abstract syntax
type expr = ... | Seq of expr × expr | While of expr × expr;;

• Syntax analysis
⟨⟨e1;e2⟩⟩ = Seq (e1, e2), and ⟨⟨while e1 do e2 done⟩⟩ = While (e1, e2).

• Free variables
F⟨⟨e1;e2⟩⟩ = F(e1) ∪ F(e2), and
F⟨⟨while e1 do e2 done⟩⟩ = F(e1) ∪F(e2).

The operational semantics is as follows:

x ̸∈ F(e2) ρ ⊢ ⟨⟨let x = e1 in e2⟩⟩! v

ρ ⊢ ⟨⟨e1;e2⟩⟩! v
seq

while

f, p ̸∈ F(e2) x ̸∈ F(e1)
ρ ⊢ ⟨⟨let rec f = fun p→ if p() then e2;f p else () in f (fun x→ e1)⟩⟩! v

ρ ⊢ ⟨⟨while e1 do e2 done⟩⟩! v

Let us remark that the value v is actually always () in the rule while.
Moreover, if we added Boolean comparisons over integers, we could write

let x = 0 in (while x < 10 do x := x + 1 done ; x)

Implementation of the semantics with mutation To implement
our new semantics, the first choice to commit is that of the OCaml data
type for addresses. Even though OCaml integers can overflow, we will
use them for implementing addresses. The next point to make is about
the rules where we must chose an address which is free in the store,
formally a ̸∈ dom σ. A solution consists to create each time an address
which is absolutely unique, for instance, it may be a strictly increasing
integer. We should then thread an additional argument, representing
that counter, through our evaluation function eval, and, every time we
need a new address, we would increment that argument and pass along
further its value plus one. The polymorphic functions operating over the
environments (extend, for adding a binding, and lookup, for seeking a
binding), can also be used on stores.

12.6 Lexing with ocamllex

In this section we show how to use ocamllex, a tool distributed with the
compiler for OCaml, which takes a specification for a lexer and outputs
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OCaml code implementing that specification. For a general presentation
of lexing, please refer to the Annex, part IV.

With ocamllex, the regular expressions defining the lexemes have a
traditional form, but characters occur between quotes, after the conven-
tion of OCaml, for example, [’a’-’z’]+ [’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]* instead of
the usual [a-z]+ [a-zA-Z0-9_]*. The OCaml type representing internally
the lexemes is generally not defined in the lexer specification, which has
the file extension .mll. For instance, that type could be

type token = INT of int | IDENT of string | TRUE | FALSE

| PLUS | MINUS | TIMES | SLASH | EQUAL | ARROW

| LPAR | RPAR | LET | IN | REC

| FUN | IF | THEN | ELSE | AND | OR | NOT | EOF

Note that it is a good practice to always have a special lexeme EOF to
denote the end of the file. The specification of a lexer in ocamllex follows
the general shape

{ Optional OCaml code as a prologue }
let r1 = regexp
. . .
let rp = regexp
rule rule1 x1,1 . . . x1,m = parse

regexp1,1 { OCaml code known as action }
| . . .
| regexp1,n { OCaml code known as action }

and rule2 x2,1 . . . x2,m = parse
. . .

and . . .
{ Optional OCaml code as an epilogue }

Consider the following example:

{ open Parser
exception Illegal_char of string }

let ident = [’a’-’z’] [’_’ ’A’-’Z’ ’a’-’z’ ’0’-’9’]*
rule token = parse

[’ ’ ’\n’ ’\t’ ’\r’] { token lexbuf }
| "let" { LET }
| "rec" { REC }
| "=" { EQUAL }
. . .
| ident as id { IDENT id }
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| [’0’-’9’]+ as n { INT (int_of_string n) }
| eof { EOF }
| _ as c { raise (Illegal_char c ) }

The prologue opens the module Parser because it contains the definition
of the type token, whose data constructors are applied in the actions
(LET, REC, etc.). This style is often used in conjunction with the parsers
produced by menhir or ocamlyacc. If we specify a standalone lexer (for
example, for performing unit testing), we then would have a module
Token containing the definition of the lexemes.

Exceptions used in the actions and/or the epilogue are declared in
the prologue – here we have Illegal_char.

A regular expression called ident is defined, as well as a unique parser
token. Note that, although the ocamllex keyword is parse, it declares a
lexer. The rules are introduced by the keyword rule and, in the actions,
the rules are seen to be functions whose first arguments, like x1,1 . . . x1,m,
are arbitrary OCaml values, then the next argument is the lexing buffer
(matched after the keyword parse), always implicitly called lexbuf. An
example of this is the action {token lexbuf}, which is typical when we
want to skip some characters from the input. This recursive call works
because, in the action, the characters recognised by the corresponding
regular expression have been implicitly removed from the input stream.

The module Lexing of the standard library of OCaml contains some
functions whose aim is to manipulate the input stream of characters. For
example, to create an input stream of characters from the standard input,
we would write: let char_flow = Lexing.from_channel stdin in . . .

There is a built-in regular expression named eof which filters the end
of file. It is recommended to match it in order to produce a virtual token
EOF because the implicit behaviours of the applications with respect to
the end of file may vary from one operating system to another. (See below
for another reason.)

Notice too a special regular expression ‘_’ which matches any kind
of character. The order of the regular expressions matters, therefore this
particular expression must be the last one, otherwise any subsequent
expression would be ignored.

If the ocamllex specification is a file named lexer.mll, then the compil-
ation will take place in two steps:

1. ocamllex lexer.mll will generate either an error or lexer.ml; then
2. ocamlc -c lexer.ml will produce either an error or the compiled

units lexer.cmo and lexer.cmi, the latter only if there is no interface
lexer.mli for the lexer.
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In theory, the actions linked to the regular expressions are not compelled
to return a lexeme, as the programmer may seek to write a standalone
preprocessor, for example, instead of the combination of a lexer and a
parser, as usually found in compilers. In any case, the resulting OCaml
code has the shape

Prologue
let rec rule1 x1,1 . . . x1,m lexbuf =

. . . match . . . with
. . . → action

| . . .
| . . . → action

and rule2 x2,1 . . . x2,m lexbuf =
. . .

and . . .
Epilogue

where lexbuf has the type Lexing.lexbuf.

Lexing inline comments Comments are recognised during lexical
analysis, but they are usually discarded. Some lexers examine the con-
tents of comments, looking for instance for metadata or embedded com-
ments, and thus may signal errors inside those. The simplest type of
comments is that of C++, whose scope is the rest of the line after it
starts:

rule token = parse
. . .

| "//" [^ ’\n’]* ’\n’? { token lexbuf }

The regular expression identifies the comment opening, then skips any
character different from an end of line, and finally terminates by reading
an optional end of line. (We assume that the underlying operating system
is Unix, so an end of line can also terminate a file.)

Lexing non-nested block comments In order to analyse non-em-
bedded block comments, we need a more complex specification:

{ . . . exception Open_comment }

rule token = parse
. . .

| "/*" { in_comment lexbuf }
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and in_comment = parse
"*/" { token lexbuf }

| eof { raise Open_comment }
| _ { in_comment lexbuf }

The rule token recognises the comment opening and its action calls the
additional rule in_comment, which skips all characters until the closing
of the block and signals an error if the closing is missing (open comment).
When the block is closed, and since a comment does not yield a lexeme
in our context, we need to perform a recursive call to token to get one
– This is the other reason why we need the virtual token EOF, as alluded
to previously.

Lexing nested block comments Comments in the language C can
be nested, which allows the programmer to temporarily comment out
pieces of source code that may already contain block comments. If these
comments were not nestable, we could write a single regular expression
to recognise them, but, above, we chose not to do so for readability’s sake
and to easily signal the lack of a proper closing. In the nested case, no
such expression can exist, on theoretical grounds: regular languages can-
not be well parenthesised. Informally, this can be understood as: ‘Regular
expressions cannot count.’, in particular, the current level of nesting can-
not be maintained throughout block openings and closings. To achieve
this, we need to rely on the actions, where function calls are available.
The technique consists in modifying the rule in_comment in such a man-
ner that the actions become functions whose argument is the current
depth of nesting.

rule token = parse
. . .

| "/*" { in_comment lexbuf 1 }
and in_comment = parse

"*/" { fun depth → if depth = 1 then token lexbuf
else in_comment lexbuf (depth-1) }

| "/*" { fun depth → in_comment lexbuf (depth+1) }
| eof { raise Open_comment }
| _ { in_comment lexbuf }

Note that fun depth → raise Open_comment would be less efficient, and
the call in_comment lexbuf is equivalent to fun depth → in_comment
lexbuf depth.
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Finite automata Lexer generators like ocamllex work by combining
the regular expressions of the specification, and translating them into
a program expressed in the target language. In order to do so, these
have to be translated first into a formalism of same level of expressivity,
but more intuitive: finite automata. Then, the automaton resulting from
combining several automata is compiled into source code. As we indicated
at the opening of this chapter, we will not discuss automata theory here,
as only basic notions are necessary four our present purpose, and the
Annex presents the topic independently of any programming language.
Therefore, suffice it to give some examples about the recognition of some
lexemes specific to the matter at hand here.

• a keyword:

1 2 3 4 LET
’l’ ’e’ ’t’

• an integer

1 2

INT
[’0’-’9’]

[’0’-’9’]

• either a keyword or an integer:

1

2 3 4 LET

5
INT

’l’
’e’ ’t’

[’0’-’9’]
[’0’-’9’]

If a final state (doubly-circled) is reached from the initial state, the lex-
eme is recognised, like LET and INT.

The lexer considers at all times two pieces of information: the current
state in the specified automaton, and the character at the head of the
input stream.

• If there exists a transition for the head character at the current
state, then

– it is withdrawn from the input stream and discarded;
– the current state becomes the one pointed to by the transition;
– the process resumes by considering the new state and the new

character at the head of the input;

• otherwise, if there is no transition (the state is blocking), then
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– if the current state is final, then the associated lexeme is emit-
ted;

– else, an error is signalled (invalid character).

Some ambiguity may occur, like

• the input string "let" being recognised as a variable instead of a
keyword,

• the input string "letrec" being recognised as the following lists of
lexemes: [LET; IDENT "rec"] or [LET; REC ] or [IDENT "letrec"] etc.

The general solution consists in establishing rules of priority:

• when several lexemes are possible prefixes of the input, chose the
longest;

• otherwise, follow the order of definition of the tokens, for example,
in the ocamllex specification given earlier, the rule for LET is written
before that for ident.

This way, the sentence let letrec = 3 in 1 + funny is recognised as the
list [LET; IDENT "letrec"; EQUAL; INT 3; IN; INT 1; PLUS; IDENT "funny"].

To implement this ‘longest-match rule’, we need to add a struc-
ture: an initially empty buffer of characters, and resume the previous
algorithm. When the current state is final and a transition is enabled, in-
stead of discarding the corresponding character, we save it in that extra
buffer until a blocking state. If that state is final, we return the associ-
ated lexeme, else we emit the lexeme of the last final state encountered,
the characters of the buffer are placed back into the entrant stream, and
we loop back to the initial state.

1 2

IDENT

3

IDENT

4 LET

5IDENT

’l’ ’e’ ’t’

e1 e2 e3 e4

[’a’-’z’]

e1 = [’a’-’k’ ’n’-’z’]

e2 = [’a’-’d’ ’f’-’z’]

e3 = [’a’-’s’ ’u’-’z’]

e4 = [’a’-’z]

12.7 Type inference

The aim of static typing is to detect and reject at compile-time some
kinds of programming errors which would otherwise result into an error
at run-time, like (1)(2) or BinOp (Add, (fun x → x), 1). With this aim, a
type is assigned to each subexpression of the program, for example, int
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for an arithmetic expression, or int→ int for a function from the integers
to the integers, and the coherence of these types is checked, that is, if we
think of a type as an assumption, no assumption must invalidate another
one.

It is undecidable to determine all possible run-time errors for all pro-
grams. Type systems, on the other hand, are often decidable, because it
is considered a good design to ensure that the compiler terminates on
all input programs. Therefore, it is impossible for the compiler to reject
only those programs that are erroneous. In other words, all type systems
reject innocent programs, and that is why the quest for better type sys-
tems, with better compromises between unfair rejection and guaranteed
safety, will never end.

The calculator revisited Let us revisit the calculator and define suit-
able types for its expressions.

• Concrete syntax
Type ::= "int" | Type -> Type | "(" Type ")"

| "’a" | "’b" | ...

We denote type variables with the metavariables α, β etc.

• Abstract syntax
type type_expr = TEint | TEvar of string

| TEfun of type_expr × type_expr

We denote types with the metavariable τ .

• Syntax analysis
The arrow associates to the right.

⟨⟨int⟩⟩ = TEint,

⟨⟨τ1 → τ2⟩⟩ = TEfun (τ1, τ2),

⟨⟨’a⟩⟩ = TEvar "a", etc.

Note that we write τ instead of ⟨⟨τ ⟩⟩. We note type variables as α,
β, γ etc. instead of TEvar "a", TEvar "b", TEvar "c" etc.

• Free variables
F⟨⟨int⟩⟩ = ∅ and F⟨⟨τ 1 → τ2⟩⟩ = F(τ1) ∪ F(τ2) and F⟨⟨α⟩⟩ = {α}.

Monomorphic typing A typing judgement has the form Γ ⊢ e : τ
and reads: ‘In the typing environment Γ, the expression e has type τ .’
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A typing environment Γ binds variables x to their type Γ(x). A typing
binding is noted x : τ . We have

Γ ⊢ ⟨⟨n⟩⟩ : ⟨⟨int⟩⟩ Tconst
Γ ⊢ e1 : ⟨⟨int⟩⟩ Γ ⊢ e2 : ⟨⟨int⟩⟩

Γ ⊢ ⟨⟨e1 o e2⟩⟩ : ⟨⟨int⟩⟩
Tbin

Γ ⊢ ⟨⟨x⟩⟩ : Γ(x) Tvar
Γ ⊢ e1 : τ1 Γ⊕ x : τ1 ⊢ e2 : τ2

Γ ⊢ ⟨⟨let x = e1 in e2⟩⟩ : τ2
Tlet

Γ⊕ x : τ1 ⊢ e : τ2

Γ ⊢ ⟨⟨fun x→ e⟩⟩ : ⟨⟨τ 1 → τ2⟩⟩
Tfun

Γ ⊢ e1 : ⟨⟨τ ′ → τ⟩⟩ Γ ⊢ e2 : τ ′

Γ ⊢ ⟨⟨e1 e2⟩⟩ : τ
Tapp

Let us consider an example of typing derivation:

x : ⟨⟨int⟩⟩ ⊢ ⟨⟨x⟩⟩ : ⟨⟨int⟩⟩ x : ⟨⟨int⟩⟩ ⊢ ⟨⟨1⟩⟩ : ⟨⟨int⟩⟩
x : ⟨⟨int⟩⟩ ⊢ ⟨⟨x + 1⟩⟩ : ⟨⟨int⟩⟩

∅ ⊢ ⟨⟨fun x→ x + 1⟩⟩ : ⟨⟨int→ int⟩⟩
f : ⟨⟨int→ int⟩⟩ ⊢ ⟨⟨f ⟩⟩ : ⟨⟨int→ int⟩⟩

f : ⟨⟨int→ int⟩⟩ ⊢ ⟨⟨2⟩⟩ : ⟨⟨int⟩⟩
f : ⟨⟨int→ int⟩⟩ ⊢ ⟨⟨f 2⟩⟩ : ⟨⟨int⟩⟩

∅ ⊢ ⟨⟨let f = fun x→ x + 1 in f 2⟩⟩ : ⟨⟨int⟩⟩

Here are some judgements that can be derived: ∅ ⊢ ⟨⟨fun x→ x⟩⟩ :
⟨⟨α→ α⟩⟩ and ∅ ⊢ ⟨⟨fun x→ x⟩⟩ : ⟨⟨int→ int⟩⟩. Here are some judge-
ments that cannot be derived: ∅ ⊢ ⟨⟨fun x→ x + 1⟩⟩ : ⟨⟨int⟩⟩ and ∅ ⊢
⟨⟨fun x→ x + 1⟩⟩ : ⟨⟨α→ int⟩⟩.

In order to assign a type to fun f→ f f, we would need to construct
the following derivation:

Γ⊕ f : τ1 ⊢ f : ⟨⟨τ1 → τ2⟩⟩ Γ⊕ f : τ1 ⊢ f : τ2

Γ⊕ f : τ1 ⊢ ⟨⟨f f ⟩⟩ : τ2
Γ ⊢ ⟨⟨fun f→ f f ⟩⟩ : ⟨⟨τ1 → τ2⟩⟩

For the leaves of the derivation to be established by the axiom Tvar, we
would require τ1 = ⟨⟨τ 1 → τ2⟩⟩ and τ1 = τ2. The first of these equalities
is impossible, for τ1 would then be a strict subterm of itself, which is
impossible for all finite terms τ1. Here are some typing properties and
definitions:
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• Well-typed (or typable) expressions.
An expression e is typable is there exists a typing environment Γ
and a type τ such that Γ ⊢ e : τ .

• Typing.
A typing is a pair (Γ, τ) or a typing derivation.

• Stability by substitution of type variables.
If we can derive a non-closed judgement, that is, containing free
type variables like f : ⟨⟨α→ α⟩⟩ ⊕ x : α ⊢ f (x) : α, then we can also
derive all the judgements obtained by replacing these variables by
arbitrary types, like f : ⟨⟨int→ int⟩⟩ ⊕ x : int ⊢ f (x) : int.

• Type safety
If Γ ⊢ e : τ and ρ ⊢ e ! r, then r ̸= Err ( . . . ). This is the main
rationale behind static typing.

Strong and weak normalisation The monomorphic type system
presented here is strongly normalising, that is to say, well-typed pro-
grams always terminate. Type systems enjoying that property are not
interesting for programming because programmers expect their language
to be Turing-complete, so it expresses all the terminating programs. If
the type system would also reject all the non-terminating programs, we
would have solved the halting problem of the Turing machine, which is
known to be undecidable. Therefore, all Turing-complete language with
a decidable type system contains non-terminating programs.

That is why we usually consider type systems which do not guarantee
that the typable programs terminate: this is weak normalisation. A good
example is the monomorphic type system for a subset of OCaml with a
fixed point combinator fix, or a native recursive binder let rec:

Γ ⊕ x : τ1 ⊢ e1 : τ1 Γ⊕ x : τ1 ⊢ e2 : τ2

Γ ⊢ ⟨⟨let rec x = e1 in e2⟩⟩ : τ2
Tlet-rec

Here, there is no difficulty with respect to Tlet; we only need to extend
the typing environment of the first premisse with the binding x : τ1.

From type checking to type inference For a language statically
typed, a type checker is an algorithm which, given a program, determines
whether it is typable and, if so, produces a type for it. If the program
admits several types, a type checker must produce a principal type, that
is, a type which is more general than any of the possible types, given
that, by definition, a type is more particular than another if it can be
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obtained by substituting type variables by type expressions. In a subset
of OCaml, the program fun x → x has the types τ → τ , for any type τ ,
but the type α→ α is principal, because all the other types are deduced
by substitution of the variable α. Depending on the nature and amount
of information (provided as type annotations) required by the language,
the task of the type checker is more or less complex and there exists
many situations to consider.

In the case of pure type checking, all subexpressions of a program, as
well as all the identifiers, must be annotated by their type. For example,

fun (x : int)→ (
let y : int = (+ : int × int → int) (x : int) (1 : int)
in y : int

) : int

The type checker is then quite simple, since the programmer not only
writes an expression, but a complete typing derivation. Of course, such
a language would be pretty much useless in practice and no realistic
language takes this extreme approach.

Another way requires the programmer to declare the parameter types
and the local variable types. The type checker then infers the type of
each expression from the types of its subexpressions. In other words,
the typing information is propagated through the expression from the
leaves to the root (in a bottom-up fashion). For example, given that x
has type int, the type checker can not only verify that the expression x
+ 1 is correctly typed, but also infer that it has the type int. Thus, the
previous example becomes

fun (x : int) → let y : int = x + 1 in y

and the type checker infers the type int → int for that expression. A
similar approach has been adopted by most mainstream, imperative lan-
guages.

Another approach requires the programmer to only declare the para-
meter types. The difference with the previous framework is that local
variables (bound by let . . . in . . . ) are not necessarily annotated where
they are declared. The type checker determines then their type by ana-
lysing the type of the expression they are associated with, that is, the
contexts within which they are used. Our running example becomes:

fun (x : int) → let y = x + 1 in y.

After determining that x + 1 has type int, the type checker ascribes the
type int to y.
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In the case of full type inference, no type annotation at all is needed
and the type checker determines the type of the parameters from their
use in the body of their function. Our example becomes:

fun x → let y = x + 1 in y.

Because addition only operates on integers, the variable x is necessarily
of the type int. This inference process is used in the languages of the ML
family, like OCaml. In order to implement type inference for a subset of
OCaml, we proceed in three steps:

1. we annotate the abstract syntax tree with type variables;

2. from that decorated tree, we build a system of equations about
types, which characterises all the possible typing derivations for
the program;

3. we solve that system of equations: if there is no solution, then the
program is not well-typed, otherwise, we determine a principal solu-
tion, which allows us to deduce a principal typing of the program.

By composing these phases, we obtain an algorithm which determines
whether a program is typable, and, if so, we provide a principal typing.

Substitution We need a new concept to describe type inference: substi-
tution. It is a function whose application has the general shape: τ [α← τ ′],
read as: ‘The substitution of the type variable α by the type τ ′ in the
type τ .’ It is defined inductively on the type structure:

⟨⟨int⟩⟩[α← τ ′] = ⟨⟨int⟩⟩;
α[α← τ ′] = τ ′;

β[α← τ ′] = β, if β ̸= α;

⟨⟨τ 1 → τ2⟩⟩[α← τ ′] = ⟨⟨τ ′1 → τ ′2⟩⟩, with τ ′1 = τ1[α← τ ′]

and τ ′2 = τ2[α← τ ′].

The notion of substitution can be extended to other objects, like expres-
sions. We will write ϕ, ψ or θ to denote a substitution.

Decorating the tree Let us reconsider the abstract syntax tree in
figure 12.8 on page 521 and let us decorate it with unique type variables
which respect the bindings, that is, a bound variable is annotated by the
same type variable as that of its binder, and the other expressions are
annotated by unique variables, as shown in figure 12.13 on the facing
page. Let us write in superscript to an expression the type variable that
annotates it, for instance Letα(xβ , e1γ , e2δ).
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Let α

”x” β Const γ

1

BinOp δ

Add Let η

”x” ζ Const ν

2

Var ζ

”x”

Var β

”x”

Figure 12.13: Type annotations on the AST of figure 12.8 on
page 521

Collecting the constraints From an annotated expression eα, we
build a system of equations C(eα) which captures the typing constraints
between the subexpressions of e. That system is defined inductively on
the structure of e:

C(Varα x) = ∅

C(Constα n) = {α = ⟨⟨int⟩⟩}
C(BinOpα(_, e1

β, e2
γ)) = {α = ⟨⟨int⟩⟩;β = α; γ = α}

∪ C(e1
β) ∪ C(e2

γ)

C(Letα(xβ, e1
γ , e2

δ) = {β = γ;α = δ} ∪ C(e1
γ) ∪ C(e2

δ)

C(Funα(xβ, eγ)) = {α = ⟨⟨β → γ⟩⟩} ∪ C(eγ)

C(Appα(e1
β, e2

γ)) = {β = ⟨⟨γ → α⟩⟩} ∪ C(e1
β) ∪ C(e2

γ)

Let us resume our running example:

C(eα) = { β = γ;α = δ;
γ = ⟨⟨int⟩⟩;
δ = ⟨⟨int⟩⟩; η = δ;β = δ;
ζ = ν; η = ζ;
ν = ⟨⟨int⟩⟩}

From solutions to judgements A solution of the equation set C(eα)
is a substitution ϕ such that for all equation τ1 = τ2 ∈ C(eα), we have
ϕ(τ1) = ϕ(τ2). In other words, a solution is a unifier of the equation
system. The following propositions establish that the solutions of C(eα)
characterise exactly the typings of e.

Proposition 1 (Soundness of the equations). If ϕ is a solution of C(eα),
then Γ ⊢ eα : ϕ(α), where Γ is the typing environment {xβ : ϕ(β) | xβ ∈
F(e)}.
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Proposition 2 (Completion of the equations). Let e be an expression.
If there exists a typing environment Γ and a type τ such that Γ ⊢ e : τ ,
then the equation system C(eα) admits a solution ϕ such that ϕ(α) = τ
and Γ = {xβ : ϕ(β) | xβ ∈ F(e)}.

Solving the equations (Robinson’s unifier) Let us define ϕ " ψ
if there exists a substitution θ such that ψ = θ ◦ ϕ. By definition, a
solution ϕ of C(eα) is said principal if any solution ψ of C(eα) satis-
fies ϕ " ψ. There exists an algorithm mgu which, given a system of
equations C, either fails or produces a principal solution of C:

mgu(∅) =1 ∀x.x C→ x

mgu({τ = τ} ∪ C ′) =2 mgu(C ′)

mgu({α = τ} ∪ C ′) =3 mgu(C ′[α← τ ]) ◦ [α← τ ], if α ̸∈ F(τ)

mgu({τ = α} ∪ C ′) =4 mgu({α = τ} ∪ C ′)

mgu(C ∪ C ′) =5 mgu({τ1 = τ ′1; τ2 = τ ′2} ∪ C ′)

where C = {⟨⟨τ1 → τ2⟩⟩ = ⟨⟨τ1′ → τ2′⟩⟩}

In any other case, mgu fails because there are no solutions. Let use this
algorithm, called Robinson’s unifier to solve our system of equations,
whose aim is to compute

mgu(C(eα)) =3 ϕ0 ◦ [β ← γ], where

ϕ0 = mgu({α = δ; γ = ⟨⟨int⟩⟩; δ = ⟨⟨int⟩⟩; η = δ;

γ = δ; ζ = ν; η = ζ; ν = ⟨⟨int⟩⟩})
=3 ϕ1 ◦ [α← δ]

ϕ1 = mgu({γ = ⟨⟨int⟩⟩; δ = ⟨⟨int⟩⟩; η = δ; γ = δ; ζ = ν; η = ζ;

ν = ⟨⟨int⟩⟩})
=3 ϕ2 ◦ [γ ← ⟨⟨int⟩⟩]

ϕ3 = mgu({δ = ⟨⟨int⟩⟩; η = δ; ⟨⟨int⟩⟩ = δ; ζ = ν; η = ζ; ν = ⟨⟨int⟩⟩})
=3 ϕ4 ◦ [δ ← ⟨⟨int⟩⟩]

ϕ4 = mgu({η = ⟨⟨int⟩⟩; ⟨⟨int⟩⟩ = ⟨⟨int⟩⟩; ζ = ν; η = ζ; ν = ⟨⟨int⟩⟩})
=3 ϕ5 ◦ [η ← ⟨⟨int⟩⟩]

ϕ5 = mgu({⟨⟨int⟩⟩ = ⟨⟨int⟩⟩; ζ = ν; ⟨⟨int⟩⟩ = ζ; ν = ⟨⟨int⟩⟩})
ϕ5 =2 mgu({ζ = ν; ⟨⟨int⟩⟩ = ζ; ν = ⟨⟨int⟩⟩})
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=3 ϕ6 ◦ [ζ ← ν]

ϕ6 = mgu({⟨⟨int⟩⟩ = ν; ν = ⟨⟨int⟩⟩})
=4 ϕ5 ◦ [ν ← ⟨⟨int⟩⟩]

ϕ5 = mgu({⟨⟨int⟩⟩ = ⟨⟨int⟩⟩; ⟨⟨int⟩⟩ = ⟨⟨int⟩⟩})
= mgu({⟨⟨int⟩⟩ = ⟨⟨int⟩⟩})
=2 mgu(∅) =1 ∀x.x C→ x.

Consequently,

mgu(C(eα)) = [ν ← ⟨⟨int⟩⟩] ◦ [ζ ← ν] ◦ [η ← ⟨⟨int⟩⟩] ◦ [δ ← ⟨⟨int⟩⟩]
◦ [γ ← ⟨⟨int⟩⟩] ◦ [α← δ] ◦ [β ← γ]

mgu(C(eα))(α) = α([δ ← ⟨⟨int⟩⟩] ◦ [α← δ]) = δ[δ ← ⟨⟨int⟩⟩] = ⟨⟨int⟩⟩

Robinson’s unifier enjoys the following properties:

Proposition 3 (Soundness of mgu). If mgu(C) = ϕ, then ϕ is a solution
of C.

Proposition 4 (Completion of mgu). If C admits a solution ψ, then
mgu(C) succeeds in producing a solution ϕ such that ϕ " ψ.

12.8 Scannerless parsing of streams

In this section, we present a technique to write descent-recursive parsers
based on streams, a lazy data structure available to OCaml by means
of Camlp4, which is distributed separately. We will not explain how to
install Camlp4 and we refer the reader to any textbook on compilers for
the basics on context-free grammars and, in particular, LL(k) grammars.

Our technique assumes that we already have an LL(1) grammar, and
we wish to implement a parser to recognise the language it generates. In
passing, it enables also a style called scannerless parsing, meaning that
both the lexer, also called scanner, and the parser can be expressed with
the same feature, namely streams.

We will use the following formalism to express context-free gram-
mars. A grammar is a set of production rules, each one associating a
non-terminal symbol to a possibly empty sequence of terminals and non-
terminals. These rules can be conceived as rewrite rules whereby the
non-terminal symbol, on the left-hand side, is rewritten into a series of
symbols in the right-hand side, and that is why we separate both sides
with a rightwards arrow. Non-terminals are names whose first letter is
capitalised, whereas terminals are named whose first letter is in lower-
case. A word is a sequence of non-terminals. To avoid leaving blanks on
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Notation Definition Constraint

X → α∗ X → αX | ε ¬(α ∗⇒ ε)

X → α+ X → αα∗ ¬(α ∗⇒ ε)

X → [α] X → α | ε ¬(α ∗⇒ ε)

X → {Aa . . .}∗ X → ε | A (aA)∗ ¬(A ∗⇒ ε)

X → {Aa . . .}+ X → A (aA)∗ ¬(A ∗⇒ ε)

Figure 12.14: Rational operators for context-free grammars

the page, we will note ε the empty word. A Greek letter in lowercase rep-
resents a possibly empty concatenation of terminals and non-terminals,
in general, which means that the series may, in particular, be a word. We
will write A

∗⇒ α the relationship ‘A derives α’. Consider for example
the following ambiguous, context-free grammar for Boolean expressions:

B → B ||B | B &&B | !B | (B) | true | false

We will augment the formalism with rational operators, in order to have
a more compact notation: α∗, α+, [α], {Aa . . . }∗ and {Aa . . . }+. Each
occurrence of these operators can always be replaced by a non-terminal
whose defining rule is shown in figure 12.14. These rules are LL(1)
and it is suitable now that we define that property. LL(1) grammars are
context-free grammars which can be used to recognise languages in a
top-down way, with one token of look-ahead. By ‘top-down’, we actually
mean rightwards in the sense of the rules: Left to right scanning of the
input, building a Leftmost derivation (according to the production rules)
with One token of look-ahead. In order to define them formally, we need
first to define a couple of functions. Let us note N the set of the non-
terminals and Σ the set of the terminal symbols.

The function First The function ‘First’, noted P, maps each non-
terminal to the set of terminals that start any derivation from it. We
have, for all non-terminal A,

P(A) := {x ∈ Σ | A ∗⇒ xα}.

The function Follow The function ‘Follow’, noted S, maps each non-
terminal to the set of terminals that may follow each occurrences of the
non-terminal. Formally, for all non-terminal A,

S(A) := {x ∈ Σ | ∃B ∈ N .B
∗⇒ αAxβ}.
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P(ε) = {ε},
P(xγ) = {x},
P(Bγ) = P(B),

P([β]γ) = P(β) ∪ P(γ),

P({B b . . .}∗γ) = P(B) ∪ P(γ),

P({B b . . .}+γ) = P(B),

P(β∗γ) = P(β) ∪ P(γ),

P(β+γ) = P(β),

P(A) = ∪ni=1P(αi), if A→ α1 | α2 | . . . | αn.

Figure 12.15: Extended definition of function First

The LL(1) property We can now formally define LL(1) grammars as
a set of production rules A→ α1 | α2 | . . . | αn satisfying

¬(A ∗⇒ Aα); (12.1)
n
⋂

i=1

P(αi) = ∅; (12.2)

αi
∗⇒ ε implies P(αj) ∩ S(A) = ∅, for all j. (12.3)

The first constraint states that no rule can be left-recursive, neither dir-
ectly, nor indirectly; the second affirms that no two words produced by
the same non-terminal can start with the same terminal; the third and
last states that, if a word produced by a non-terminal A derives the empty
word (it might derive non-empty words as well), then the words derived
from A should not start with a terminal following A in the grammar.

These constraints can be extended to the rational operators we intro-
duced in figure 12.14 on the facing page, and the whole new definition
can be given an algorithmic style in figure 12.15. Note that we extended
the definition of P to ε, even though it is not a non-terminal, and γ may
derive ε (it is nullable). As for S, the redefinition is seen in figure 12.16
on the following page. Any place where it is possible, we replace A by
[A], A∗ or A+ – the first replacement is mandatory for the implementa-
tion technique we propose. Notice as well that the algorithmic definition
of S consists in a collection of inclusion constraints . . . ⊆ S(A), whose
smallest solution is then S(A). (Contrast this with the definition of P.)
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Rule Constraint

X → . . . | αABβ P(B) ⊆ S(A);
X → . . . | αA{B b . . . }+β P(B) ⊆ S(A);
X → . . . | αA[β]γ P(β) ∪ (P(γ) \ {ε}) ∪ S(X) ⊆ S(A),

if γ
∗⇒ ε, else P(β) ∪ P(γ) ⊆ S(A);

X → . . . | αAβ∗γ P(β) ∪ (P(γ) \ {ε}) ∪ S(X) ⊆ S(A),
if γ

∗⇒ ε, else P(β) ∪ P(γ) ⊆ S(A);
X → . . . | αA S(X) ⊆ S(A);
X → . . . | αAxβ x ∈ S(A);
X → . . . | αAβ+γ P(β) ⊆ S(A);
X → . . . | αA{B b . . .}∗β P(B) ∪ (P(β) \ {ε}) ∪ S(X) ⊆ S(A),

if β
∗⇒ ε, else P(B) ∪ P(β) ⊆ S(A);

X → . . . | α{A a . . . }∗β {a} ∪ (P(β) \ {ε}) ∪ S(X) ⊆ S(A),
if β

∗⇒ ε, else {a} ∪ P(β) ⊆ S(A);
X → . . . | α{A a . . . }+β {a} ∪ (P(β) \ {ε}) ∪ S(X) ⊆ S(A),

if β
∗⇒ ε, else {a} ∪ P(β) ⊆ S(A).

Figure 12.16: Extended definition of function Follow

For reasons that will become apparent later, we will impose that our
grammars do not contain explicitly the empty word, therefore, in the
case of the rational expressions, the LL(1) property 12.3 on the previous
page takes the shape

Rule Constraint

X → α∗ P(α) ∪ S(X) = ∅

X → α+ P(α) ∪ S(X) = ∅

X → [α] P(α) ∪ S(X) = ∅

X → {A a . . .}∗ (P(A) ∪ {a}) ∩ S(X) = ∅

X → {A a . . .}+ {a} ∩ S(X) = ∅

Stream constraints The method we propose in this section relies
on LL(1) grammars with additional constraints due to the semantics of
streams; it will allow us to specify error messages only in the rules that
may fail to parse the input, so they can be tailored, without knowledge
of the lexical context. Higher-order parser will be used to implement
rational operators, so the functions matching stream patterns will be iso-
morphic to the constrained grammar, greatly improving the maintenance
of the program.
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Let us begin by the sort of constraints arising from the use of streams
for parsing. Simply put, we cannot implement as is the production rules
which are left-recursive:

A→ X B | C, where X
∗⇒ A.

Indeed, since each non-terminal will be transformed into a function match-
ing a stream, the parser for A will try to match a lexeme by calling itself,
recursively, which yields non-termination. Another issue arises in the case

A→ X B | C, where X
∗⇒ ε.

If B fails, the exception Stream.Failure raised by the parser associated
with B becomes an exception Stream.Error in the parser associated
with A because B is not at the head of a rule, which interrupts the
syntax analysis, event though C might have succeeded. It is clear that
there was never any danger in pursuing the analysis since no lexeme had
been consumed from the stream by X. This limitation is justified by
a simpler semantics for streams and can be overcome by rewriting the
LL(1) grammar. Therefore, after making sure that the grammar is not
left-recursive, we must transform it according to the following table:

X → [α]β becomes X → αβ | β
X → α∗β becomes X → α+β | β
X → {A a . . .}∗β becomes X → {A a . . .}+β | β

Note that we assume that the language does not contain the empty word.
These constraints are relevant to our analysis method and it is per-

haps suitable now to explain why parsers on streams are good tools in
general, despite the constraints we just have mentioned. First, it is wrong
to believe that these allow us to only analyse LL(1) grammars. Let us
consider the famous case of the ‘dangling else’. Let the grammar

S → if BoolExpr then S S′ | OtherInstr
S′ → else S | ε

This grammar defines a conditional construct and it yields a shift/reduce
conflict in parsers generated by tools like Yacc when the lexical right-
context is else. That conflict boils down to decide whether a else clause
should be associated to the last if or not, as in the sentence

if b1 then if b2 then i1 else i2.

The usual way to resolve this matter is to systematically associate a
else to the last if encountered, from left to right. In OCaml with parsers
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on streams, the same effect is simply achieved by writing the pattern
matching corresponding to else S first, so it is tried before ε.

In fact, OCaml with parsers on streams can recognise contextual lan-
guages, thanks to higher-order functions. Let us consider the language
{wcw | w ∈ (a+ b)∗}, where a, b and c are terminal symbols. This is a
contextual language because, in order to recognise the second occurrence
of w, we need to somehow ‘remember’ (here goes the context) the first
occurrence. In OCaml, we recognise the prefix w, then we dynamically
build a parser for it, then, after reading c, we apply this previously con-
structed parser to the stream to find the suffix w. First, let us write the
parser for w:

let rec wd = parser

[< ’’a’; w=wd >] → (parser [< ’’a’ >] → "a")::w

| [< ’’b’; w=wd >] → (parser [< ’’b’ >] → "b")::w

| [<>] → []

The type of wd is char stream → (char Stream.t → string) list. The
higher-order parser, which takes as an argument the list of parsers gener-
ated by wd, and applies them to the current stream is defined as follows:

let rec wu = function

p::pl → (parser [< x=p; w=wu pl >] → x^w)

| [] → (parser [<>] → "")

whose type is (α Stream.t → string) list → α Stream.t → string.
Finally, the parser for our toy language is

let wcw = parser [< pl=wd; ’’c’; w=wu pl >] → w

whose type is char Stream.t → string. Then, we can use it as follows:

# wcw (Stream.of_string "abaacabaa");;

- : string = "abaa"

Error handling Since we rewrite any given LL(1) grammar so that
the empty word does not occur, we can use the stream pattern [<>]

or [< s >] to detect failures, but, first, let us define a type with two
constant constructors which are passed to all parsers, denoting, in case
of failure, whether the analysis should stop with an error message (abort),
or resume (fail):

type mode = Abort | Fail

To allow for the partial application of the parsers, we put the argument
of type mode in first position, and the general shape of the parsers is
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let my_parser mode = parser

[< ... >] → ...

| ...

| [< ... >] → ...

| [< s >] → match mode with

Fail → raise Stream.Failure

| Abort → syntax_error message s

where syntax_error is a function which prints the error message about
the first lexeme at the head of the stream s and stops the execution, for
example by raising the predefined exception (Stream.Error s). We call
(my_parser Fail) in head of a stream pattern, and (my_parser Abort)

in tail of a stream pattern. We will later see how to optimise this general
pattern, for instance, in case we know that my_parser can never stop the
parsing because it never occurs in tail of a stream pattern. We understand
now why we take care of rewriting the grammar so it does not produce
the empty word: the stream pattern [< s >] can then be used for error
handling.

Parser combinators The rational operators we have seen above are
implemented by means of higher-order parsers: their first parameter is
the parser to apply, the second is the parsing mode (of type mode above)
and the last is the stream to parse. This order makes it possible to
partially evaluate a rational operator on its first argument and use the
resulting first-order parser as an argument to another higher-order parser,
giving rise to parser combinators.

• X → α∗

The definition of α∗, called the Kleene star, is X → αX | ε. Its
OCaml implementation will evaluate in the list of the parsed lex-
emes. As seen earlier, for the LL(1) property to hold, the lexeme fol-
lowing α∗ in the grammar must not be recognisable by α. Moreover,
we impose that α does not derive the empty word ε. The general
shape of the implementation is then:

let rec star p m = parser [< x=p Fail; y=star p m >] → x::y

| [<>] → []

Note that the mode m is not used because the call to p must always
be allowed to fail, with possibility to resume parsing.

• X → α+

The definition of this operator is X → αα∗. Its OCaml implement-
ation relies on star and evaluates in the list of the parsed lexemes:
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let plus p m = parser [< x=p m; y=star p m >] → x::y

Recall that the mode m in star is not used because p is called there
with Fail. This entails that, in general, the call (plus p Abort)

implies the calls (p Abort) and (p Fail).

• X → [α]
The definition of this operator is X → α | ε. We have the following
straightforward implementation:

let opt p m = parser [< x=p Fail >] → [x] | [<>] → []

Just as with the operator α∗, the parser p must always be allowed
to fail, hence the mode m is useless. An alternative implementation
could evaluate in a value of the predefined type option:

let opt p m = parser [< x=p Fail >] → Some x | [<>] → None

• X → {A a . . .}+
The definition of this operator is X → A (aA)∗. If p is the parser
for A and a denotes a, the implementation is as follows:

let list_plus p a m =

let aux m = parser [< ’b when a=b; c=p Abort >] → a::c

in parser [< x=p m; y=star aux m >] → x::y

Note that the call (list_plus p a Fail) entails the calls (p Fail)

and (p Abort).

• X → {A a . . .}∗
The definition of this operator is X → ε | A (aA)∗, hence

let list_star p a m =

let aux m = parser [< ’b when a=b; c=p Abort >] → a::c

in parser [< x=p Fail; y=star aux m >] → x::y | [<>] → []

Note the two calls (p Fail) and (p Abort) and how the mode m is
useless.
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Optimisation All parsers have the same type, in particular they all
take a mode as an argument. This mode can sometimes be useless when
the parser in question is always at the head of a stream pattern or always
in the tail: if the former, this is equivalent to always have the Fail mode,
whereas, in the latter, it is always Abort. We can partially evaluate these
parsers accordingly and we can do the same with the parser combinators
implementing the rational operators. The pros are twofold: we create
fewer closures at run-time and we eliminate useless code; the cons are
also twofold: we need another analysis of the grammar and we lose the
possibility to combine arbitrarily our parsers because their types may
vary. The parser combinators are modified as follows.

• X → α∗

We have seen above that the parsing mode is irrelevant, so we
can remove it and assume that, if no lexeme can be recognised,
the parser p may fail by raising Stream.Failure, but not abort by
raising Stream.Error or an exception defined by the programmer.
We have the new definition

let rec star p = parser [< x=p; y=star p >] → x::y

| [<>] → []

• X → α+

We must retain the parsing mode for plus because it needs to be
passed along to the parser p. According to the optimisation of α∗

above, we evaluate partially now p with the mode Fail:

let plus p m = parser [< x=p m; y=star (p Fail) >] → x::y

• X → [α]
We remove the parsing mode, as with star above:

let opt p = parser [< x=p >] → [x] | [<>] → []

• X → {A a . . .}+
We keep the parsing mode, as with plus above:

let list_plus p a m =

let aux = parser [< ’b when a=b; c=p Abort >] → a::c

in parser [< x=p m; y=star aux >] → x::y

• X → {A a . . .}∗
We remove the parsing mode, as with star above:



558 CHAPTER 12. OCAML

let list_star p a =

let aux = parser [< ’b when a=b; c=p Abort >] → a::c

in parser [< x=p Fail; y=star aux >] → x::y | [<>] → []

These optimisations give rise to three kinds of parsers:

1. passing parsers, which may fail by raising Stream.Failure;
2. blocking parsers, which may stop parsing, for example by raising

Stream.Error;
3. mixed parsers, which may or may not stop parsing, depending on

the call context.

The grammar must be analysed to categorise all the non-terminals with
respect to these three kinds. First, we ignore the rational operators. If a
non-terminal always appear at the start of a production, the correspond-
ing parser is passing; if it always occur inside a production, the parser
is blocking; otherwise, it is mixed. Second, we assume that the non-ter-
minals appearing only inside rational operators are passing. Third, we
consider the rational operators:

• α∗

We distinguish the first word of α: it is a non-terminal whose parser
was deemed blocking, then it becomes mixed. For each following
non-terminal, if their parser was passing, it becomes mixed.

• α+

Let us leave aside the first word of α. For each subsequent non-ter-
minal, if the corresponding parser was passing, it becomes mixed.
We now distinguish depending on the position of α+ in the gram-
mar. If it occurs at the start of a production and if the parser of
the first word of α was blocking, then it becomes mixed. If α+ does
not occur at the start of a production and if the parser of the first
word of α was passing, then it becomes mixed.

• [α]
Same as α∗.

• {A a . . .}∗
The parser of A becomes (or remains) mixed.

• {A a . . .}+
Same as α+.

All mixed parsers require a parameter for the parsing mode. Some passing
or blocking parsers may also require such a parameter only for typing
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reasons, for example if it is passed itself as an argument to the parser
combinators plus or list_plus. The blocking parsers have the shape

let my_parser modeopt = parser

[< ... >] → ...

| ...

| [< ... >] → ...

| [< s >] → syntax_error message s

Note that modeopt means that the parameter mode may be required for
typing reasons. The passing parsers have the shape

let my_parser modeopt = parser

[< ... >] → ...

| ...

| [< ... >] → ...

Note that there is no pattern [<>] or [< s >] because the semantics of
stream matching would naturally see an exception Stream.Failure raised
if the first lexeme in the stream matches no pattern. The mixed parsers
have the shape we gave earlier, before considering any optimisations.

An example Let us consider an example based on a real formal lan-
guage called Abstract Syntax Notation One (ASN.1) (Larmouth, 1999,
Dubuisson, 2001), notoriously difficult to parse (Rinderknecht, 1995). To
keep things simple, we will only parse the header of a module, not the
assignments it contains.

The name of the scanned file containing the module is set in a global
reference:

let file = ref ""

and a location in that file is a pair of integer coordinates (line, column):

type loc = int × int

The keywords here are a small subset of all ASN.1 keywords:

type kwd = ALL | AUTOMATIC | BEGIN | DEFINITIONS

| END | EXPLICIT | EXPORTS | EXTENSIBILITY | FROM

| IMPLICIT | IMPLIED | IMPORTS | TAGS

Symbols are also in small number in our presentation:

type sym =

Assign | Lbrace | Rbrace | Comma | Lparen | Rparen | SemiColon
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To understand what these data constructors stand for, here is the func-
tion that provides their concrete syntax:

let string_of_sym = function

Assign → "::=" | Lbrace → "" | Rbrace → "" | Comma → ","

| Lparen → "(" | Rparen → ")" | SemiColon → ";"

The concrete syntax of keywords is obvious, but we need a function
nonetheless:

let string_of_kwd = function

ALL → "ALL" | AUTOMATIC → "AUTOMATIC" | BEGIN → "BEGIN"

| DEFINITIONS → "DEFINITIONS" | END → "END" | TAGS → "TAGS"

| EXPLICIT → "EXPLICIT" | EXPORTS → "EXPORTS" | FROM → "FROM"

| EXTENSIBILITY → "EXTENSIBILITY" | IMPLICIT → "IMPLICIT"

| IMPLIED → "IMPLIED" | IMPORTS → "IMPORTS"

The type for the tokens is

type token =

Low of (loc × string) (* Lowercase-starting identifier *)

| Up of (loc × string) (* Uppercase-starting identifier *)

| ModRef of (loc × string) (* Module reference *)

| Nat of (loc × string) (* Natural number *)

| Str of (loc × string) (* String *)

| Kwd of (loc × kwd) (* Keyword *)

| Sym of (loc × sym) (* Symbol *)

| EOF of loc (* End of file (virtual token) *)

The only parser combinator we need are the following:

let opt p = parser [< x=p >] → Some x | [<>] → None

let rec star p = parser [< x=p; y=star p >] → x::y

| [<>] → []

Note that the constraints and optimisations above apply. We also need
plus, which requires parsing modes:

type mode = Fail | Abort

let plus p m = parser [< x=p m; y=star (p Fail) >] → x::y

At the head of a stream pattern, we shall use (plus p Fail), otherwise
(plus p Abort). We need an exception to signal syntax errors, and a way
to print them:
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exception Error of (loc × string)

let get_loc = function

Low a | Up a | ModRef a | Str a | Nat a -> fst a

| Sym (loc,_) | Kwd (loc,_) | EOF loc → loc

let stop token msg = raise (Error (get_loc token, msg))

let check msg = function

Fail → raise Stream.Failure

| Abort → parser [< ’t >] → stop t msg

The function check performs the action corresponding to the parsing
mode. We continue with the definitions of auxiliary parsers dedicated to
tokens to be recognised in pattern tails, so we must stop parsing if they
are not found:

let modref = parser

[< ’ModRef _ >] → ()

| [< ’t >] → stop t "Module reference expected."

let kwd k = parser

[< ’Kwd (_,k’) when k=k’ >] → ()

| [< ’t >] → stop t ("Keyword "^ string_of_kwd k ^ " expected.")

let sym s = parser

[< ’Sym (_,s’) when s=s’ >] → ()

| [< ’t >] → stop t ("Symbol " ^ string_of_sym s ^ " expected.")

let nat = parser [< ’Nat _ >] → ()

| [< ’t >] → stop t "Natural number expected."

Finally, we can define the parser for ASN.1 modules:

let rec moduleDefinition = parser

[< _=moduleIdentifier;

()=kwd DEFINITIONS;
_=opt tagDefault;
_=opt extensionDefault;

()=sym Assign;

()=kwd BEGIN;

s=moduleSuffix >] → s
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and moduleIdentifier = parser

[< ’ModRef _; _=opt definitiveIdentification >] → ()

| [< ’t >] → stop t "Module identifier expected"

and definitiveIdentification = parser

[< ’Sym (_,Lbrace); _=plus definitiveObjIdComponent Abort;

()=sym Rbrace; _=opt iriValue >] → ()

and iriValue = parser [< ’Str _ >] → ()

and definitiveObjIdComponent mode = parser

[< ’Nat _ >] → ()

| [< ’Low _; _=opt num >] → ()

| [< s >] → check "OID component expected." mode s

and num = parser

[< ’Sym (_,Lparen); ()=nat; ()=sym Rparen >] → ()

and tagDefault = parser

[< ’Kwd (_,EXPLICIT); ()=kwd TAGS >] → ()

| [< ’Kwd (_,IMPLICIT); ()=kwd TAGS >] → ()

| [< ’Kwd (_,AUTOMATIC); ()=kwd TAGS >] → ()

and extensionDefault = parser

[< ’Kwd (_,EXTENSIBILITY); ()=kwd IMPLIED >] → ()

and moduleSuffix = parser

[< ’Kwd (_,EXPORTS); _=opt exports; ()=sym SemiColon;
_=opt imports; a=assignmentList >] → a

| [< _=imports; a=assignmentList >] → a

| [< a=assignmentList >] → a

and exports = parser [< _=symbolList Fail >] → ()

| [< ’Kwd (_,ALL) >] → ()

and imports = parser

[< ’Kwd (_,IMPORTS); _=opt imp1; ()=sym SemiColon >] → ()

and imp1 = parser [< _=symbolList Fail; _=from >] → ()

and from = parser [< ()=kwd FROM; _=modref; _=opt imp2 >] → ()
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and imp2 = parser

[< _=obj; _=opt imp1 >] → ()

| [< ’Up _; _=opt braces; _=opt moreSymbols; _=from >] → ()

| [< ’Low _; _=opt imp3 >] → ()

and obj = parser

[< ’Sym (_,Lbrace); _=plus objIdComponents Abort;

()=sym Rbrace >] → ()

and braces = parser [< ’Sym (_,Lbrace); ()=sym Rbrace >] → ()

and moreSymbols = parser

[< ’Sym (_,Comma); _=symbolList Abort >] → ()

and imp3 = parser

[< _=braces; _=opt moreSymbols; _=from >] → ()

| [< _=moreSymbols; _=from >] → ()

| [< ’Kwd (_,FROM); _=modref; _=opt imp2 >] → ()

| [< _=imp1 >] → ()

and objIdComponents mode = parser

[< _=obj >] → ()

| [< _=definitiveObjIdComponent Fail >] → ()

| [< s >] → check "OID component expected." mode s

and symbolList mode = parser

[< _=symbol; _=opt moreSymbols >] → ()

| [< s >] → check "Reference expected." mode s

and symbol = parser [< _=reference; _=opt braces >] → ()

and reference = parser [< ’Up _ >] → () | [< ’Low _ >] → ()

and assignmentList = parser

[< ’Kwd(_,END); s >] → after_END s

| [< ’EOF _ as eof >] → stop eof "Keyword END expected."

| [< ’t; s >] → [< ’t; assignmentList s >]

and after_END = parser

[< ’EOF _ as eof >] → [< ’eof >]

| [< ’t >] → stop t "End of file expected."
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Note that objIdComponents and symbolList retained their parsing mode
parameter because the former is used as an argument to the parser com-
binator plus, and the latter is used both at the head (passing parser)
and in the tail (blocking parser) of stream patterns. As explained earlier,
the parsers have been derived from the standard grammar, which has
been transformed into LL(1) form first, then the restrictions for streams
were applied, for instance, not having a parser combinator for the empty
word at the head of a pattern.

The next step would be building up symbol tables for imported and
exported definitions in the semantic actions, that is, on the right-hand
side of the arrows in parsers, and then write another parser to recognise
the tokens currently passed along by assignmentList (third pattern),
that is, the actual contents of the ASN.1 modules.
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Chapter 13

Overview of compilation

The function of a compiler is to translate texts written in a source lan-
guage into texts written in a target language. Usually, the source lan-
guage is a programming language, and the corresponding texts are pro-
grams. The target language is often an assembly language, i.e., a lan-
guage closer to the machine language (the language understood by the
processor) than the source language. Some programming languages are
compiled into a bytecode language instead of assembly. Bytecode is usu-
ally more abstract than an assembly language and is either interpreted by
another program, called virtual machine (VM), or compiled to assembly.

Compilation chain

From an engineering point of view, the compiler is one link in a chain
of tools, as shown in figure 13.1. Let us consider the example of the C
language. A widely used open-source compiler is GNU GCC. In reality,

annotated
source
program

preprocessor compiler

absolute
machine
code

linker assembler

libraries & externals

source

program

target assembly

relocatable

machine code

Figure 13.1: Compilation chain
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GCC includes a complete compilation chain, not just a C compiler:

• to only preprocess the sources: gcc -E prog.c (standard output)
(the C preprocessor ccpp can also be called directly);

• to preprocess and compile: gcc -S prog.c (output prog.s);
• to preprocess, compile and assemble: gcc -c prog.c (out: prog.o);
• to preprocess, compile, assemble and link: gcc -o prog prog.c (out-

put prog). Linking can be directly called using ld.

There are two parts to compilation: analysis and synthesis.

1. The analysis part breaks up the source program into constituent
pieces of an intermediary representation of the program.

2. The synthesis part constructs the target program from this inter-
mediary representation.

Here, we shall concern ourselves only with analysis, which can itself be
divided into three successive stages:

1. linear analysis, in which the stream of characters making up the
source program is read and grouped into lexemes, that is, sequences
of characters having a collective meaning; sets of lexemes with a
common interpretation are called tokens (note that ‘token’ is often
used when ‘lexeme’ would be correct, but the confusion is minimal);

2. hierarchical analysis, in which tokens are grouped hierarchically
into nested collections (trees) with a collective meaning;

3. semantic analysis, in which certain checks are performed on the
previous hierarchy to ensure that the components of a program fit
together meaningfully.

In the following, we shall focus on linear and hierarchical analysis.

Lexical analysis In a compiler, linear analysis is called lexical analysis
or scanning. During lexical analysis, the characters in the assignment
statement

position := initial + rate*60

would be grouped into the following lexemes and tokens (see facing table).
The blanks separating the characters of these tokens are normally elim-
inated.
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assignment

identifier

position

:= expression

expression

identifier

initial

+ expression

expression

identifier

rate

* expression

number

60

Figure 13.2: Parse tree of position := initial + rate * 60

Token Lexeme

identifier position

assignment symbol :=

identifier initial

plus sign +

identifier rate

multiplication sign *

number 60

Syntax analysis Hierarchical analysis is called parsing or syntax ana-
lysis. It involves grouping the tokens of the source program into gram-
matical phrases that are used by the compiler to synthesise the output.
Usually, the grammatical phrases of the source are represented by a parse
tree such as in figure 13.2. In the expression initial + rate * 60, the
phrase rate * 60 is a logical unit because the usual conventions of arith-
metic expressions tell us that multiplication is performed prior to addi-
tion. Thus, because the expression initial + rate is followed by a *, it
is not grouped into the same subtree. The hierarchical structure of a pro-
gram is usually expressed by recursive rules. For instance, an expression
can be defined by a set of cases as follows:

1. any identifier is an expression;
2. any number is an expression;
3. if expression1 and expression2 are expressions, then so are

(a) expression1 + expression2,
(b) expression1 * expression2,
(c) (expression).

Rules 1 and 2 are non-recursive base rules, while the others define ex-
pressions in terms of operators applied to other expressions:
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• initial and rate are identifiers, therefore, by rule 1, initial and
rate are expressions;

• 60 is a number, thus, by rule 2, we infer that 60 is an expression.

Next, by rule 3b, we infer that rate * 60 is an expression. Finally, by
rule 3a, we conclude that initial + rate * 60 is an expression. Simil-
arly, many programming languages define statements recursively by rules
such as:

• if identifier is an identifier and expression is an expression, then
we can form the statement

identifier := expression

• if expression is an expression and statement is a statement, then
we can create the statements

while (expression) do statement

if (expression) then statement

Let us keep in mind that the distinction between lexical and syntactic
analysis is somewhat arbitrary. For instance, we could define the integer
numbers by means of the following recursive rules:

• a digit is a number (base rule),
• a number followed by a digit is a number (recursive rule).

Imagine now that the lexer does not recognise numbers, only digits. The
parser therefore would use the previous recursive rules to group in a parse
tree the digits which form a number. For instance, the parse tree for the
number 1234, following these rules, is shown in figure 13.3a on the
facing page. Notice how that tree actually is almost a list: the structure,
i.e., the embedding of trees, is indeed not meaningful here. For example,
there is no obvious meaning to the separation of 12 (same subtree at
the leftmost part) in the number 1234. Therefore, pragmatically, the
best division between the lexer and the parser is the one that simplifies
the overall task of analysis. One factor in determining the distinction is
whether a source language construct is inherently recursive or not: lexical
constructs do not require recursion, while syntactic constructs often do.
For instance, recursion is not necessary to recognise identifiers, which are
typically strings of letters and digits beginning with a letter: we can read
the input stream until a character that is neither a digit nor a letter is
found, then these read characters are grouped into an identifier token.
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number

number

number

number

digit

1

digit

2

digit

3

digit

4

(a) Parse tree

:=

position +

initial *

rate 60

(b) Abstract syntax tree

Figure 13.3: Parse tree vs. abstract syntax tree

On the other hand, this kind of linear scan is not powerful enough
to analyse expressions or statements, like matching parentheses in ex-
pressions, or matching braces in block statements: a nesting structure
is compulsory, as seen earlier in figure 13.2 on page 569. The repres-
entation internal to the compiler of this syntactic structure is called an
abstract syntax tree (or simply syntax tree), an example of which can be
seen in figure 13.3b. It is a compressed version of the parse tree, where
only the most important elements are retained for the semantic analysis.

Semantic analysis The semantic analysis checks the syntax tree for
meaningless constructs and completes it for the synthesis. An import-
ant part of semantic analysis is devoted to type checking, i.e., checking
properties on how the data in the program is combined. For instance,
many programming languages require an error to be issued if an array is
indexed with a floating-point number (called float). Some languages al-
low such floats and integers to be mixed in arithmetic expressions, some
do not, because internal representation of integers and floats is very dif-
ferent, as is the cost of their corresponding arithmetic operations. In
figure 13.3b, let us assume that all identifiers were declared as being
floats, that is, they are of type float. Typechecking then compares the
type of rate, which is a float, with that of 60, which is an integer.

Let us assume that our language permits these two types of operands
for the multiplication (‘*’). Then the analyser must insert a special node
in the syntax tree which represents a type cast from integer to float for
the constant 60. At the level of the programming language, a type cast is
the identity function (also called a non-operation in this context), so the
value is not changed, but the type of the result is different from the type
of the argument. This way the synthesis will know that the assembly
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:=

position +

initial *

rate int to float

60

Figure 13.4: An annotated abstract syntax tree
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Figure 13.5: Decomposition of a compiler into phases

code for such a conversion has to be generated. The semantic analysis
issues no error and produces an annotated syntax tree for the synthesis,
displayed in figure 13.4.

Phases Conceptually, a compiler operates in phases, each transforming
the program from one representation to another. This decomposition is
shown in figure 13.5. The first row makes up the analysis and the
second is the synthesis.

Symbol table

Figure 13.5 does not depict another component which is connected to
all the phases: the symbol table manager. A symbol table is a two-column
table whose first column contains identifiers collected in the program and
the second column contains any interesting information, called attributes,
about their corresponding identifier. Example of identifier attributes are

• the allocated storage,
• the type,
• the scope (i.e., where in the program it is valid),
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• in case of procedures names, the number and type of the paramet-
ers, the method of passing each argument (e.g., by reference) and
the result type, if any.

When an identifier in the source program is detected by the lexer, this
identifier is entered into the symbol table. However, some attributes of
an identifier cannot normally be determined during lexical analysis. For
example, in a Pascal declaration like

var position, initial, rate: real;

the type real is not known when position, initial and rate are recog-
nised by the lexical analyser. The remaining phases enter information
about the identifiers into the symbol table and use this information. For
example, the semantic analyser needs to know the type of the identifiers
to generate intermediate code.

Error detection and reporting

Another compiler component that was omitted from figure 13.5 on the
preceding page because it is also connected to all the phases is the error
handler. Indeed, each phase can encounter errors, so each phase must
somehow deal with these errors. Here are some examples:

• the lexical analysis finds an error if a series of characters do not
form a token;

• the syntax analysis finds an error if the relative position of a group
of tokens is not described by the grammar (abstract syntax);

• the semantic analysis finds an error if the program contains the
addition of an integer and an array.

Lexing

Let us revisit the analysis phase and its sub-phases, following up on a
previous example. Consider the following character string:

←− p o s i t i o n : = i n i t i a l + r a t e * 6 0 ←−

First, as we stated in section 13 on page 568, lexical analysis recognises
the tokens of this character string, which can be stored in a file. Lexing
results in a stream of tokens like

id⟨position⟩ sym⟨:=⟩ id⟨initial⟩ op⟨+⟩ id⟨rate⟩ op⟨*⟩
num⟨60⟩
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where id (identifier), sym (symbol), op (operator) and num (number) are
the token names and between brackets are the lexemes. The lexer also
outputs or updates a symbol table (Even if the table is named ‘symbol
table’ it actually contains information about identifiers only.) like

Identifier Attributes

position . . .
initial . . .
rate . . .

The attributes often include the position of the corresponding identifier in
the original string, like the position of the first character either counting
from the start of the string or through the line and column numbers.

Parsing

The parser takes this token stream and outputs the corresponding syntax
tree and/or report errors. In figure 13.3b on page 571, we gave a sim-
plified version of this syntax tree. A refined version is given in the facing
column. Also, if the language requires variable definitions, the syntax
analyser can complete the symbol table with the type of the identifiers.

sym⟨:=⟩

id⟨position⟩ op⟨+⟩

id⟨initial⟩ op⟨*⟩

id⟨rate⟩ num⟨60⟩

The parse tree can be considered as a trace of the syntax analysis process:
it summarises all the recognition work done by the parser. It depends on
the syntax rules (i.e., the grammar) and the input stream of tokens.

assignment

identifier

id⟨position⟩

sym⟨:=⟩ expression

expression

identifier

id⟨initial⟩

op⟨+⟩ expression

expression

identifier

id⟨rate⟩

op⟨*⟩ expression

number

num⟨60⟩
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Semantic analysis

The semantic analysis considers the syntax tree and checks certain prop-
erties depending on the language, typically it makes sure that the valid
syntactic constructs also have a certain meaning (with respect to the
rules of the language). We saw in figure 13.4 on page 572 that this
phase can annotate or even add nodes to the syntax tree. It can as well
update the symbol table with the information newly gathered in order
to facilitate the code generation and/or optimisation. Assuming that our
toy language accepts that an integer is mixed with floats in arithmetic
operations, the semantic analysis can insert a type cast node. A new ver-
sion of the annotated syntax tree is proposed in figure 13.6. Note that
the new node is not a token, just a (semantic) tag for the code generator.

The synthesis phase

The purpose of the synthesis phase is to use all the information gathered
by the analysis phase in order to produce the code in the target language.
Given the annotated syntax tree and the symbol table, the first sub-phase
consists in producing a program in some artificial, intermediary, language.
Such a language should be independent of the target language, while
containing features common to the family the target language belongs to.
For instance, if the target language is the PowerPC G4 microprocessor,
the intermediary language should be like an assembly of the IBM RISC
family. If we want to port a compiler from one platform to another, i.e.,
make it generate code for a different OS or processor, such intermediary
language comes handy: if the new platform share some features with the
first one, we only have to rewrite the code generator component of the
compiler – not the whole compiler. It may be interesting to have the
same intermediary language for different source languages, allowing the
sharing of the synthesis. We can think of an intermediary language as

sym⟨:=⟩

id⟨position⟩ op⟨+⟩

id⟨initial⟩ op⟨*⟩

id⟨rate⟩ int to float

num⟨60⟩

Figure 13.6: Refined annotated abstract syntax tree
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an assembly for an abstract machine (or processor). For instance, our
example could lead to the code

temp1 := inttoreal(60)

temp2 := id_rate * temp1

temp3 := id_initial + temp2

id_position := temp3

Another point of view is to consider the intermediary code as a tiny
subset of the source language, as it retains some high-level features from
it, like, in our example, variables (instead of explicit storage information,
like memory addresses or register numbers), operator names etc. This
point of view enables optimisations that otherwise would be harder to
achieve (because too many aspects would depend closely on many details
of the target architecture). This kind of assembly is called three-address
code. It has several properties:

• each instruction has at most one operator (in addition to the as-
signment);

• each instruction can have at most three operands;
• some instructions can have less than three operands, for instance,

the first and last instruction;
• the result of an operation must be linked to a variable;.

As a consequence, the compiler must order well the code for the subex-
pressions, e.g., the second instruction must come before the third one
because the multiplication has priority on addition.

Code optimisation The code optimisation phase attempts to improve
the intermediate code, so that faster-running target code will result. The
code optimisation produces intermediate code: the output language is
the same as the input language. For instance, this phase would find out
that our little program would be more efficient this way:

temp1 := id_rate * 60.0

id_position := id_initial + temp1

This simple optimisation is based on the fact that type casting can be
performed at compile-time instead of run-time, but it would be an unne-
cessary concern to integrate it in the code generation phase.

Code generation The code generation is the last phase of a compiler.
It consists in the generation of target code, usually relocatable assembly
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code, from the optimised intermediate code. A crucial aspect is the as-
signment of variables to registers. For example, the translation of code
above could be

MOVF id_rate, R2

MULF #60.0, R2

MOVF id_initial, R1

ADDF R2, R1

MOVF R1, id_position

The first and second operands specify respectively a source and a destin-
ation. The F in each instruction tells us that the instruction is dealing
with floating-point numbers. This code moves the contents of the address
id_rate into register 2, then multiplies it with the float 60.0. The # sig-
nifies that 60.0 is a constant. The third instruction moves id_initial

into register 1 and adds to it the value previously computed in register 2.
Finally, the value in register 1 is moved to the address of id_position.

From phases to passes An implementation of the analysis is called
a front-end and an implementation of the synthesis back-end. A pass
consists in reading an input file and writing an output file. It is possible
to group several phases into one pass in order to interleave their activity.

• On the one hand, this can lead to a greater efficiency since inter-
actions with the file system are much slower than with internal
memory.

• On the other hand, this architecture leads to a greater complexity
of the compiler – something the software engineer always fears.

Sometimes it is difficult to group different phases into one pass. For
example, the interface between the lexer and the parser is often a single
token. There is not a lot of activity to interleave: the parser requests a
token to the lexer which computes it and gives it back to the parser. In the
meantime, the parser had to wait. Similarly, it is difficult to generate the
target code if the intermediate code is not fully generated first. Indeed,
some languages allow the programmer the use of variables without a prior
declaration, so we cannot generate immediately the target code because
this requires the knowledge of the variable type.
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Chapter 14

Automata theory for lexing

In this chapter, we present the basic notions of lexical analysis, also
known as lexing or scanning.

14.1 Specification of tokens

Figure 14.1 shows that the lexical analyser is the first phase of a com-
piler. Its main task is to read the input characters and produce a sequence
of tokens that the syntax analyser uses. Upon receiving a request for a
token (get token) from the parser, the lexical analyser reads input char-
acters until a lexeme is identified and returned to the parser together
with the corresponding token. Usually, a lexical analyser is in charge of

• stripping out from the source program comments and white spaces,
in the form of blank, tabulation and newline characters;

• keeping trace of the position of the lexemes in the source program,
so the error handler can refer to exact positions in error messages.

A token is a set of strings which are interpreted in the same way, for
a given source language. For instance, id is a token denoting the set of
all possible identifiers. A lexeme is a string belonging to a token. For

source
program

lexical

analyser

syntax

analyser

symbol

table

syntax
tree

token

get token

Figure 14.1: Lexer and parser
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Token Sample lexemes Informal pattern

id pi count D2 ... letter followed by letters and digits
relop < <= = >= > < or <= or < or = or >= or >

const const const

if if if

num 3.14 4 .2E2 ... numeric constant
literal "message" "" ... characters between " and " except "

Figure 14.2: Examples of tokens and lexemes

example, 5.4 is a lexeme of the token num. Tokens are defined by means
of patterns. A pattern is a kind of compact rule describing all the lexemes
of a token. A pattern is said to match each lexeme in the token. For
example, in the Pascal statement

const pi = 3.14159;

the substring pi is a lexeme for the token id (identifier).
Most recent programming languages distinguish a finite set of strings

that match the identifiers but are not part of the identifier token: the
keywords. For example, in Ada, function is a keyword and, as such, is
not a valid identifier. In C, int is a keyword and, as such, cannot be
used as an identifier, for instance to declare a variable. Nevertheless, it is
common not to create explicitly a keyword token and let each keyword
lexeme be the only one of its own token, as displayed in figure 14.2.

Regular expressions are an important notation for specifying patterns.
Each pattern matches a set of strings, so regular expressions will serve
as names for sets of strings. The term alphabet denotes any finite set of
symbols. Typical examples of symbols are letters and digits, for example,
the set {0, 1} is the binary alphabet ; ascii is another example of computer
alphabet.

A string over some alphabet is a finite sequence of symbols drawn
from that alphabet. The terms sentence and word are often used as
synonyms. The length of string s, usually noted |s|, is the number of
occurrences of symbols in s. For example, banana is a string of length 6.
The empty string, denoted ε, is a special string of length zero. More
informal definitions are given in the table in figure 14.3 on the facing
page.

The term language denotes any set of strings over some fixed alphabet.
The empty set, noted ∅, or {ε}, the set containing only the empty word
are languages. The set of valid C programs is an infinite language. If x
and y are strings, then the concatenation of x and y, written xy or x · y,
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Term Informal definition

prefix of s A string obtained by removing zero or more trailing
symbols of string s; e.g., ban is a prefix of banana.

suffix of s A string formed by deleting zero or more of the
leading symbols of s; e.g., nana is a suffix of banana.

substring of s A string obtained by deleting a prefix and a suffix
from s; e.g., nan is a substring a banana. Every prefix
and every suffix of s is a substring s, but not every
substring of s is a prefix or a suffix of s. For every
string s, both s and ε are prefixes, suffixes and
substrings of s.

proper prefix,
suffix or

substring of s

Any non-empty string x, that is, respectively, a prefix,
suffix, substring of s such that s ̸= x; e.g., ε and
banana are not proper prefixes of banana.

subsequence
of s

Any string formed by deleting zero or more not
necessarily contiguous symbols from s; e.g., baaa is a
subsequence of banana.

Figure 14.3: Formal language glossary

is the string formed by appending y to x. For example, if x = dog and
y = house, then xy = doghouse. The empty string is the identity element
under concatenation: sε = εs = s. If we think of concatenation as a
product, we can define string exponentiation as follows:

• s0 = ε,
• sn = sn−1s, if n > 0.

Since εs = s and s1 = s, we have s2 = ss and s3 = sss, etc.
We can now revisit in figure 14.4 on the next page the definitions

we gave in figure 14.3 using a formal notation, where L is the language
under consideration.

Operations on languages It is possible to define operations on lan-
guages. For lexical analysis, we are interested mainly in union, concaten-
ation and closure. Consider figure 14.5 on the next page, where let L
and M be two languages. L∗ means ‘zero or more concatenations of L’,
and L+ means ‘at least one concatenation of L.’ Clearly, L∗ = {ε}∪L+.
For instance, let L = {A, B, . . . , Z, a, b, . . . , z} and D = {0, 1, . . . , 9}. Then

1. L is the alphabet consisting of the set of upper and lower case
letters and D is the alphabet of the decimal digits;
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Term Formal definition

x is a prefix of s ∃y ∈ L.s = xy
x is a suffix of s ∃y ∈ L.s = yx

x is a substring of s ∃u, v ∈ L.s = uxv
x is a proper prefix of s ∃y ∈ L.y ̸= ε and s = xy
x is a proper suffix of s ∃y ∈ L.y ̸= ε and s = yx

x is a proper substring of s ∃u, v ∈ L.uv ̸= ε and s = uxv

Figure 14.4: Formal definitions of figure 14.3 on the preceding page

2. since a symbol is a string of length one, the sets L and D are finite
languages too.

These two ways of considering L and D and the operations on languages
allow us to create new languages from other languages defined by their al-
phabet. Here are some examples of new languages created from L and D:

• L ∪D is the language of letters and digits;
• LD is the language whose words consist of a letter followed by a

digit;
• L4 is the language whose words are four-letter strings;
• L∗ is the language made up on the alphabet L, i.e., the set of all

strings of letters, including the empty string ε;
• L(L∪D)∗ is the language whose words consist of letters and digits

and beginning with a letter;
• D+ is the language whose words are made of one or more digits,

i.e., the set of all decimal integers.

14.2 Regular expressions

In Pascal, an identifier is a letter followed by zero or more letters or digits,
that is, and identifier is a member of the set defined by L(L ∪D)∗. The

Operation Formal definition

union of L and M L ∪M = {s | s ∈ L or s ∈M}
concatenation of L and M LM = {st | s ∈ L and t ∈M}

Kleene closure of L L∗ =
⋃∞

i=0 L
i where L0 = {ε}

positive closure of L L+ =
⋃∞

i=1 L
i

Figure 14.5: Operations on formal languages
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notation we introduced so far is comfortable for mathematics but not for
computers. Let us introduce another notation, called regular expressions,
for describing the same languages and define its meaning in terms of
the mathematical notation. With this notation, we might define Pascal
identifiers as

letter (letter ||| digit)⋆

where the vertical bar means ‘or’, the parentheses group subexpressions,
the star means ‘zero or more instances of’ the previous expression and
juxtaposition means concatenation. A regular expression r is built up
out of simpler regular expressions using a set of rules, as follows. Let Σ
be an alphabet and L(r) the language denoted by r. Then

1. ϵ is a regular expression that denotes {ε};
2. if a ∈ Σ, then a is a regular expression that denotes {a}. This is

ambiguous: a can denote a language, a word or a letter – it depends
on the context;

3. assume r and s denote the languages L(r) and L(s); a denotes a
letter. Then

(a) r ||| s is a regular expression denoting L(r) ∪ L(s);
(b) rs is a regular expression denoting L(r)L(s);
(c) r⋆ is a regular expression denoting (L(r))∗;
(d) (r) is a regular expression denoting L(r);
(e) a is a regular expression denoting Σ\{a}.

A language described by a regular expression is a regular language. Rules 1
and 2 form the base of the definition. Rule 3 provides the inductive step.
Unnecessary parentheses can be avoided in regular expressions if

• the unary operator ⋆ has the highest precedence and is left associ-
ative,

• concatenation has the second highest precedence and is left associ-
ative,

• ||| has the lowest precedence and is left associative.

Under those conventions, (a) ||| ((b)⋆(c)) is equivalent to a ||| b⋆c. Both
expressions denote the language containing either the string a or zero or
more b’s followed by one c: {a, c, bc, bbc, bbbc, . . . }. For example,

• the regular expression a ||| b denotes the set {a, b};
• the regular expression (a ||| b)(a ||| b) denotes {aa, ab, ba, bb}, the set

of all strings of a’s and b’s of length two. Another regular expression
for the set is aa ||| ab ||| ba ||| bb;
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Law Description

r ||| s = s ||| r ||| is commutative
r ||| (s ||| t) = (r ||| s) ||| t ||| is associative

(rs)t = r(st) concatenation is associative
r(s ||| t) = rs ||| rt concatenation distributes over |||
(s ||| t)r = sr ||| tr

ϵr = r ϵ is the identity element
rϵ = r for the concatenation
r⋆⋆= r⋆ Kleene closure is idempotent
r⋆= r+||| ϵ Kleene closure and positive closure
r+= rr⋆ are closely linked

Figure 14.6: Algebraic laws on regular languages

• the regular expression a⋆ denotes the set of all strings of zero or
more a’s, i.e. {ε, a, aa, aaa, . . . };

• the regular expression (a ||| b)⋆ denotes the set of all strings contain-
ing zero of more instances of an a or b, that is the language of all
words made of a’s and b’s. Another expression is (a⋆b⋆)⋆.

If two regular expressions r and s denote the same language, we say that
r and s are equivalent and write r = s. In figure 14.6, we show useful
algebraic laws on regular languages.

Regular definitions

It is convenient to give names to regular expressions and define new
regular expressions using these names as if they were symbols. If Σ is an
alphabet, then a regular definition is a series of definitions of the form

d1 → r1

d2 → r2

· · ·
dn → rn

where each di is a distinct name and each ri is a regular expression
over the alphabet Σ ∪ {d1, d2, . . . , di−1}, i.e., the basic symbols and the
previously defined names. The restriction to dj such j < i allows to
construct a regular expression over Σ only by repeatedly replacing all the
names in it. For instance, as we have stated, the set of Pascal identifiers
can be defined by the regular definitions

letter→ A ||| B ||| . . . ||| Z ||| a ||| b ||| . . . ||| z
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digit→ 0 ||| 1 ||| 2 ||| 3 ||| 4 ||| 5 ||| 6 ||| 7 ||| 8 ||| 9
id→ letter (letter ||| digit)⋆

Unsigned numbers in Pascal are strings like 5280, 39.37, 6.336E4 or
1.894E-4.

digit→ 0 ||| 1 ||| 2 ||| 3 ||| 4 ||| 5 ||| 6 ||| 7 ||| 8 ||| 9
digits→ digit digit⋆

optional_fraction→ . digits ||| ϵ
optional_exponent→ (E (+ ||| - ||| ϵ ) digits) ||| ϵ

num→ digits optional_fraction optional_exponent

Certain constructs occur so frequently in regular expressions that it is
convenient to introduce notational shorthands for them:

• Zero or one instance. The unary operator ‘?’ means ‘zero or one
instance of.’ Formally, by definition, if r is a regular expression then
r?= r ||| ϵ. In other words, (r)? denotes the language L(r) ∪ {ε}.

digit→ 0 ||| 1 ||| 2 ||| 3 ||| 4 ||| 5 ||| 6 ||| 7 ||| 8 ||| 9
digits→ digit+

optional_fraction→ (. digits)?

optional_exponent→ (E (+ ||| -)? digits)?

num→ digits optional_fraction optional_exponent

• It is also possible to write:

digit→ 0 ||| 1 ||| 2 ||| 3 ||| 4 ||| 5 ||| 6 ||| 7 ||| 8 ||| 9
digits→ digit+

fraction→ . digits

exponent→ E (+ ||| -)? digits

num→ digits fraction? exponent?

If we want to specify the characters ‘?’, ‘*’, ‘+’, ‘|’, we write them with a
preceding backslash, e.g., ‘\?’, or between double-quotes, e.g., "?". Then,
of course, the character double-quote must have a backslash: \". It is also
sometimes useful to match against end of lines and end of files: \n stands
for the control character ‘end of line’ and $ is for ‘end of file’.
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Non-regular languages

Some languages cannot be described by any regular expression. For ex-
ample, the language of balanced parentheses cannot be recognised by any
regular expression: (), (()), ()(), ((())()) etc. Another example is the C
programming language: it is not a regular language because it contains
embedded blocs between ‘{’ and ‘}’. Therefore, a lexer cannot recognise
valid C programs: we need a parser.

Exercises

Question 1. Let the alphabet Σ = {a, b} and the following regular
expressions:

r = a(a ||| b)⋆ba,
s = (ab)⋆ ||| (ba)⋆ ||| (a⋆ ||| b⋆).

The language denoted by r is noted L(r) and the language denoted by s
is noted L(s). Find a word x such that

1. x ∈ L(r) and x ̸∈ L(s),
2. x ̸∈ L(r) and x ∈ L(s),
3. x ∈ L(r) and x ∈ L(s),
4. x ̸∈ L(r) and x ̸∈ L(s).

Answer 1. The method to answer these questions is simply to try
small words by constructing them in order to satisfy the constraints.

1. The shortest word x belonging to L(r) is found by taking ϵ in place
of (a|||b)⋆. So x = aba. Let us check if x ∈ L(s) or not. L(s) is made
of the union of four sub-languages (subsets). To make this clear,
let us remove the useless parentheses on the right side:

s = (ab)⋆ ||| (ba)⋆ ||| a⋆ ||| b⋆.

Therefore, membership tests on L(s) have to be split into four: one
membership test on (ab)⋆, one on (ba)⋆, one on a⋆ and another one
on b⋆. In other words, x ∈ L(s) is equivalent to

x ∈ L((ab)⋆) or x ∈ L((ba)⋆) or x ∈ L(a⋆) or x ∈ L(b⋆).

Let us test the membership with x = aba:

(a) The words in L((ab)⋆) are ϵ, ab, abab . . . Thus aba ̸∈ L((ab)⋆).
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(b) The words in L((ba)⋆) are ϵ, ba, baba . . . Hence aba ̸∈ L((ba)⋆).

(c) The words in L(a⋆) are ϵ, a, aa . . . Therefore aba ̸∈ L(a⋆).

(d) The words in L(b⋆) are ϵ, b, bb . . . So aba ̸∈ L(b⋆).

The conclusion is aba ̸∈ L(s).

2. What is the shortest word belonging to L(s)? Since the four sub-
languages composing L(s) are starred, it means that ϵ ∈ L(s). Since
we showed at the item (1) that aba is the shortest word of L(r), it
means that ϵ ̸∈ L(r) because ϵ is of length 0.

3. This question is a bit more difficult. After a few tries, we cannot
find any x such that x ∈ L(r) and x ∈ L(s). Then we may try to
prove that L(r) ∩ L(s) = ∅, i.e., there is no such x. How should
we proceed? The idea is to use the decomposition of L(s) into for
sub-languages and try to prove

L(r) ∩ L((ab)⋆) = ∅,

L(r) ∩ L((ba)⋆) = ∅,

L(r) ∩ L(a⋆) = ∅,

L(r) ∩ L(b⋆) = ∅.

If all these four equations are true, they imply L(r) ∩ L(s) = ∅.

(a) Any word in L(r) ends with a whereas any word in L((ab)⋆)
finishes with b or is ϵ. Thus L(r) ∩ L((ab)⋆) = ∅.

(b) For the same reason, L(r) ∩ L(b⋆) = ∅.

(c) Any word in L(r) contains both a and b whereas any word in
L(a⋆) contains only b or is ϵ. Therefore L(r) ∩ L(a⋆) = ∅.

(d) Any word in L(r) starts with a whereas any word in L((ba)⋆)
starts with b or is ϵ. Thus L(r) ∩ L((ba)⋆) = ∅.

Finally, since all the four equations are false, they imply that

L(r) ∩ L(s) = ∅.

4. Let us construct letter by letter a word x which does not belong
neither to L(r) not L(s). First, we note that all words in L(r) start
with a, so we can try to start x with b: this way x ̸∈ L(r). So we
have x = b . . . and we have to fill the dots with some letters in such
a way that x ̸∈ L(s).
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We use again the decomposition of L(s) into four sub-languages and
make sure that x does not belong to any of those sub-languages.
First, because x starts with b, we have x ̸∈ L(a⋆) and x ̸∈ L((ab)⋆).
Now, we have to add some more letters such that x ̸∈ L(b⋆) and
x ̸∈ L((ba)⋆). Since any word in L(b⋆) has a letter b as second
letter or is ϵ, we can choose the second letter of x to be a. This way
x = ba . . . ̸∈ L(b⋆). Finally, we have to add more letters to make
sure that

x = ba . . . ̸∈ L((ba)⋆).

Any word in L((ba)⋆) is either ϵ or ba or baba . . ., hence the third
letter is b. Therefore, let us choose the letter a as the third letter
of x and we thus have x = baa ̸∈ L((ba)⋆). In summary, baa ̸∈
L(r), baa ̸∈ L(b⋆), baa ̸∈ L((ba)⋆), baa ̸∈ L(a⋆), baa ̸∈ L((ab)⋆),
which is equivalent to baa ̸∈ L(r) and baa ̸∈ L((ab)⋆) ∪ L((ba)⋆) ∪
L(a⋆) ∪ L(b⋆) = L(s). Therefore, x = baa is one possible answer.

Question 2. Given the binary alphabet Σ = {a, b} and the order on
letters a < b, write regular definitions for the following languages.

1. All words starting and ending with a.
2. All non-empty words.
3. All words in which the third last letter is a.
4. All words containing exactly three a.
5. All words containing at least one a before a b.
6. All words in which the letters are in increasing order.
7. All words with no letter following the same one.

Answer 2. When answering these questions, it is important to keep
in mind that the language of words made up on the alphabet Σ is Σ∗

and that there are, in general, several regular expressions describing one
language.

1. The constraint on the words is that they must be of the shape
a . . . a where the dots stand for ‘any combination of a and b.’ In
other words, one answer is a(a ||| b)⋆ a ||| a.

2. This question is very simple since the language of all words is
(a ||| b)⋆, we have to remove ϵ, i.e., one simple answer is (a ||| b)+.

3. The question implies that the words we are looking for are of the
form . . . a_ _ where the dots stand for ‘any sequence of a and b’
and each ‘_’ stands for a regular expression denoting any letter.
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Any letter is described by (a ||| b); therefore one possible answer is
(a ||| b)⋆a (a ||| b) (a ||| b).

4. The words we search contain, at any place, exactly three a, so are
of the form . . . a . . . a . . . a . . ., where the dots stand for ‘any letter
except a’, i.e., ‘any number of b.’ In other words: b⋆ab⋆ab⋆ab⋆.

5. Because the alphabet contains only two letters, the question is equi-
valent to: ’All words containing the substring ab’, i.e., the words
are of the form . . . ab . . . where the dots stand for ‘any sequence
of a and b.’ It is then easy to understand that a short answer is
(a ||| b)⋆ab(a ||| b)⋆.

6. Because the alphabet is made only of two letters, the answer is
easy: we put first all the a and then all the b: a⋆b⋆.

7. Since the alphabet contains only two letters, the only way to not
repeat a letter is to only have substrings ab or ba in the words we
look for. In other words: abab . . . ab or abab . . . aba or baba . . . ba or
baba . . . bab. In short: (ab)⋆a? ||| (ba)⋆b? or, even shorter: a?(ba)⋆b?.

Question 3. Try to simplify the regular expressions (ϵ ||| a⋆ ||| b⋆ ||| a ||| b)⋆
and a(a ||| b)⋆b ||| (ab)⋆ ||| (ba)⋆.

Answer 3.

1. The first regular expression can be simplified in the following way:

(ϵ ||| a⋆ ||| b⋆ ||| a ||| b)⋆ = (ϵ ||| a⋆ ||| b⋆ ||| b)⋆, sinceL(a) ⊂ L(a⋆);

= (ϵ ||| a⋆ ||| b⋆)⋆, sinceL(b) ⊂ L(b⋆);

= (ϵ ||| a+ ||| b+)⋆, since {ϵ} ⊂ L(x⋆);

= (a+ ||| b+)⋆, since (ϵ |||x)⋆ = x⋆.

Words in L((a+ ||| b+)⋆) are of the form ϵ or (a . . . a) (b . . . b) (a . . . a)
(b . . . b) . . ., where the ellipsis stands for ‘none or many times’. So
we recognise (a ||| b)⋆. Therefore (ϵ ||| a⋆ ||| b⋆ ||| a ||| b)⋆ = (a ||| b)⋆.

2. The second regular expression can be simplified in the following
way. We note first that the expression is made of the disjunction
of three regular sub-expressions (i.e., it is a union of three sub-
languages). The simplest idea is then to check whether one of these
sub-languages is redundant, i.e., if one is included in another. If so,
we can simply remove it from the expression.

a(a ||| b)⋆b ||| (ab)⋆ ||| (ba)⋆ = a(a ||| b)⋆b ||| ϵ ||| (ab)+ ||| (ba)⋆,
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since (ab)⋆ = ϵ ||| (ab)+;
= a(a ||| b)⋆b ||| (ab)+ ||| (ba)⋆,

since {ϵ} ⊂ L((ba)⋆).

We have:

(ab)+ = (ab)(ab) . . . (ab)

= a(ba)(ba) . . . (ba)b ||| ab
= a(ba)⋆b.

Also L((ba)) ⊂ L((a ||| b)⋆) and then L((ba)⋆) ⊂ L((a ||| b)⋆), because
(a ||| b)⋆ denotes all the words. Therefore

L(a(ba)⋆b) ⊂ L(a(a ||| b)⋆b)
L((ab)+) ⊂ L(a(a ||| b)⋆b)

As a consequence, one possible answer is

a(a ||| b)⋆b ||| (ab)⋆ ||| (ba)⋆ = a(a ||| b)⋆b ||| (ba)⋆.

The intersection between L(a(a ||| b)⋆b) and L((ba)⋆) is empty be-
cause all the words of the former start with a, while all the words
of the other start with b (or is ϵ). Therefore we cannot simply
further this way.

14.3 Specifying lexers with Lex

Several tools have been built for constructing lexical analysers from spe-
cial-purpose notations based on regular expressions. We shall now de-
scribe one of these tools, named Lex, which is widely used in software
projects developed in C. Using this tool shows how the specification of
patterns using regular expressions can be combined with actions, e.g.,
making entries into a symbol table, that a lexer may be required to per-
form. We refer to the tool as the Lex compiler and to its input specifica-
tion as the Lex language. Lex is generally used in the following manner:

Lex source −→ Lex −→ lex.yy.c
lex.l compiler

lex.yy.c −→ C −→ a.out
compiler

character −→ a.out −→ token
stream stream
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Lex specifications

A Lex specification (or source or program) consists of three parts:

declarations

%%

translation rules

%%

user code

The declarations section includes declarations of C variables, constants
and regular definitions. The latter are used in the translation rules. The
translation rules of a Lex program are statements of the form

p1 {action1}

p2 {action2}

· · · · · ·
pn {actionn}

where each pi is a regular expression and each actioni is a C program
fragment describing what action the lexer should take when pattern pi
matches a lexeme. The third section holds whatever user code (auxiliary
procedures) are needed by the actions. A lexer created by Lex interacts
with a parser in the following way:

1. the parser calls the lexer;
2. the lexer starts reading its current input characters;
3. when the longest prefix of the input matches a regular expression

pi, the corresponding actioni is executed;
4. finally, two cases occur whether actioni returns control to the parser

or not:

(a) if so, the lexer returns the recognised token and lexeme;
(b) if not, the lexer forgets about the recognised word and go to

step 2.

Declarations

Let us consider the following excerpt of an example:

%{ /* definitions of constants

LT, LE, EQ, GT, GE, IF, THEN, ELSE, ID, NUM, RELOP */

%}

/* regular definitions */
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ws [ \t\n]+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

num {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?

First, we see a section where tokens are declared. If Lex is used in con-
junction with a parser (as is the case in a compiler), those tokens may
be instead declared by the parser. In Lex, the token declarations are sur-
rounded by %{ and %}, and anything between these brackets is copied
verbatim in lex.yy.c.

Second, we see a series of regular definitions, each consisting of a
name and a regular expression denoted by that name. For instance, delim
stands for the character class [ \t\n], that is, any of the three characters:
blank, tabulation (\t) or newline (\n).

If we want to denote a set of letters or digits, it is often unwieldy to
enumerate all the elements, like the digit regular expression. So, instead
of 4 ||| 1 ||| 2 we would shortly write [142]. If the characters are consecutively
ordered, we can use intervals, called in Lex character classes. For instance,
we write [a-c] instead of a ||| b ||| c. Or [0-9] instead of 0 ||| 1 ||| 2 ||| 3 ||| 4 ||| 5 |||
6 ||| 7 ||| 8 ||| 9. We can now describe identifiers in a very compact way:

[A-Za-z][A-Za-z0-9]⋆

It is possible to have ‘]’ and ‘-’ in a character range: the character ‘]’
must be first and ‘-’ must be first or last.

The second definition is of white space, denote by the name ws. Note
that we must write {delim} for delim, with braces inside regular expres-
sions in order to distinguish it from the pattern made of the five letters
delim. The definitions of letter and digit illustrate the use of charac-
ter classes (interval of (ordered) characters). The definition of id shows
the use of some Lex special symbols (or metasymbols): parentheses and
vertical bar.

The definition of num introduces a few more features. There is an-
other metasymbol ‘?’ with the obvious meaning. We notice the use of a
backslash to make a character mean itself instead of being interpreted
as a metasymbol: ‘\.’ means ‘the dot character’, while ‘.’ (metasymbol)
means ‘any character.’ This works with any metasymbol.

Note finally that we wrote [+\-] because, in this context, the charac-
ter ‘-’ has the meaning of ‘range’, as in [0-9], so we must add a backslash.
This action is called to escape (a character). Another way of escaping a
character is to use double-quotes around it, like "."
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Translation rules

The next section contains the translation rules.

%%

{ws} { /* no action and no return */ }

if { return IF; }

then { return THEN; }

else { return ELSE; }

{id} { yylval = lexeme(); return ID; }

{number} { yylval = lexeme(); return NUM; }

"<" { return LT; }

"<=" { return LE; }

"=" { return EQ; }

"<>" { return NE; }

">" { return GT; }

">=" { return GE; }

The translation rules follow the first %%. The first rule says that if the
regular expression denoted by the name ws maximally matches the input,
we take no action. In particular, we do not return to the parser. Therefore,
by default, this implies that the lexer will start again to recognise a token
after skipping white spaces. The second rule says that if the letters if are
seen, return the token IF. In the rule for {id}, we see two statements in
the action. First, the Lex predefined variable yylval is set to the lexeme
and the token ID is returned to the parser. The variable yylval is shared
with the parser (it is defined in lex.yy.c) and is used to pass attributes
about the token.

User code

Contrary to our previous presentation, the procedure lexeme takes here
no argument. This is because the input buffer is directly and globally
accessed in Lex through the pointer yytext, which corresponds to the
first character in the buffer when the analysis started for the last time.
The length of the lexeme is given via the variable yyleng. We do not show
the details of the auxiliary procedures but the trailing section should look
like as follows:

%%

char* lexeme () {

/* returns a copy of the matched string

between yytext[0] and yytext[yyleng-1] */

}
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Longest-prefix match

If several regular expressions match the input, Lex chooses the rule which
matches the most text. This is why the input if123 is matched, that is,
recognised, as an identifier and not as the keyword if and the number
123. If Lex finds two or more matches of the same length, the rule listed
first in the Lex input file is chosen. That is why we listed the patterns if,
then and else before {id}. For example, the input if is matched by if

and {id}, so the first rule is chosen, and since we want the token keyword
if, its regular expression is written before {id}.

It is possible to use Lex without a parser. For instance, let count.l

be the following Lex specification:

%{

int char_count=1, line_count=1;

%}

%%

. {char_count++;}

\n {line_count++; char_count++;}

%%

int main () {

yylex(); /* Calls the lexer */

printf("There were %d characters in %d lines.\n",

char_count,line_count);

return 0;

}

We have to compile the Lex specification into C code, then compile this
C code and link the object code against a special library named l:

lex -t count.l > count.c

gcc -c -o count.o count.c

gcc -o counter count.o -ll

We can also use the C compiler cc with the same options instead of gcc.
The result is a binary counter that we can apply on count.l itself:

cat count.l | counter

There were 210 characters in 12 lines.

We can extend the previous specification to count words as well. For this,
we need to define a regular expression for letters and bind it to a name,
at the end of the declarations.
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%{

int char_count=1, line_count=1, word_count=0;

%}

letter [A-Za-z]

%%

{letter}+ { word_count++; char_count += yyleng;

printf ("[%s]\n",yytext); }

. { char_count++; }

\n { line_count++; char_count++; }

%%

...

We can also use more regular expressions with names.

letter [A-Za-z]

digit [0-9]

alpha ({letter}|{digit}) /* No space inside! */

id {letter}([_]*{alpha})* /* No space inside! */

%%

{id} { word_count++; char_count += yyleng;

printf ("word=[%s]\n",yytext); }

. { char_count++; }

\n { line_count++; char_count++; }

By default, if there is no parser and no explicit main procedure, Lex will
add one in the produced C code as if it were given in the user code
section (at the end of the specification) as

int main () {

yylex();

return 0;

}

14.4 Token recognition

Until now we showed how to specify tokens. Now we show how to re-
cognise them, i.e., realise lexical analysis. Let us consider the following
token definition:

if → if

then→ then

else→ else

relop→ < ||| <= ||| = ||| <> ||| > ||| >=
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digit→ [0-9]

letter→ [A-Za-z]

id→ letter (letter ||| digit)⋆

num→ digit+ (. digit+)? (E (+ ||| -)? digit+)?

Reserved identifiers and white space Keywords are commonly con-
sidered as reserved identifiers, i.e., in this case, a valid identifier cannot
be any token if, then or else. This is usually not specified, but, instead,
programmed. In addition, let us assume that the lexemes are separated
by white spaces, consisting of non-null sequences of blanks, tabulations
and newline characters. The lexer usually strips out those white spaces
by comparing them to the regular definition white_space:

delim→ blank ||| tab ||| newline

white_space→ delim+

If a match for white_space is found, the lexer does not return a token
to the parser. Rather, it proceeds to find a token following the white
space and return it to the parser.

Input buffer The stream of characters that provides the input to the
lexer comes usually from a file. For efficiency reasons, when this file is
opened, a buffer is associated, so the lexer actually reads its characters
from this buffer in memory. A buffer is like a queue, or FIFO (First in,
First out), that is, a list whose one end is used to put elements in and
whose other end is used to get elements out, one at a time. The only
difference is that a buffer has a fixed size (hence a buffer can be full). An
empty buffer of size three is depicted as follows:

output side ←− ←− input side

If we input characters A then B in this buffer, we draw

lexer ←− A B ←− file
/

The symbol / is a pointer to the next character available for output. Let
keep in mind that the blank character will now be noted ‘ ’, in order
to avoid confusion with an empty cell in a buffer. So, if we input now a
blank in our buffer from the file, we get the full buffer

lexer ←− A B ←− file
/
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and no more inputs are possible until at least one output is done. Let us
be careful: a buffer is full if and only if / points to the leftmost character.
For example,

lexer ←− A B ←− file
/

is not a full buffer: there is still room for one character. If we input C, it
becomes

lexer ←− B C ←− file
/

which is now a full buffer. The overflowing character A has been dis-
carded. Now, if we output a character (or, equivalently, the lexer inputs
a character) we get

lexer ←− B C ←− file
/

Let us output another character:

lexer ←− B C ←− file
/

Now, if the lexer needs a character, C is output and some routine auto-
matically reads some more characters from the disk and fill them in order
into the buffer. This happens when we output the rightmost character.
Assuming the next character in the file is D, after outputting C we get

lexer ←− C D ←− file
/

If the buffer only contains the end-of-file character (noted here eof), it
means that no more characters are available from the file. So, if we have
the situation

lexer ←− · · · eof ←− empty file
/

in which the lexer requests a character, it would get eof and subsequent
requests would fail, because both the buffer and the file would be empty.
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Transition diagrams As an intermediary step in the construction of a
lexical analyser, we introduce another concept, called transition diagram.
Transition diagrams depict the actions that take place when a lexer is
called by a parser to get the next token. States in a transition diagram
are drawn as circles. Some states have double circles, with or without an
asterisk *. States are connected by arrows, called edges, each one carrying
an input character as label, or the special label other. An example of such
transition diagram is given in figure 14.7. Double-circled states are
called final states. The special arrow which does not connect two states
points to the initial state. A state in the transition diagram corresponds
to the state of the input buffer, i.e., its contents and the output pointer
at a given moment. At the initial state, the buffer contains at least one
character. If the only one remaining character is eof , the lexer returns a
special token $ to the parser and stops. Let us assume that the character c
is pointed by / in the input buffer and that c is not eof , depicted as
follows:

lexer ←− · · · c · · · ←− file
/

When the parser requests a token, if an edge to the state s has a label with
character c, then the current state in the transition diagram becomes s,
and c is removed from the buffer. This is repeated until a final state is
reached or we get stuck. If a final state is reached, it means the lexer
recognised a token – which is in turn returned to the parser. Otherwise
a lexical error occurred.

Let us consider again the diagram in figure 14.7 and let us assume
that the initial input buffer is

lexer ←− > = 1 ←− file
/

From the initial state 1 to the state 2 there is an arrow with the label
‘>’. Because this label is present at the output position of the buffer, we
can change the diagram state to 2 and remove ‘<’ from the buffer, which
becomes

1 2 3

4
*

> =

other

Figure 14.7: A transition diagram
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lexer ←− > = 1 ←− file
/

From state 2 to state 3 there is an arrow with label ‘=’, so we remove it:

lexer ←− > = 1 ←− file
/

and we move to state 3. Since state 3 is a final state, we are done: we
recognised the token relop⟨>=⟩. Let us imagine now the input buffer is

lexer ←− > 1 + 2 ←− file
/

In this case, we will move from the initial state to state 2:

lexer ←− > 1 + 2 ←− file
/

We cannot use the edge with label ‘=’, but we can use the one with ‘other’.
Indeed, the ‘other’ label refers to any character that is not indicated by
any of the edges leaving the state. Hence, we move to state 4 and the
input buffer becomes

lexer ←− > 1 + 2 ←− file
/

and the lexer emits the token relop⟨>⟩. But there is a problem here: if the
parser requests another token, we have to start again with this buffer but
we already skipped the character 1 and we forgot where the recognised
lexeme starts. The idea is to use another arrow to mark the starting
position when we try to recognise a token. Let 0 be this new pointer.
Then the initial buffer of our previous example would be depicted as

lexer ←− > 1 + · · · ←− file
0/

When the lexer reads the next available character, the pointer / is shifted
to the right of one position.

lexer ←− > 1 + · · · ←− file
0 /

We are now at state 2 and the current character, that is, pointed by /,
is 1. The only way to continue is to go to state 4, using the special label
other. The pointer of the secondary buffer shifts to the right and, since
it points to the last position, we input one character from the primary
buffer:
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lexer ←− > 1 + · · · ←− file
0 /

State 4 is a final state a bit special: it is marked with ‘*’. This means
that before emitting the recognised lexeme we have to shift the current
pointer by one position to the left :

lexer ←− > 1 + · · · ←− file
0 /

This allows to recover the character 1 as current character. Moreover,
the recognised lexeme now always starts at the pointer 0 and ends one
position before the pointer /. So, here, the lexer outputs the lexeme
‘>’. Actually, we can complete our token specification by adding some
extra information that are useful for the recognition process, as just
described. First, it is convenient for some tokens, like relop, not to carry
the lexeme verbatim, but a symbolic name instead, which is independent
of the actual size of the lexeme. For instance, we shall write relop⟨GT⟩
instead of relop⟨>⟩. Second, it is useful to write the recognised token and
the lexeme close to the final state in the transition diagram itself. See
figure 14.8. Similarly, figure 14.9 on the facing page shows all the
relational operators.

Identifiers and longest prefix match A transition diagram for spe-
cifying identifiers is given in figure 14.10 on the next page. lexeme is a
function call which returns the recognised lexeme, as found in the buffer.
The other label on the last step to final state force the identifier to be
of maximal length. For instance, given counter+1, the lexer will recognise
counter as identifier and not just count. This is called the longest prefix
property.

Keywords Since keywords are sequences of letters, they are exceptions
to the rule that a sequence of letters and digits starting with a letter is
an identifier. One solution for specifying keywords is to use dedicated

1 2 3 relop⟨GE⟩

4
*
relop⟨GT⟩

> =

other

Figure 14.8: Completion of figure 14.7 on page 598
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1

2 3

4 5 6 7 8 9

> <

= other

=

other

>
=

relop⟨GE⟩
*

relop⟨GT⟩ relop⟨EQ⟩
*

relop⟨LT⟩ relop⟨NE⟩ relop⟨LE⟩

Figure 14.9: Relational operators

1 2 3
*
id⟨lexeme(buffer)⟩letter

letter

digit

other

Figure 14.10: Transition diagram for identifiers

transition diagrams, one for each keyword. For example, the if keyword
is simply specified in figure 14.11. If one keyword diagram succeeds,
i.e., the lexer reaches a final state, then the corresponding keyword is
transmitted to the parser; otherwise, another keyword diagram is tried
after shifting the current pointer / in the input buffer back to the starting
position, i.e., pointed by 0.

There is a problem, though. Consider the OCaml language, where
there are two keywords fun and function. If the diagram of fun is tried
successfully on the input function and then the diagram for identifiers,
the lexer outputs the lexemes fun and id⟨ction⟩ instead of one keyword
function. As for identifiers, we want the longest prefix property to hold
for keywords too and this is simply achieved by ordering the transition
diagrams. For example, the diagram of function must be tried before the
one for fun because fun is a prefix of function. This strategy implies
that the diagram for the identifiers (given in figure 14.10 on page 601)

1 2 3 if
i f

Figure 14.11: Transition diagram for if
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1 2 3 4 if

*
i f not alpha

Figure 14.12: Completion of figure 14.11 on the previous page

must appear after the diagrams for the keywords.
There are still several drawbacks with this technique, though. The

first problem is that if we indeed have the longest prefix property among
keywords, it does not hold with respect to the identifiers. For instance,
iff would lead to the keyword if and the identifier f, instead of the
(longest and sole) identifier iff. This can be remedied by forcing the
keyword diagram to recognise a keyword and not an identifier. This is
done by failing if the keyword is followed by a letter or a digit (remember
we try the longest keywords first, otherwise we would miss some keywords
— the ones which have prefix keywords). The way to specify this is to use
a special label not such that not c denotes the set of characters which
are not c. Actually, the special label other can always be represented us-
ing this not label because other means ‘not the others labels.’ Therefore,
the completed if transition diagram would be as found in figure 14.12.
where alpha (which stands for alpha-numerical’) is defined by the follow-
ing regular definition:

alpha→ letter ||| digit

The second problem with this approach is that we have to create a trans-
ition diagram for each keyword and a state for each of their letters. In
real programming languages, this means that we get hundreds of states
only for the keywords. This problem can be avoided if we change our
technique and give up the specification of keywords with transition dia-
grams.

Keywords

Lexeme Token

if if
then then
else else

Since keywords are a strict subset of identifiers,
let us use only the identifier diagram but we change
the action at the final state, i.e., instead of always re-
turning a id token, we make some computations first
to decide whether it is either a keyword or an iden-
tifier. Let us call switch the function which makes
this decision based on the buffer (equivalently, the
current diagram state) and a table of keywords. The
specification is shown in figure 14.13 on the facing page. The table of
keywords is a two-column table whose first column (the entry) contains
the keyword lexemes and the second column the corresponding token.
Let us write the code for switch in pseudo-language, in figure 14.14
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1 2 3
*
switch(buffer,keywords)

letter

letter

digit

other

Figure 14.13: Transition diagram for keywords

Switch(buffer , keywords)

str ← Lexeme(buffer)
if str ∈ D(keywords)

then Switch← keywords [str ]
else Switch← id⟨str ⟩

Figure 14.14: Pseudo-code for function switch

on page 603. Function names are in uppercase, like Lexeme. Writing
x ← a means that we assign the value of the expression a to the vari-
able x . Then the value of x is the value of a. The value D(t) is the
first column of table t . The value t [e] is the value corresponding to e in
table t . Switch is also used as a special variable whose value becomes
the result of the function Switch when it finishes.

Numbers Let us consider now the numbers as specified by the regular
definition

num→ digit+ (. digit+)? (E (+ ||| -)? digit+)?

and propose a transition diagram in figure 14.15 on the next page as
an intermediary step to their recognition.

White spaces The only remaining issue concerns white spaces as spe-
cified by the regular definition

white_space→ delim+

which is equivalent to the transition diagram in figure 14.16 on the
following page. The specificity of this diagram is that there is no action
associated to the final state: no token is emitted.
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1 2 3 4

5 6 7 8
*
num⟨lexeme(buffer)⟩

digit
digit

.

other

E

digit
digit

E
other

+

-
digit

digit

other

digit

Figure 14.15: Transition diagram for numbers

1 2 3
*

delim

delim

other

Figure 14.16: Transition diagram for white spaces

A simplification There is a simple away to reduce the size of the
diagrams used to specify the tokens while retaining the longest prefix
property: allow to pass through several final states. This way, we can
actually also get rid of the ‘*’ marker on final states. Coming back to the
first example in figure 14.8 on page 600, we would alternatively make
up figure 14.17. But we have to change the recognition process a little
bit here in order to keep the longest prefix match: we do not want to
stop at state 2 if we could recognise ‘>=’.

The simplified complete version with respect to the one given in fig-

ure 14.9 on page 601 is found in figure 14.18 on the facing page. The
transition diagram for specifying identifiers and keywords looks now like
figure 14.19 on the next page. The transition diagram for specifying
numbers is simpler now, as seen in figure 14.20 on the facing page.

How do we interpret these new transition diagrams, where the final
states may have out-going edges (and the initial state have incoming
edges)? For example, let us consider the recognition of a number:

lexer ←− a = 1 5 3 + 6 · · · ←− file
0/

1 2
relop⟨GT⟩

3 relop⟨GE⟩> =

Figure 14.17: Alternative to figure 14.8 on page 600
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1

2 3

4 6 8 9

> <

=

=

> =

relop⟨GE⟩

relop⟨GT⟩ relop⟨LT⟩

relop⟨EQ⟩ relop⟨NE⟩ relop⟨LE⟩

Figure 14.18: Simplification of figure 14.9 on page 601

1 2 switch(buffer,keywords)
letter

letter

digit

Figure 14.19: Simplification of figure 14.13 on page 603

1 2 3 4

5 6 7

num⟨lexeme(buffer)⟩

num⟨lexeme(buffer)⟩

num⟨lexeme(buffer)⟩

digit
digit

.

E

digit

digitE

+

-

digit

digit

digit

Figure 14.20: Simplification of figure 14.15 on the facing page
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As usual, if there is a label of an edge going out of the current state which
matches the current character in the buffer, the pointer / is shifted to the
right of one position. The new feature here is about final states. When
the current state is final

1. the current position in the buffer is pointed to with a new pointer ⇑;
2. if there is an out-going edge which carries a matching character,

we try to recognise a longer lexeme;

(a) if we fail, i.e., if we cannot go further in the diagram and
the current state is not final, then we shift back the current
pointer / to the position pointed by ⇑;

(b) and return the then-recognised token and lexeme;

3. if not, we return the recognised token and lexeme associated to the
current final state.

Following our example of number recognition:

• The label digit matches the current character in the buffer, i.e.,
the one pointed by /, so we move to state 2 and we shift right by
one the pointer /.

lexer ←− a = 1 5 3 + 6 · · · ←− file
0 /

• The state 2 is final, so we set the pointer ⇑ to the current position
in the buffer

lexer ←− a = 1 5 3 + 6 · · · ←− file
0 ⇑/

• We shift right by one the current pointer and stay in state 2 because
the matching edge is a loop (notice that we did not stop here).

lexer ←− a = 1 5 3 + 6 · · · ←− file
0 ⇑ /

• The state 2 is final so we set pointer ⇑ to point to the current
position:

lexer ←− a = 1 5 3 + 6 · · · ←− file
0 ⇑/

• The digit label of the loop matches again the current character
(here 3), so we shift right by one the current pointer.
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lexer ←− a = 1 5 3 + 6 · · · ←− file
0 ⇑ /

• Because state 2 is final we set the pointer ⇑ to the current pointer /:

lexer ←− a = 1 5 3 + 6 · · · ←− file
0 ⇑/

• State 2 is final, so it means that we succeeded in recognising the
token associated with state 2: num⟨lexeme(buffer)⟩, whose lexeme
is between 0 included and / excluded, i.e., 153.

Let us consider the following initial buffer:

lexer ←− a = 1 5 . + 6 · · · ←− file
0/

Character 1 is read and we arrive at state 2 with the following situation:

lexer ←− a = 1 5 . + 6 · · · ←− file
0 ⇑/

Then 5 is read and we arrive again at state 2 but we encounter a different
situation:

lexer ←− a = 1 5 . + 6 · · · ←− file
0 ⇑/

The label on the edge from state 2 to 3 matches ‘.’ so we move to state 3,
shift by one the current pointer in the buffer:

lexer ←− a = 1 5 . + 6 · · · ←− file
0 ⇑ /

Now we are stuck at state 3. Because this is not a final state, we should
fail, i.e., report a lexical error, but because the pointer ⇑ has been set
(i.e., we met a final state), we shift the current pointer back to the
position of the pointer ⇑ and return the corresponding lexeme 15:

lexer ←− a = 1 5 . + 6 · · · ←− file
0 ⇑/
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14.5 Deterministic finite automata

Transition diagrams are useful graphical representations of instances
of the mathematical concept of deterministic finite automaton (DFA).
Formally, a DFA D is a 5-tuple D = (Q,Σ, δ, q0, F ) where

1. a finite set of states, often noted Q;
2. an initial state q0 ∈ Q;
3. a set of final ( or accepting) states F ⊆ Q;
4. a finite set of input symbols, often noted Σ;
5. a transition function δ that takes a state and an input symbol and

returns a state: if q is a state with an edge labelled a, the edge
leads to the state δ(q, a).

Recognised words

Independently of the interpretation of the states, we can define how a
given word is accepted (or recognised) or rejected by a given DFA. For
example, the word a1a2 · · · an, with ai ∈ Σ, is recognised by the DFA
D = (Q,Σ, δ, q0, F ) if, for all 0 " i " n− 1, there is a sequence of states
qi ∈ Q such that δ(qi, ai+1) = qi+1 and qn ∈ F . The language recognised
by D, noted L(D) is the set of words recognised by D. For example,
consider the DFA in figure 14.21. The word then is recognised because
there is a sequence of states (q0, q1, q2, q4, q5) connected by edges which
satisfies δ(q0, t) = q1, δ(q1, h) = q2, δ(q2, e) = q4 and δ(q4, n) = q5, with
q5 ∈ F , that is, q5 is a final state.

Recognised language

It is easy to define formally L(D). Let D = (Q,Σ, δ, q0, F ). First, let us
extend δ to words and let us call this extension δ̂:

• for all state q ∈ Q, let δ̂(q, ε) = q, where ε is the empty string;

q0 q1 q2

q3

q4

q5
t h

i

u

e
y

n

s

Figure 14.21: A trie recognising they, then, this and thus
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• for all state q ∈ Q, all word w ∈ Σ∗, all input a ∈ Σ, let us define
δ̂(q, wa) = δ(δ̂(q, w), a).

Then the word w is recognised by D if δ̂(q0, w) ∈ F . The language L(D)
recognised by D is defined as L(D) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}. For
example, in our last example:

δ̂(q0, ϵ) = q0,

δ̂(q0, t) = δ(δ̂(q0, ϵ), t) = δ(q0, t) = q1,

δ̂(q0, th) = δ(δ̂(q0, t), h) = δ(q1, h) = q2,

δ̂(q0, the) = δ(δ̂(q0, th), e) = δ(q2, e) = q4,

δ̂(q0, then) = δ(δ̂(q0, the), n) = δ(q4, n) = q5 ∈ F.

Transition diagrams

We can also redefine transition diagrams in terms of the concept of DFA.
A transition diagram for a DFA D = (Q,Σ, δ, q0, F ) is a graph defined
as follows:

1. for each state q in Q there is a node, i.e., a single circle with q
inside;

2. for each state q ∈ Q and each input symbol a ∈ Σ, if δ(q, a) exists,
then there is an edge, i.e., an arrow, from the node denoting q
to the node denoting δ(q, a) labelled by a; multiple edges can be
merged into one and the labels are then separated by commas;

3. there is an edge coming to the node denoting q0 without origin;
4. nodes corresponding to final states are doubly circled.

Here is a transition diagram for the language over alphabet {0, 1}, called
binary alphabet, which contains the string 01:

q0 q1 q2
0

1 0

1

0, 1

Transition table

There is a compact textual way to represent the transition function of a
DFA: a transition table. The rows of the table correspond to the states
and the columns correspond to the inputs (symbols). In other words, the
entry for the row corresponding to state q and the column corresponding
to input a is the state δ(q, a), as seen in figure 14.22a. For instance,
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δ . . . a . . .
...
q δ(q, a)
...

(a) General table

D 0 1

→q0 q1 q0
q1 q1 q2

#q2 q2 q2

(b) Example

Figure 14.22: Transition tables

the transition table corresponding to the function δ of our last example
is found in figure 14.22b. Actually, we added some extra information
in the table: the initial state is marked with → and the final states are
marked with #. Therefore, it is not only δ which is defined by means of
the transition table here, but the whole DFA D.

Let us consider another example. We want to define formally a DFA
which recognises the language L whose words contain an even number
of 0’s and an even number of 1’s (the alphabet is binary). We should
understand that the role of the states here is to not count the exact
number of 0’s and 1’s that have been recognised before, but, instead,
this number modulo 2. Therefore, there are four states because there are
four cases:

1. there has been an even number of 0’s and 1’s (state q0);
2. there has been an even number of 0’s and an odd number of 1’s

(state q1);
3. there has been an odd number of 0’s and an even number of 1’s

(state q2);
4. there has been an odd number of 0’s and 1’s (state q3).

What about the initial and final states?

• State q0 is the initial state because before considering any input,
the number of 0’s and 1’s is zero and zero is even;

• state q0 is the lone final state because its definition matches exactly
the characteristic of L and no other state matches.

We almost know now how to specify the DFA for the language L. It is

D = ({q0, q1, q2, q3}, {0, 1}, δ, q0 , {q0}),

where the transition function δ is described by the transition diagram
in figure 14.23a on the next page. Notice how each input 0 causes the
state to cross the horizontal line. Thus, after seeing an even number of



14.6. NON-DETERMINISTIC FINITE AUTOMATA 611

q2 q3

q0 q1
1

1

00

1

1

0 0

(a) The DFA

D 0 1

#→q0 q2 q1
q1 q3 q0
q2 q0 q3
q3 q1 q2

(b) The table

Figure 14.23: A deterministic finite automaton and its table

0’s we are always above the horizontal line, in state q0 or q1, and after
seeing an odd number of 0’s we are always below this line, in state q2
or q3. There is a vertically symmetric situation for transitions on 1. We
can also represent this DFA by the transition table in figure 14.23b.
We can use that table to illustrate the construction of δ̂ from δ. Suppose
the input is 110101. Since this string has even numbers of 0’s and 1’s, it
belongs to L, that is, we expect δ̂(q0, 110101) = q0, since q0 is the sole
final state. We can check this by computing step by step δ̂(q0, 110101),
from the shortest prefix to the longest, which is the word 110101 itself:

δ̂(q0, ε) = q0,

δ̂(q0, 1) = δ(δ̂(q0, ε), 1) = δ(q0, 1) = q1,

δ̂(q0, 11) = δ(δ̂(q0, 1), 1) = δ(q1, 1) = q0,

δ̂(q0, 110) = δ(δ̂(q0, 11), 0) = δ(q0, 0) = q2,

δ̂(q0, 1101) = δ(δ̂(q0, 110), 1) = δ(q2, 1) = q3,

δ̂(q0, 11010) = δ(δ̂(q0, 1101), 0) = δ(q3, 0) = q1,

δ̂(q0, 110101) = δ(δ̂(q0, 11010), 1) = δ(q1, 1) = q0 ∈ F.

14.6 Non-deterministic finite automata

A non-deterministic finite automaton (NFA) has the same definition as
a DFA except that δ returns a set of states instead of one state. Let us
consider

q0 q1 q2
0

0, 1

1

There are two out-going edges from state q0 which are labelled 0, hence
two states can be reached when 0 is input: q0 (loop) and q1. This NFA
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recognises the language of words on the binary alphabet whose suffix
is 01.

Before describing formally what is a recognisable language by a NFA,
let us consider as an example the previous NFA and the input 00101.
Let us represent each transition for this input by an edge in a tree where
nodes are states of the NFA:

q0

q00

q00 q0
1

q00 q0
1

q10 q2 (final)
1

q10 q2 (stuck)
1

q1 (stuck)0

A NFA is represented essentially like a DFA: N = (QN ,Σ, δN , q0, FN ),
where the names have the same interpretation as for DFA, except δN ,
which returns a subset of Q – not an element of Q. For example, the
NFA above can be specified formally as

N = ({q0, q1, q2}, {0, 1}, δN , q0, {q2})

where the transition function δN is given by the transition table

N 0 1

→q0 {q0, q1} {q0}
q1 ∅ {q2}

#q2 ∅ ∅

Note that, in the transition table of a NFA, all the cells are filled: there
is no transition between two states if and only if the corresponding cell
contains ∅. In case of a DFA, the cell would remain empty. It is common
also to set that in case of the empty word input, ε, both for the DFA
and NFA, the state remains the same:

• for DFA: ∀q ∈ Q.δD(q, ε) = q;
• for NFA: ∀q ∈ Q.δN (q, ε) = {q}.

As we did for the DFAs, we can extend the transition function δN to
accept words and not just letters (labels). The extended function is noted
δ̂N and defined as

• for all state q ∈ Q, let δ̂N (q, ε) = {q};
• for all state q ∈ Q, all words w ∈ Σ∗, all input a ∈ Σ, let

δ̂N (q, wa) =
⋃

q′∈δ̂N (q,w)

δN (q′, a).
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The language L(N ) recognised by a NFA N is defined as

L(N ) = {w ∈ Σ∗ | δ̂N (q0, w) ∩ F ̸= ∅},

which means that the processing of the input stops successfully as soon
as at least one current state belongs to F .

For example, let us use δ̂N to describe the processing of the input
00101 by the NFA on page 611:

1. δ̂N (q0, ε) = q0,
2. δ̂N (q0, 0) = δN (q0, 0) = {q0, q1},
3. δ̂N (q0, 00) = δN (q0, 0) ∪ δN (q1, 0) = {q0, q1} ∪∅ = {q0, q1},
4. δ̂N (q0, 001) = δN (q0, 1) ∪ δN (q1, 1) = {q0} ∪ {q2} = {q0, q2},
5. δ̂N (q0, 0010) = δN (q0, 0) ∪ δN (q2, 0) = {q0, q1} ∪∅ = {q0, q1},
6. δ̂N (q0, 00101) = δN (q0, 1) ∪ δN (q1, 1) = {q0} ∪ {q2} = {q0, q2} ∋ q2.

Since q2 is a final state, in fact F = {q2}, we get δ̂N (q0, 00101) ∩ F ̸= ∅

thus the string 00101 is recognised by the NFA.

14.7 Equivalence of DFAs and NFAs

NFAs are easier to build than DFAs because one does not have to worry,
for any state, of having out-going edges carrying a unique label. The
surprising fact is that NFAs and DFAs actually have the same express-
iveness, that is, all that can be defined by means of a NFA can also be
defined with a DFA (the converse is trivial since a DFA is already a NFA).
More precisely, there is a procedure, called the subset construction, which
converts any NFA to a DFA.

Consider that, in a NFA, from a state q with several out-going edges
with the same label a, the transition function δN leads, in general, to
several states. The idea of the subset construction is to create a new
automaton where these edges are merged. So we create a state p which
corresponds to the set of states δN (q, a) in the NFA. Accordingly, we
create a state r which corresponds to the set {q} in the NFA. We create
an edge labelled a between r and p. The important point is that this
edge is unique. This is the first step to create a DFA from a NFA.

Graphically, instead of the non-determinism of figure 14.24a on
the following page, where we have δN (q, a) = {p0, p1, . . . , pn}, we get the
determinism of figure 14.24b on the next page.

Let us present the complete algorithm for the subset construction.
Let us start from a NFA N = (QN ,Σ, δN , q0, FN ). The goal is to

construct a DFA D = (QD,Σ, δD, {q0}, FD) such that L(D) = L(N ).



614 CHAPTER 14. AUTOMATA THEORY FOR LEXING

q

p0 p1 p2 pn

a a a a

(a) Non-determinism

{q} δN (q, a)a

(b) Determinism

Figure 14.24: From non-determinism to determinism

Notice that the input alphabet of the two automata are the same and
the initial state of D if the set containing only the initial state of N .

The other components of D are constructed as follows. First, QD is
the set of subsets of QN ; that is, QD is the power set of QN . Thus, if QD

has n states, QD has 2n states. Fortunately, often not all these states are
accessible from the initial state of QD, so these inaccessible states can
be discarded.

Why is 2n the number of subsets of a finite set of cardinal n?
Let us order the n elements and represent each subset by an n-bit

string where bit i corresponds to the ith element: it is 1 if the ith element
is present in the subset and 0 if not. This way, we counted all the subsets
and not more (a bit cannot always be 0 since all elements are used to
form subsets and cannot always be 1 if there is more than one element).
There are 2 possibilities, 0 or 1, for the first bit; 2 possibilities for the
second bit etc. Since the choices are independent, we multiply all of them:
2× 2× · · ·× 2
︸ ︷︷ ︸

n times

= 2n, yielding the number of subsets of an n-element set.

Resuming the definition of DFA D, the remaining components are
defined as follows.

• FD is the set of subsets S of QN such that S ∩ FN ̸= ∅. That
is, FD is all sets of N ’s states that include at least one final state
of N .

• for each set S ⊆ QN and for each input a ∈ Σ,

δD(S, a) =
⋃

q∈S
δN (q, a).

In other words, to compute δD(S, a), we look at all the states q
in S, see what states of N are reached from q on input a and take
the union of all those states to make the next state of D.

Let us reconsider the NFA given by its transition table in figure 14.25
on the facing page and let us create an equivalent DFA. Firstly, we form
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NFA N 0 1

→q0 {q0, q1} {q0}
q1 ∅ {q2}

#q2 ∅ ∅

Figure 14.25: Initial NFA table

DFA D 0 1

∅

{q0}
{q1}
{q2}
{q0, q1}
{q0, q2}
{q1, q2}
{q0, q1, q2}

(a) First stage

DFA D 0 1

∅

→{q0}
{q1}

#{q2}
{q0, q1}

#{q0, q2}
#{q1, q2}
#{q0, q1, q2}

(b) Second stage

Figure 14.26: First two stages of the subset construction

all the subsets of the sets of the NFA and put them in the first column
in figure 14.26a.

Secondly, we annotate in this first column the states with → if and
only if they contain the initial state of the NFA, here q0, and we add a #
if and only if the states contain at least a final state of the NFA, here q2.
See figure 14.26b.

Thirdly, we form the subsets as follows:

DFA D 0 1

∅ ∅ ∅
→{q0} δN (q0, 0) δN (q0, 1)
{q1} δN (q1, 0) δN (q1, 1)

#{q2} δN (q2, 0) δN (q2, 1)
{q0, q1} δN (q0, 0) ∪ δN (q1, 0) δN (q0, 1) ∪ δN (q1, 1)

#{q0, q2} δN (q0, 0) ∪ δN (q2, 0) δN (q0, 1) ∪ δN (q2, 1)
#{q1, q2} δN (q1, 0) ∪ δN (q2, 0) δN (q1, 1) ∪ δN (q2, 1)
#{q0, q1, q2} δN (q0, 0) ∪ δN (q1, 0) ∪ δN(q2, 0) δN (q0, 1) ∪ δN (q1, 1) ∪ δN (q2, 1)

Finally, we compute those subsets and obtain the table in figure 14.27.
The transition diagram of the DFA D is showed in figure 14.28 on the
next page where states with out-going edges which have no end are final
states. If we look carefully at the transition diagram, we see that the DFA
is actually made of two disconnected sub-automata. In particular, since
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DFA D 0 1

∅ ∅ ∅

→{q0} {q0, q1} {q0}
{q1} ∅ {q2}

#{q2} ∅ ∅

{q0, q1} {q0, q1} {q0, q2}
#{q0, q2} {q0, q1} {q0}
#{q1, q2} ∅ {q2}
#{q0, q1, q2} {q0, q1} {q0, q2}

Figure 14.27: First DFA obtained

we have only one initial state, this means that one part is not accessible,
therefore its states are never used to recognise or reject an input word,
and we can remove this part, as shown in figure 14.29a. It is important
to understand that the states of the DFA are subsets of the NFA states.
This is due to the construction and, when finished, it is possible to hide
this by renaming the states. For example, we can rename the states of
the previous DFA in the following manner: {q0} into A, {q0, q1} in B
and {q0, q2} in C. So the transition table changes:

DFA D 0 1

→{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}

#{q0, q2} {q0, q1} {q0}

DFA D 0 1

→A B A
B B C

#C B A

So, finally, the DFA is simply as in figure 14.29b on the facing page.

{q0, q2} {q0, q1, q2} {q1, q2} {q2}

{q0} {q0, q1} ∅ {q1}0

1 0

1

0, 1

0

11
0

0

1

0

1

0
1

Figure 14.28: Transition diagram of figure 14.27
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{q0, q2}

{q0} {q0, q1}0

1 0

1

1
0

(a) Simplification of
figure 14.28

C

A B
0

1 0

1

1

0

(b) State renamings of
figure 14.29a

Figure 14.29: Simplifications

Optimisation

Even if in the worst case the resulting DFA has an exponential number
of states of the corresponding NFA, it is in practice often possible to
avoid the construction of inaccessible states.

• The singleton containing the initial state (in our example, {q0}) is
accessible;

• let us assume we have a set S of accessible states; then for each
input symbol a, we compute δD(S, a): this new set is also accessible;

• let us repeat the last step, starting with {q0}, until no new (access-
ible) sets are found.

Let us reconsider the NFA given by the transition table

NFA N 0 1

→q0 {q0, q1} {q0}
q1 ∅ {q2}

#q2 ∅ ∅

Initially, the sole subset of accessible states is {q0}:

DFA D 0 1

→{q0} δN (q0, 0) δN (q0, 1)
that is

DFA D 0 1

→{q0} {q0, q1} {q0}

Therefore {q0, q1} and {q0} are accessible sets, but {q0} is not a new set,
so we only add to the table entries {q0, q1} and compute the transitions
from it:

DFA D 0 1

→{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
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This step uncovered a new set of accessible states, {q0, q2}, which we add
to the table and repeat the procedure, and mark it as final state since
q2 ∈ {q0, q2}:

DFA D 0 1

→{q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}

#{q0, q2} {q0, q1} {q0}

We are done since there are no more new accessible sets.

Tries

Lexical analysis tries to recognise a prefix of the input character stream
(in other words, the first lexeme of the given program). Consider the
C keywords const and continue:

q0

q1 q2 q3 q4 q5

q6 q7 q8 q9 q10 q11 q12 q13

c
o n s t

c
o n t i n u e

This example shows that a NFA is much more comfortable than a DFA for
specifying tokens for lexical analysis: we design separately the automata
for each token and then merge their initial states into one, leading to
one, possibly large NFA. It is possible to apply the subset construction
to this NFA.

After forming the corresponding NFA as in the previous example, it
is actually easy to construct an equivalent DFA by sharing their prefixes,
hence obtaining a tree-like automaton called trie (pronounced as the
word ‘try’):

q0 q1 q2 q3

q4 q5

q6 q7 q8 q9 q10

c o n
s

t

t
i n u e

Note that this construction only works for a list of constant words, like
keywords.

This technique can easily be generalised for searching constant strings
(like keywords) in a text, that is, not only as a prefix of a text, but at
any position. It suffices to add a loop on the initial state for each possible
input symbol. If we note Σ the language alphabet, we get
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q0 q1 q2 q3

q4 q5

q6 q7 q8 q9 q10

Σ

c o n
s

t

t
i n u e

It is possible to apply the subset construction to this NFA or to use it
directly for searching the two keywords at any position in a text. In case
of direct use, the difference between this NFA and the trie one page 618
is that there is no need here to ‘restart’ by hand the recognition process
once a keyword has been recognised: we just continue. This works because
of the loop on the initial state, which always allows a new start. (The
reader may try for instance the input constantcontinue.)

The subset construction can lead, in the worst case, to a number of
states which is the total number of state subsets of the NFA. In other
words, if the NFA has n states, the equivalent DFA by subset construction
can have 2n states (see page 614 for the count of all the subsets of a finite
set). For instance, consider the following NFA, which recognises all binary
strings which have 1 at the nth position from the end:

q0 q1 q2 qn−1
qn. . .

0, 1

1 0, 1 0, 1

The language recognised by this NFA is Σ∗1Σn−1, where Σ = {0, 1},
that is: all words of length greater or equal to n are accepted as long
as the nth bit from the end is 1. Therefore, in any equivalent DFA, all
the prefixes of length n should not lead to a stuck state, because the
automaton must wait until the end of the word to accept or reject it. If
the states reached by these prefixes are all different, then there are at
least 2n states in the DFA. Equivalently (by contraposition), if there are
less than 2n states, then some states can be reached by several strings of
length n:

qD q

x

x′

1

0

w

where words x1w and x′0w have length n. Let us define the DFA as
follows: D = (QD,Σ, δD, qD, FD), where qD = {q0}. The extended trans-
ition function is noted δ̂D as usual. The situation of the previous picture
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can be formally expressed as

δ̂D(qD, x1) = δ̂D(qD, x
′0) = q, (14.1)

|x1w|= |x′0w|= n,

where |u| is the length of u. Let y be a any string of 0 and 1 such that
|wy|= n − 1. Then δ̂D(qD, x1wy) ∈ FD since there is a 1 at the nth
position from the end:

qD q p

x

x′

1

0

w y

Also, δ̂D(qD, x′0wy) ̸∈ FD because there is a 0 at the nth position from
the end. On the other hand, equation (14.1) implies

δ̂D(qD, x1wy) = δ̂D(qD, x
′0wy) = p.

So we stumble upon a contradiction because a state (p) must be either
final or not final, it cannot be both. As a consequence, we must reject
our initial assumption: there are at least 2n states in the equivalent DFA.
This is a very bad case, even if it is not the worst case (2n+1 states).

14.8 NFA with ϵ-transitions

We shall now introduce another extension to NFA, called ϵ-NFA, which is
a NFA whose labels can be the empty string, noted ϵ. The interpretation
of this new kind of transition, called ϵ-transition, is that the current state
changes by following this transition without reading any input. This is
sometimes referred as a spontaneous transition. The rationale is that
ϵa = aϵ = a, so recognising ϵa or aϵ is the same as recognising a. In
other words, we do not need to read something more than a as input.

For example, the figure 14.30 on the next page specifies signed
natural and decimal numbers by means of the ϵ-NFA. This is not the
simplest ϵ-NFA we can imagine for these numbers, but note the utility
of the ϵ-transition between q0 and q1. In case of lexical analysers, ϵ-NFAs
enable the separate design of a NFA for each token, then create an initial
(respectively, final) state connected to all their initial (respectively, final)
states with an ϵ-transition.

For instance, for keywords fun and function and identifiers, we have
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q0 q1 q2 q3

q4

q5
+,−, ϵ

0, . . . , 9

.

0, . . . , 9

0, . . . , 9

ϵ

0, . . . , 9

ϵ

Figure 14.30: Signed natural and decimal numbers

q0

q1 q2 q3 q4

q5 q6 q7 q8 q9 q10 q11 q12 q13

q14 q15

q16

ϵ

f u n ϵ

ϵ f u n c t i o n ϵ

ϵ
A, . . . ,Z
a, . . . , z

0, . . . , 9

A, . . . ,Z, a, . . . , z

ϵ

In lexical analysis, once we have a single ϵ-NFA, we can

• either remove all the ϵ-transitions and either create a NFA and
then maybe a DFA, or create directly a DFA;

• or use a formal definition of ϵ-NFA that directly leads to a recog-
nition algorithm, just as we did for DFAs and NFAs.

Both methods assume that it is always possible to create an equivalent
NFA, hence a DFA, from a given ϵ-NFA. In other words, DFA, NFA and
ϵ-NFA have the same expressive power.

The first method constructs explicitly the NFA and maybe the DFA,
while the second does not, at the possible cost of more computations at
run-time.

Before entering into the details, we need to define formally an ϵ-NFA,
as suggested by the second method. The only difference between an NFA
and an ϵ-NFA is that the transition function δE takes as second argument
an element in Σ ∪ {ϵ}, with ϵ ̸∈ Σ, instead of Σ – but the alphabet still
remains Σ.

ϵ-closure

We need now a function called ϵ-close, which takes an ϵ-NFA E , a state q
of E and returns all the states which are accessible in E from q with label ϵ.
The idea is to achieve a depth-first traversal of E , starting from q and
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following only ϵ-transitions. Let us call ϵ-DFS (‘ϵ-Depth-First-Search’)
the function such that ϵ-DFS(q,Q) is the set of states reachable from q
following ϵ-transitions and which is not included in Q, Q being interpreted
as the set of states already visited in the traversal. The set Q ensures the
termination of the algorithm even in presence of cycles in the automaton.
Therefore, let

ϵ-close(q) = ϵ-DFS(q,∅), if q ∈ QE,

where the ϵ-NFA is E = (QE ,Σ, δE , q0, FE). Now we define ϵ-DFS as
follows:

ϵ-DFS(q,Q) = ∅, if q ∈ Q; (14.2)

ϵ-DFS(q,Q) = {q} ∪
⋃

p∈δE(q,ϵ)

ϵ-DFS(p,Q ∪ {q}), if q ̸∈ Q. (14.3)

The ϵ-NFA in figure 14.30 on the preceding page leads to the following
ϵ-closures:

ϵ-close(q0) = {q0, q1}
ϵ-close(q1) = {q1}
ϵ-close(q2) = {q2}
ϵ-close(q3) = {q3, q5}
ϵ-close(q4) = {q4, q3, q5}ϵ-close(q5) = {q5}.

Consider, as a more difficult example, the following ϵ-NFA E :

q0

q1 q2 q3

q4 q5 q6

ϵ

ϵ

ϵ

ϵ

ϵ

a ϵ

b

ϵ-close(q0) = ϵ-DFS(q0,∅), since q0 ∈ QE

= {q0} ∪ ϵ-DFS(q1, {q0}) ∪ ϵ-DFS(q4, {q0}) by eq. 14.3

= {q0} ∪
(

{q1} ∪
⋃

p∈δE(q1,ϵ)

ϵ-DFS(p, {q0, q1})
)

by eq. 14.3

∪
(

{q4} ∪
⋃

p∈δE(q4,ϵ)

ϵ-DFS(p, {q0, q4})
)

by eq. 14.3

= {q0} ∪
(

{q1} ∪
⋃

p∈{q2}

ϵ-DFS(p, {q0, q1})
)
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∪
(

{q4} ∪
⋃

p∈∅
ϵ-DFS(p, {q0, q4})

)

= {q0} ∪ ({q1} ∪ ϵ-DFS(q2, {q0, q1})) ∪ ({q4} ∪∅)

= {q0, q1, q4} ∪ ϵ-DFS(q2, {q0, q1})

= {q0, q1, q4} ∪
(

{q2} ∪
⋃

p∈δE(q2,ϵ)

ϵ-DFS(p, {q0, q1, q2})
)

= {q0, q1, q4} ∪
(

{q2} ∪
⋃

p∈{q1,q3}

ϵ-DFS(p, {q0, q1, q2})
)

= {q0, q1, q2, q4} ∪ ϵ-DFS(q1, {q0, q1, q2})
∪ ϵ-DFS(q3, {q0, q1, q2})

= {q0, q1, q2, q4} ∪∅ by eq. 14.2, since q1 ∈ {q0, q1, q2}

∪
(

{q3} ∪
⋃

p∈δE(q3,ϵ)

ϵ-DFS(p, {q0, q1, q2, q3})
)

by eq. 14.3

= {q0, q1, q2, q3, q4} ∪
⋃

p∈∅
ϵ-DFS(p, {q0, q1, q2, q3})

= {q0, q1, q2, q3, q4}.

It is useful to extend ϵ-close to sets of states, not just states. Let us note
ϵ-close this extension, which we can easily define as

ϵ-close(Q) =
⋃

q∈Q

ϵ-close(q),

for any subset Q ⊆ QE where the ϵ-NFA is E = (QE,Σ, δE , qE, FE).

Optimisation

Let us compute the ϵ-closure of q0 in the following ϵ-NFA E :

E ′q0

q1

q2

q3

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

where the sub-ϵ-NFA E ′ contains only ϵ-transitions and all its Q′ states
are accessible from q3.

ϵ-close(q0) = ϵ-DFS(q0,∅)
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= {q0} ∪ ϵ-DFS(q1, {q0}) ∪ ϵ-DFS(q2, {q0})
= {q0} ∪ ({q1} ∪ ϵ-DFS(q3, {q0, q1}))

∪ ({q2} ∪ ϵ-DFS(q3, {q0, q2}))
= {q0, q1, q2} ∪ ϵ-DFS(q3, {q0, q1}) ∪ ϵ-DFS(q3, {q0, q2})
= {q0, q1, q2, q3, } ∪ ({q3} ∪Q′) ∪ ({q3} ∪Q′)

= {q0, q1, q2, q3, } ∪Q′.

We compute {q3} ∪ Q′ twice, that is, we traverse twice q3 and all the
states of E ′, which can be inefficient if Q′ is large. The way to avoid
repeating traversals is to change the definitions of ϵ-close and ϵ-close.
Dually, we need a new definition of ϵ-DFS and create a function ϵ-DFS
which is similar to ϵ-DFS, except that it applies to set of states instead
of one state:

ϵ-close(q) = ϵ-DFS(q,∅), if q ∈ QE;

ϵ-close(Q) = ϵ-DFS(Q,∅), if Q ⊆ QE.

We interpret Q′ in ϵ-DFS(q,Q′) and ϵ-DFS(Q,Q′) as the set of states that
have already been visited in the depth-first search. Variables q and Q
denote, respectively, a state and a set of states that have to be explored.
In the first definition we computed the new reachable states, whilst, in the
new one, we compute the currently reached states. Then let us redefine
ϵ-DFS this way:

ϵ-DFS(q,Q′) = Q′, if q ∈ Q′; (1’)

ϵ-DFS(q,Q′) = ϵ-DFS(δE(q, ϵ), Q
′ ∪ {q}), if q ̸∈ Q′. (2’)

Contrast with the first definition

ϵ-DFS(q,Q′) = ∅, if q ∈ Q′; (1)

ϵ-DFS(q,Q′) = {q} ∪
⋃

p∈δE(q,ϵ)

ϵ-DFS(p,Q′ ∪ {q}), if q ̸∈ Q′. (2)

Hence, in (1) we return ∅ because there is no new state, that is, none
not already in Q′, whereas in (1’) we return Q′ itself. The new definition
of ϵ-DFS is not more difficult than the first one:

ϵ-DFS(∅, Q′) = Q′, (14.4)

ϵ-DFS({q} ∪Q,Q′) = ϵ-DFS(Q, ϵ-DFS(q,Q′)), if q ̸∈ Q. (14.5)

Notice that the definitions of ϵ-DFS and ϵ-DFS are mutually recurs-
ive. In (2) we traverse states in parallel (consider the union operator),
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starting from each element in δE(q, ϵ), whereas in (2’) and (14.5), we tra-
verse them sequentially so we can use the information collected (currently
reached states) in the previous searches.

Coming back to our example on page 623, we find

ϵ-close(q0) = ϵ-DFS(q0,∅) q0 ∈ QE

= ϵ-DFS({q1, q2}, {q0}) by eq. (2’)

= ϵ-DFS({q2}, ϵ-DFS(q1, {q0})) by eq. (4)

= ϵ-DFS({q2}, ϵ-DFS({q3}, {q0, q1})) by eq. (2’)

= ϵ-DFS({q2}, ϵ-DFS(∅, ϵ-DFS(q3, {q0, q1}))) by eq. (4)

= ϵ-DFS({q2}, ϵ-DFS(q3, {q0, q1})) by eq. (3)

= ϵ-DFS({q2}, {q0, q1, q3} ∪Q′)

= ϵ-DFS(∅, ϵ-DFS(q2, {q0, q1, q3} ∪Q′)) by eq. (4)

= ϵ-DFS(q2, {q0, q1, q3} ∪Q′) by eq. (3)

= ϵ-DFS({q3}, {q0, q1, q2, q3} ∪Q′) by eq. (2’)

= ϵ-DFS(∅, ϵ-DFS(q3, {q0, q1, q2, q3} ∪Q′)) by eq. (4)

= ϵ-DFS(q3, {q0, q1, q2, q3} ∪Q′) by eq. (3)

= {q0, q1, q2, q3} ∪Q′ by eq. (1’)

The important thing here is that we did not compute (traverse) several
times Q′. Note that some equations can be used in a different order
and q can be chosen arbitrarily in equation (4), but the result is always
the same.

Extended transition functions

The ϵ-closure allows to explain how a ϵ-NFA recognises or rejects a given
input. Let E = (QE ,Σ, δE , q0, FE). We want δ̂E(q, w) be the set of states
reachable from q along a path whose labels, when concatenated, for the
string w. The difference here with NFAs is that several ϵ can be present
along this path, despite not contributing to w. For all state q ∈ QE , let

δ̂E(q, ϵ) = ϵ-close(q),

δ̂E(q, wa) = ϵ-close

(

⋃

p∈δ̂E(q,w)

δN (p, a)

)

, for all a ∈ Σ, w ∈ Σ∗.

This definition is based on the regular identity wa = ((wϵ∗)a)ϵ∗.
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As an illustration, let us consider again the ϵ-NFA in figure 14.30
on page 621 and compute the states reached on the input 5.6:

δ̂E(q0, ϵ) = ϵ-close(q0) = {q0, q1};

δ̂E(q0, 5) = ϵ-close

(

⋃

p∈δ̂E(q0,ϵ)

δN (p, 5)

)

= ϵ-close(δN (q0, 5) ∪ δN (q1, 5)) = ϵ-close(∅ ∪ {q1, q4})
= {q1, q3, q4, q5};

δ̂E(q0, 5.) = ϵ-close

(

⋃

p∈δ̂N (q0,5)

δN (p, .)

)

= ϵ-close(δN (q1, .) ∪ δN (q3, .) ∪ δN (q4, .) ∪ δN (q5, .))

δ̂E(q0, 5.) = ϵ-close({q2} ∪∅ ∪∅ ∪∅) = {q2};

δ̂N (q0, 5.6) = ϵ-close

(

⋃

p∈δ̂E(q0,5.)

δN (p, 6)

)

= ϵ-close(δN (q2, 6)) = ϵ-close({q3}) = {q3, q5} ∋ q5.

Since q5 is a final state, the string 5.6 is recognised as a number.

Subset construction for ϵ-NFAs

Let us present now how to construct a DFA from a ϵ-NFA such that
both recognise the same language. The method is a variation of the
subset construction we presented for NFA: we must take into account
the states reachable through ϵ-transitions, with help of ϵ-closures. Let us
assume that E = (Q,Σ, δ, q0, F ) is an ϵ-NFA. Let us define as follows the
equivalent DFA D = (QD,Σ, δD, qD, FD).

1. QD is the set of subsets of QE. More precisely, all accessible states
of D are ϵ-closed subsets of QE , that is to say, sets Q ⊆ QE such
that Q = ϵ-close(Q);

2. qD = ϵ-close(q0), in other words, we get the start state of D by
ϵ-closing the set made of only the start state of E ;

3. FD is those sets of states that contain at least one final state of E ,
that is to say, FD = {Q |Q ∈ QD and Q ∩ FE ̸= ∅};

4. For all a ∈ Σ and Q ∈ QD, let δD(Q, a) = ϵ-close
(⋃

q∈Q δE(q, a)
)

.
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Let us consider again the ϵ-NFA in figure 14.30 on page 621. Its trans-
ition table is

E + − 0, . . . , 9 . ϵ

→q0 {q1} {q1} ∅ ∅ {q1}
q1 ∅ ∅ {q1, q4} {q2} ∅

q2 ∅ ∅ {q3} ∅ ∅

q3 ∅ ∅ {q3} ∅ {q5}
q4 ∅ ∅ ∅ ∅ {q3}

#q5 ∅ ∅ ∅ ∅ ∅

By applying the subset construction to this ϵ-NFA, we get the table

D + − 0, . . . , 9 .

→{q0, q1} {q1} {q1} {q1, q3, q4, q5} {q2}
{q1} ∅ ∅ {q1, q3, q4, q5} {q2}

#{q1, q3, q4, q5} ∅ ∅ {q1, q3, q4, q5} {q2}
{q2} ∅ ∅ {q3, q5} ∅

#{q3, q5} ∅ ∅ {q3, q5} ∅

Let us rename the states of D and get rid of the empty sets:

D + − 0, . . . , 9 .

→A B B C D
B C D

#C C D
D E

#E E

The transition diagram of D is shown in figure 14.31.

A B

C

D

E

0, . . . , 9

+
−

.

0
···
9

.

0, . . . , 9

.

0, . . . , 9

0, . . . , 9

Figure 14.31: Determinisation of the ϵ-NFA in figure 14.30 on
page 621
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14.9 From regular expressions to ϵ-NFAs

We left behind the regular expressions when we informally introduced the
transition diagrams for token recognition. Now let us show that regular
expressions when used in lexers to specify tokens can be converted to
ϵ-NFAs, and therefore to DFAs. This proves that regular languages are
recognisable languages. Actually, it is possible to prove that any ϵ-NFA
can be converted to a regular expression denoting the same language,
but we will not do so. Therefore, keep in mind that the regular languages
are the same as the recognisable languages. In other words, the choice
of using a regular expression or a finite automaton is only a matter of
convenience.

The construction we present here to build an ϵ-NFA from a regular
expression is called Thompson’s construction. Let us first associate an
ϵ-NFA to the basic regular expressions.

• For the expression ϵ, construct the following NFA, where i and f
are new states:

i fϵ

• For a ∈ Σ, construct the following NFA, where i and f are new
states:

i fa

Now let us associate NFAs to complex regular expressions. In the follow-
ing, let us assume that N(s) and N(t) are the NFAs for regular expres-
sions s and t.

• For the regular expression st, construct the following NFA N(st),
where no new state is created:

N(s)i N(t) fϵ

The final state of N(s) becomes a normal state, as well as the initial
state of N(t). This way only remains a unique initial state i and a
unique final state f .

• For the regular expression s ||| t, construct the following NFA N(s ||| t)
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N(s)

i f

N(t)

ϵ ϵ

ϵ ϵ

where i and f are new states. Initial and final states of N(s) and
N(t) become normal.

• For the regular expression s⋆, construct the following NFA N(s⋆),
where i and f are new states:

N(s)i fϵ ϵ

ϵ

ϵ

Note that we added two ϵ transitions and that the initial and final
states of N(s) become normal states.

How do we apply these simple rules when we have a complex regular ex-
pression, having many level of nested parentheses and other constructs?
Actually, the abstract syntax tree of the regular expression directs the
application of the rules. If the syntax tree has the shape shown in fig-

ure 14.32a, then we construct first N(s), N(t) and finally N(s · t). If the
syntax tree has the shape found in figure 14.32b, then we construct first
N(s), N(t) and finally N(s ||| t). If the syntax tree has the shape shown
in figure 14.32c, then we construct first N(s) and finally N(s⋆). These

·

s t

(a) s · t

|||

s t

(b) s ||| t

⋆

s

(c) s⋆

Figure 14.32: Three tree patterns for three regular expressions
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pattern matchings are applied first at the root of the abstract syntax
tree of the regular expression.
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n , 124

Cmrg
m,n, 116

A✶
n , 125

Amrg
1,n , 123

Amrg
n,n , 123

Bmrg
m,n, 117

Cmrg
m,n, 116, 162

C$
n , 148

Amrg
m,n, 122

Amrg
n,n , 125

Wmrg
m,n, 117

W✶
n , 125

mrg/2, 116, 123, 124, 126, 127,
132, 134, 148–150, 162,
165, 166, 228

nil/0, 6, 203



656 INDEX

nin/1, 217
nin/2, 217
norm/1, 248
npost/1, 221
npost/2, 221
npre/1, 211
npre/2, 211
nth/2, 177
Cnxt
n , 66

nxt/1, 66, 149, 150

off-line algorithm, 9
Coms
n , 165

Coms
n , 162, 163, 165

oms/1, 162, 166
on-line algorithm, 9
one/1, 161
Ord, 95, 99
ord/1, 247

palindrome, 359–360
Pascal’s triangle, 120
per/1, 232
per0/1, 232
Cperm
n , 83–84

perm/1, 81
permutation, 8, 79, 84–88, 93

bigraph, 85, 86
composition, 85
identity, 85, 86
inverse, 85, 86
inversion, 86, 94
involution, 85

persistence, 69
backtracking, 72
full ∼, 72, 76
history, 70
partial ∼, 72
update-based, 72
version-based, 70

pop/0, 72
pop/1, 71, 72, 75

pop0/1, 73
Cpost
n , 221

post/1, 221, 223, 234
post/2, 221, 223

Cpost2b
n , 235

post2b/1, 235, 236, 243, 244,
246

post2b/2, 236, 244
PostMir, 223
Bpp
n , 179

Wpp
n , 180

pp/1, 177–179
Pre, 212
Cpre
n , 209, 215

pre/1, 208, 210, 212, 213, 215,
216, 221–223, 235, 270

pre/2, 168, 169, 209–214
pre/5, 170, 172
Bpre0
n , 205

Cpre0
n , 204

Wpre0
n , 204

pre0/1, 204–206, 208, 212
Cpre1
n , 206

pre1/1, 206
pre1/5, 169
pre2/1, 206

Cpre2b
n , 237

pre2b/1, 236, 237, 243, 246
pre2b/2, 236
pre2b0/1, 237, 243
pre2b1/1, 237
Cpre
n , 207

pre3/1, 206, 207, 210, 226
pre4/1, 206, 226, 227
pre4/2, 246
Cpre5
n , 207

pre5/1, 207
pre6/1, 207
prefix, see word factoring

find all prefixes, 360
PreMir, 221–223, 236
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Cpush
n , 82

push/1, 72, 74
push/2, 67, 71, 72, 75, 81

q/2, 60, 66, 227
Quad, 42
queue, 60, 226, 240

amortised cost, 61, 65
front stack, 60
rear stack, 60

Sn, 65
⊖, 226

Rcat, 220, 223
rcat/2, 39–40, 42, 50, 54, 61,

101, 219–221, 227
red/1, 69
Refl, 96
rep/3, 78–79
Crev
n , 51, 228, 237

A#
n , 112

rev/1, 39–40, 42, 54, 178, 219,
223, 229, 236, 246, 263,
270

Crev0
n , 40–42

W rev0
n , 93

rev0/1, 37–42, 50, 54, 56, 93,
208, 263

RevCat, 40
rewrite system, 1, 3

confluence, 2
local ∼, 2

critical pair, 2
ground ∼, 3
linear ∼, 3
normal form, 1, 6
stuck expression, 213
termination, 14

right/1, 239
rlw/2, 184
robustness, 47, 48
RootLeaf, 262

RootLeaf0, 262
Rot, 218, 260
rotl/1, 260
rotr/1, 260
ruler function, 141, 163–165
ρn, see ruler function

sentinel, 248
seven/2, 183
Bsfst
n , 48

Csfst
n , 48

Asfst
n , 49

Wsfst
n , 49

sfst/2, 43–49, 53, 54, 78
sfst/4, 49
sfst2/4, 50
sfst0/2, 49, 53, 78
sfst1/1, 50
sharing, 7, 69, 74–75
sibling/1, 239
side, see word factoring, border
size/1, 203, 224, 228
Bslst0
n , 51

Bslst
n , 52

Cslst
n , 52

Aslst0
n , 51

Aslst
n , 52

Wslst0
n , 51

Wslst
n , 52

slst/2, 51, 53
slst/3, 51
slst0/2, 53
Cslst0
n , 51

snd/1, 211
solo/1, 148, 150
sorting, 79, 88, see insertion

sort, see merge sort
key, 79

uniqueness, 8
minimax, 87–89
minimean, 88–89
optimality, 87–89



658 INDEX

soundness, 23–25, 44, 45, 47, 68
specification, 43, 68
stack
∼ in Java, 15
catenation, 6, 204, 213
∼ in Erlang, 14
∼ in Java, 16–17
associativity, 12, 41
cost, 8
definition, 7
example, 7

compression, 290
control ∼, see memory, con-

trol stack
cutting, 66
∼ in Java, 370–372

encoding with tuples, 75,
320–321

equivalence, 95
flattening, 53–59, 205, 214–

217, 320–321
aliasing, 290
cost, 57
definition, 55, 57, 59
example, 54, 55, 58
maximum cost, 57
minimum cost, 57
tail form, 299–308, 311–

312
termination, 58–59

front ∼, see queue
inductive definition, 6
rear ∼, see queue
reversal, 219, 237
∼ and catenation, 39
∼ in Java, 365–366
cost, 40
definition, 37
efficient ∼, 39
equivalence, 39
example, 37, 39
involution, 37, 236

reversed prefix, 101
simulated ∼, 101
skipping an item
∼ in Java, 366–368
average cost, 49, 51, 52
example, 47, 52
first occurrence, 43
last occurrence, 50, 51
maximum cost, 49, 51, 52
memory, 49
minimum cost, 48, 51, 52

suffix, 101
states, 182
Stirling’s formula, 80, 88, 190
string matching, see word

factoring
suf/2, 177
suffix, see word factoring

find all suffixes, 360
Bsum
n , 163, 164

Csum
n , 163

Wsum
n , 164, 165

sum/2, 162
Sym, 96

tl/1, 427, 428, 453
term, 3, see tree

immediate subterm, 12
proper subterm, 12
subterm, 12

termination, 1, 14
Ackermann’s function, 13
dependency pair, 59, 100,

123, 170, 211, 228
insertion sort, 100
level order, 228–230
measure, 59
polynomial measure, 59,

228
preorder traversal, 211–212
primitive recursion, 13

testing, 203, 369–370
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path ∼, 375
structural ∼, 375

Btms
n , 127, 130–132

Ctms
n , 126

Atms
n , 134–137

Wtms
n , 132–134, 152–155

tms/1, 126, 166
toll, 204
top/1, 73
top0/1, 73, 74
top0/2, 73
T rev0
n , 41

transition, 182
transitive closure, 3, 85
transposition, 96
tree, 4, see directed acyclic

graph
abstract syntax ∼, 7, 187,

205, 281
binary ∼, see binary tree
branch, 56, 218
Catalan ∼

preorder numbering, 189
comparison ∼, see sorting
edge, 4
evaluation ∼, 106, 110
external path, 202
external path length, 106,

202
forest, 4, 206, 224, 235
height, 202, 225, 232

average ∼, 246
internal path, 202
internal path length, 202,

223
level, 223
merge ∼, 124, 137, 140,

148–150, 161
node, 4

child, 4, 201
external ∼, 106, 202
leaf, 4

parent, 4
root, 4, 201
sibling, 204, 224

perfect ∼, 110
proof ∼, 96
subtree

immediate ∼, 4, 212
proper ∼, 4

traversal, 189, 203
walk, see traversal, see tra-

versal
tri
∼ par insertions, 91–113

true/1, 248

Bunb
n , 164

Cunb
n , 163

unb/2, 162
underspecification, 44
up/1, 239

ver/2, 71
ver0/2, 73
ver2/2, 75

WL, 152
word factoring, 167–183

alphabet, 167
border, 173–174
comparison

negative ∼, 178
positive ∼, 178

factor, 167
failure function, 174–177
index, 168
Knuth-Morris-Pratt, 183
letter, 167
Morris-Pratt, 173–183, 278

automaton, 182
maximum cost, 181
metaprogramming, 181–

183
minimum cost, 180–181
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search, 180

Morris-Pratt preprocessing

definition, 177–178

maximum cost, 179–180

minimum cost, 178–179

naïve ∼, 168–172

average cost, 172

completeness, 170–171

maximum cost, 171–172

minimum cost, 171

program, 170
termination, 170

pattern, 168
prefix, 167, 240
suffix, 167
text, 168
word, 167

WU , 154

zero/0, 161
zero/2, 183






